Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Learning to Separate Object Sounds by Watching Unlabeled Video

Learning to Separate Object Sounds by Watching Unlabeled Video: [Project Page] [arXiv]

This repository contains the deep MIML network implementation for our ECCV 2018 paper.

If you find our code or project useful in your research, please cite:

    @inproceedings{gao2018objectSounds,
      title={Learning to Separate Object Sounds by Watching Unlabeled Video},
      author={Gao, Ruohan and Feris, Rogerio and Grauman, Kristen},
      booktitle={ECCV},
      year={2018}
    }

Use the following command to train the deep MIML network:

python train.py --HDF5FileRoot /your_hdf5_file_root --name deepMIML --checkpoints_dir checkpoints --model MIML --batchSize 256 --learning_rate 0.001 --learning_rate_decrease_itr 5 --decay_factor 0.94 --display_freq 10 --save_epoch_freq 5 --save_latest_freq 500 --gpu_ids 0 --nThreads 2 --num_of_fc 1 --with_batchnorm --continue_train --niter 300 --L 15 --validation_on --validation_freq 50 --validation_batches 10 --selected_classes --using_multi_labels |& tee -a train.log

Acknowlegements

Our code borrows heavily from the the CycleGAN implementation https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/.

About

Learning to Separate Object Sounds by Watching Unlabeled Video (ECCV 2018)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages