
Project Management
Final assignment

Release of a FLOSS product by a SME

Ricardo Garćıa Fernández

March 25, 2013

c©2013 Ricardo Garćıa Fernández - ricardogarfe [at] gmail [dot] com.

This work is licensed under a Creative Commons 3.0 Unported License. To view a copy
of this license visit:

http://creativecommons.org/licenses/by/3.0/legalcode.

1

http://creativecommons.org/licenses/by/3.0/legalcode

Contents

1 SME Introduction 3

2 Publish the project 3
2.1 Dual License . 4

3 Market niche - Competitors analysis 6
3.1 Code climate . 7
3.2 Sonar . 8

4 Management general path 9
4.1 Community Manager . 9
4.2 Technical Developer . 10
4.3 Enterprise ROLE . 11
4.4 Social and political organization . 11

5 Management Policies 12
5.1 Where will be published the code ? . 12
5.2 Communication strategy and channels . 14

5.2.1 Mailing Lists . 15
5.2.2 Forums . 15

5.3 Managing volunteers and attracting new users 17
5.3.1 Managing volunteers . 17
5.3.2 Attracting new users . 18
5.3.3 Gamifying Community . 19

6 Technology 20
6.1 Technical Infrastructure needed . 21

7 Business scalability 23
7.1 Evolution . 23
7.2 Emphasis . 24

2

1 SME Introduction

Code Garden is our SME. We develop software products using quality patterns. Quality
patterns are our main goal, applying Quality patterns to software development as is.
plants and the code can not be kept alone, they can grow with life, diverted, or wither
in a forgotten place. So plants like the code, need extra care, some gardeners, so they
can grow and flourish.

Technical Debt is not a monster chasing us in every development sprint is another ROL
that we accept and we have interaction with it. We need him and he needs us.

Thus, we created a software product that helps us to deal with Technical Debt, Green-
house.

Greenhouse is our tool to track the progress of the evolution of code quality within a
controlled environment. Using quality metrics for each programming language helps us
reduce technical debt faster

”we are the code we write”

Increase productivity fighting against the technical debt of a project easily.

Figure 1: How much costs technical debt in your project ?

2 Publish the project

We want to publish Greenhouse as a FLOSS1 project with two Software Licenses.

One a FLOSS License and the other a Private License. We chose a Dual-License prod-
uct.

Thus we can serve every type of costumers as MySQL business model explained by Elena
Blanco[6].

For anyone who wants to develop and distribute but does not want to release
the source code for their application, MySQL is able to provide a commercial
licence. Because MySQL has full ownership of the MySQL code, it is able

1Free Libre Open Source Software

3

to tailor its commercial licensing terms to meet the unique requirements of
users interested in embedding or bundling MySQL.

2.1 Dual License

Free Software License and Private, Brief discussion about licenses (your company has
heard about some BSD or GPL, but they are not sure!).

FLOSS License selected to publish Greenhouse is GPLv3 2. This FLOSS License provides
4 freedoms to the project:

• the freedom to use the software for any purpose,

• the freedom to change the software to suit your needs,

• the freedom to share the software with your friends and neighbors, and

• the freedom to share the changes you make.

The other License is a private License. A private License gives us more flexibility through
market niche.

Good thing to take in advance using a Private License are:

• Avoid possible or unexpected License Violations.

• Build a project in your company and be 100% sure that you are not violation any
License under your product.

• This License envelops the whole product into a private version.

This private License gives you the opportunity to deal with Greenhouse libraries and in-
clude into other projects using full capabilities. This way you can avoid License problems
with derivated works and be compatible with other FLOSS Licenses.

Brian Behlendorf[7] explains this model with a success and its weaknesses with the
community development:

You have to be very careful, though, to make sure that any code volun-
teered to you by third parties is explicitly available for this non-free branch;
you ensure this by either declaring that only you (or people employed by you)
will write code for this project, or that (in addition) you’ll get explicit clear-
ance from each contributor to take whatever they contribute into a non-free
version.

We are very concerned about how to interact with the community. Our goal is provide
to community the opportunity to develop solutions to our clients for Greenhouse.

2GNU Public License Version 3 - http://www.gnu.org/licenses/gpl-3.0.html

4

http://www.gnu.org/licenses/gpl-3.0.html

I would claim that if you treat your contributors right, perhaps even offer
them money or other compensation for their contributions (it is, after all,
helping your commercial bottom line), this model could work.

Last quotation is how Transvirtual3 in Berkeley applied this model to a commercial
lightweight Java. Encourage the developers to work and earn money directly with the
software they make. We believe in this model to create a community involved around
the product:

• The usability of the product.

• Tangible incentives as our case the money.

• ’Intangible’ incentives: community badges Gamifying Community[10].

In this way we will try to solve the dilemma of FLOSS developments that can be con-
verted into proprietary solutions.

Therefor, an exchange of knowledge by salaries to the community through an assignment
of copyright to Code Garden by using the GPLv3 License, they maintain the authoring
and earn tangible rewards too.

3http://www.transvirtualsystems.com/

5

http://www.transvirtualsystems.com/

Figure 2: Mozilla Open Badges diagram.

We are the copyright holders of Greenhouse and thus , we want to share the sustainability
with community knowledge to provide solutions for companies with private Licenses of
the product.

We want to evolve with the community and spread our developments and remain FLOSS.

3 Market niche - Competitors analysis

Code analysis is increasing everyday in software development. SME & Big Enterprises
focus its products near quality. Why ? Because Software Development is measurable,
high measurable I could say. Every software is developed guided by patterns through

6

developers and the final product (talking about clients) is released to the client showing
its functionality but what happens with all the code developed inside ?

The code evolves as the development grows. In a development team is difficult to measure
the quality of the product grained.

Other sample of the use of measure the quality is when you have to choose between two
libraries to implement another service that use the functionality implemented by them.
One metric to take care is the code quality that you can apply for them. Using some
objective metrics you can retrieve a numeric result that gives you a general idea. Or if you
want to add an existing module/library you can choose the one which its result is near to
your software, not lesser not higher. It is a way of seeking for a balance in development
and knowledge about complexity of a module to import to your product.

There are some samples of Analyzing tools but we are to analyze Code Climate and
Sonar.

3.1 Code climate

Code climate - https://codeclimate.com/. Code quality analysis in Ruby Language.
But we will not focus on language but with what gives us the tool in Figure 3.

Figure 3: Code Climate Notifications

This tool gives us interoperability with Software Forges like Github integration. Source
Code Management with Git repositories, Code Quality evolution, Notifications, Com-
parison tools. This tool set is simple but efficient, this is very important. Play with the
ease of integration into a forge development offering hosting server, pay and enjoy the
product (one click purchase).

Includes the main features of services; PaaS 4, IaaS 5 and SaaS 6. Using bluebox services

4Platform as a Service
5Infrastructure as a Service
6Software as a Service

7

https://codeclimate.com/

- https://bluebox.net/: Virtualized Environments on Actual Hardware.

We want those services available for every developer and easily result visualization.

It’s free (gratis) for FLOSS projects.

3.2 Sonar

Sonar - http://www.sonarsource.org/. Sonar slogan is very clear:

Put your technical debt under control

Despite Code Climate, Sonar covers lots of languages and is a FLOSS product. A very
good point to consider for the use of this software. Controls and test every corner of
your project in Figure 4.

Figure 4: Sonar covers 7 axes

This Software gives you the opportunity to integrate with your Source code management
and a result metrics result visualization panel with Nemo (in Figure 5) - http://nemo.
sonarsource.org/ using Saas solution through Cloud Bees - http://www.cloudbees.
com/platform-service-sonarsource.cb.

Figure 5: Nemo evolution graph

Sonar is focused in code Analysis its market niche as Code Climate but offering easy con-
figurable solutions for integrate your projects with giving you the possibility to analyze

8

https://bluebox.net/
http://www.sonarsource.org/
http://nemo.sonarsource.org/
http://nemo.sonarsource.org/
http://www.cloudbees.com/platform-service-sonarsource.cb
http://www.cloudbees.com/platform-service-sonarsource.cb

our software and visualize the results among time.

This is our niche, Software Analysis, visualization and interoperability between Source
Code Management.

4 Management general path

Communities, Enterprise ROLE, Single Vendor or Apache Software Foundation.

We want an open community starting from basic decisions and fast information spread,
not noise, information. We need to know what kind of community we want to be.

From this reason we have to establish the basic guidance and scalability rules. Our first
step is to publish the code with Dual-License (FLOSS and private). Yes, the license
matters in every community.

Our starting community is composed by our development team from Code Garden. Two
developers that have been developing the project. We invest the knowledge and their
work hours into this community project because we bet to improve from a community.
We are not searching for a direct revenue. They take the role ’without’ company brand
because we want a community.

The brand of the company has to become the solution for the project GreenHouse and
related projects doing networking with other communities. Because of that we need
three ROLES:

• Community Manager.

• Technical Developer.

• Company behind the project inspiring confidence.

4.1 Community Manager

One of them has to take the ROLE of the Community Manager. This ROLE is in
charge of the communication, promoting, technology, development, interviews and pro-
active person inside our company and the community. We need a bridge between our
community, clients and our company to learn from distinct points of view. Our goal
is that the Community Manager will be associated to Code garden. So to raise this
we have to give him visibility through internet channels: company website, company
blogs, personal blog, social network (SME and project) and try to guide the community
developers to he.

9

4.2 Technical Developer

The ROLE of the Technical Developer is that he has to be known inside the developers
community, the part of the community that contributes with code. Has to be a clear
person, pragmatic and open-minded. Take the ROLE of a Benevolent Dictator For Life7

as Guido Van Rossum was baptized by one of the attendees at a lecture in 1995.

”I believe I’ve tracked down the origin of the term Benevolent Dictator For
Life (BDFL) to a Python meeting in 1995. It’s a blast from the past!”

This person is charge of project development as a project manager in an Enterprise
Language but more open minded to their community members. Is the ’creator’ of
the project and deserves a higher degree of credibility on issues directly related to the
project.

We need one, but we don’t want one for the eternity because our goal here is that the
community manages the project and grows horizontally. Kill your idols, be yourself
that’s the goal here.

Figure 6: Ecce Homo - Kill Your Idols

7http://www.artima.com/weblogs/viewpost.jsp?thread=235725

10

http://www.artima.com/weblogs/viewpost.jsp?thread=235725

4.3 Enterprise ROLE

Enterprise ROLE is the most important at the beginning because Code Garden is the
copyright holder of the project. Code Garden is the ’authority’ in this project and
has to change its ROLE acting between a Community Manager and Solutions Provider
Expertise for this project and related projects for manage Technical Debt.

Our goal is to become an Expertise Enterprise Managing Technical Debt not only Green-
House. The project transition from private to public and job opportunities to community
members contributing with solutions to our clients.

We have to transform the lonely project into a Community Driven Project and incentive
our clients to enter to the community, reading, sharing, contributing (everything not just
code). We need the company to create a solid and professional support to the project.
Use the project and show the results, convert strange numbers into easy coloured graphs.
Work as a company that is guiding its business model into FLOSS.

4.4 Social and political organization

The social and political organization of the project must be horizontal. Decisions have
to be complete through the transparency and the participation of members of the com-
munity.

We are going to use Apache Software Foundation ways of decision making8 verba-
tim:

• Lazy Consensus - Lazy consensus is the first, and possibly the most important,
consensus building tool we have. Essentially lazy consensus means that you don’t
need to get explicit approval to proceed, but you need to be prepared to listen if
someone objects.

• Consensus Building - Sometimes lazy consensus is not appropriate. In such cases
it is necessary to make a proposal to the Mailing List and discuss options. There
are mechanisms for quickly showing your support or otherwise for a proposal and
building consensus amongst the community. Once there is a consensus people can
proceed with the work under the lazy consensus model.

• Voting - Occasionally a ”feel” for consensus is not enough. Sometimes we need to
have a measurable consensus. For example, when voting in new committers or to
approve a release.

Lazy Consensus is the most consensus building tool we have (as ASF said) to guide a
community from the beginning. Because you don’t need community approval but you
need to be prepared to listen if someone objects. Community has to reach consensus

8http://community.apache.org/committers/decisionMaking.html

11

http://community.apache.org/committers/decisionMaking.html

if a contrary view argued over the solution to develop. This opens us to another door,
do-cracy

Consensus building appears when lazy consensus steps in a contrary argued opinion, so
we have to reach a consensus between two (or n) parts. Another use is to prepare a new
feature, fix a bug, new release, discontinue a development, create a new communication
channel, do a workshop. The community has to be horizontally guided and consensus
build. For these direct consensus in communities we need to merge consensus and voting
tools into one to reach the maximum number of people through votes.

Voting tool is very important tool used mixed with two consensus types. We need to
know something from the community, we want an opinion, an answer, etc. . . The most
important things are preparing the votes and explain the rules, so explain the voting
rules clearly. Using ASF9 guide we have 3 vote types:

• +1 Yes I agree

• 0 I have no strong opinion

• -1 I object on the following grounds

If you object you must support your objection and provide an alternative
course of action that you are willing and able to implement (where appropri-
ate).

Objection and its process is very important because if you are not agree with a proposal
you must to implement and argue your why.

These social-political guidelines aim the community to be more participative, respectable
and reasonable through a rational perspective. When provide rational solutions (argued
in favour of the common good) is when more is learned and enjoyed discuss.

5 Management Policies

Linking with the previous section Social and political organization now we are focused
in management, how to and which channels are necessary to develop these organization
management applying strategies.

5.1 Where will be published the code ?

First is not where, first is, which SVC - System Version Control - will be used ?

We choose a DVC - Distributed Version Control - System instead of an CVCCentralized
Version Control System. A DVC increases the capabilities to developers (including

9http://community.apache.org/committers/voting.html

12

http://community.apache.org/committers/voting.html

community contributors) to develop solutions and test their development in every envi-
ronment. The main reason is that a DVC gives you the opportunity to work without
being connected to internet and save all your historical revisions. The other reason is
that applying DVC Systems (mainstream) workflow Branch per Feature from Martin
Fowler analysis[8] and how to fit with Continuous Integration Development, increases the
productivity and facilitates the integration of new developments minimizing the prob-
lems with merging in CVC s. Thinking about publishing a project as FLOSS with the
idea of creating a solid and integrate community we must use a DVC.

The are different DVC s to choose:

• Monotone - http://www.monotone.ca/. monotone is a free distributed version
control system. It provides a simple, single-file transactional version store, with
fully disconnected operation and an efficient peer-to-peer synchronization protocol.
Introduced hash commits.

• GNU Arch - http://www.gnu.org/software/gnu-arch/. It is used to keep track
of the changes made to a source tree and to help programmers combine and oth-
erwise manipulate changes made by multiple people or at different times.

• Bazaar - http://bazaar.canonical.com/en/. Bazaar is a version control system
that helps you track project history over time and to collaborate easily with others.
GNU Arch fork.

• Darcs - http://darcs.net/. Darcs is a free and open source, cross-platform ver-
sion control system, like git, mercurial or subversion but with a very different
approach. Thanks to its focus on changes rather than snapshots, Darcs can offer
a freer way of working, and a simpler user interface. It’s written in haskell.

• Git - http://git-scm.com/. Git is a free and open source distributed version
control system designed to handle everything from small to very large projects
with speed and efficiency.

• Mercurial - http://mercurial.selenic.com/. Mercurial is a free, distributed
source control management tool. It efficiently handles projects of any size and
offers an easy and intuitive.

After a deep analysis for choose one DVCs. We decided to use Git. Our decision is
based in the facility to propagate through internet, most development forges allow and
promote the use of Git instead of others, this could be a hype but a hype that works
because if this system has not a good interoperability APIs and easy hooks configurations
will be replaced easily. And was born from Linus Torvalds after BitKeeper affair with
taxes and its ’special’ license clause10 to manage Linux kernel source.

After choosing Git we must decide where. We decided to host our Git Repository
in Github - https://github.com/ - Projects and community in Github have a lot of
visibility and uses a clean user-friendly interface furthermore is a Git powered forge that

10http://kerneltrap.org/node/444

13

http://www.monotone.ca/
http://www.gnu.org/software/gnu-arch/
http://bazaar.canonical.com/en/
http://darcs.net/
http://git-scm.com/
http://mercurial.selenic.com/
https://github.com/
http://kerneltrap.org/node/444

allows an easy implementation of hooks to our repositories. Why is this important to us
? Because our project is a code analyzer, where could be better hosted to be tested than
in an easily interoperability configurable forge that spread hook integration? I think this
forge increases the visualization to our work, organization capabilities and community
communication, the most important issue.

GitHub has an easy patch/merging/pull-request tool to merge work from contributors,
using code visualization, comments in commits and patch visualization. It’s very easy
to apply a contribution. Furthermore gives to the project set of quick analysis graphs
from contributors commit activities and branch history, these analysis are a key feature
to gain visibility for the community in Figure 7.

Figure 7: GitHub contributors graphs

5.2 Communication strategy and channels

In communication staging we have to accomplish with two main groups: strategy and
channels.

Starting with Jono Bacon[9] introduction to Communicating Clearly chapter:

”Community is absolutely about understanding the ether. Our notes are
the processes, governance, tools, and methods in which we work together.
The notes we dont play are the subtle nuances in how we pull these notes
together and share them with one another. The space between the notes is
communication.”

Stands as the centrepiece of his chapter, the most important thing in communication
within a community are ”the notes you do not play”, citing a quote from Eric Clapton.
That is, when we know which is the vehicle we need to introduce for proper communica-
tion. It is more important that we miss something than overcharge the channels

14

Therefore, we will divide the process into two phases. Using the analogy of the roads
and driving through them we have:

• Create the highways - Channels: such as Mailing lists, forums, and discussion
channels.

• Encourage great driving - Strategy: providing a consistent example of simple ap-
proaches to communication that make the community easier to understand and
more pleasurable for everyone involved)

Thinking about our project, Greenhouse is a technical project for technical users. This is
the first step to choose an appropriate channel. We have developers in our company and
first users (that could became developers) thus we want to separate the communication
between two channels:

• Mailing lists: Create different Mailing lists for each type of subscriber: developer,
user.

• Forums: Forum to get an easy human enter door to the project for a newbie
developer and not expecting to be the main communication channel.

5.2.1 Mailing Lists

Be clear, specific and human (the most important). In Mailing Lists we have to be in
touch with the people interested to contribute to the project, not only the short term
upstream, we are focused in long term upstream. Thus we have to be organized, focused
and good mates. Mailing Lists will be public and this has to be in the whole project,
because of transparency we can create a trustful community around the project.

Starting with mailing list, we need a clear language, follow Netiquette11 basic guidelines
and respect everyones opinion.

Avoiding the main problems in Mailing List such bikeshed12 and over technique discus-
sions which can drive away new community members.

Mailing Lists have to be maintained and guided by the community thus we have to be
clear and describe process, guides and documentation.

5.2.2 Forums

The Forums create a friendly user interface for a newbie users to get in touch with
community and little problems that couldn’t fit well in our Mailing Lists. Gives the

11http://tools.ietf.org/html/rfc1855
12The gist is that while nobody will question the details of a large and complex project (e.g. a nuclear

reactor), for a simple thing as a bikeshed everybody will loudly add their two cents as to exactly how
it should be built/painted/constructed

15

http://tools.ietf.org/html/rfc1855

opportunity to search and reply easily. To the new user or the user that only is looking
for one determinate question, such as FAQS13 or version release posts.

Forums maintenance could be assumed by a developer (in the beginning) and other
forum users that increase its participation and rank by meritocracy inside the Forum.
The purpose of the forum is to be handled by community to introduce a friendly-human
face to newbie users.

After chose these ”highways” and ”Encourage great driving” we need documentation,
clear documentation related to this tools. How to get started and how to choose the
right ”highway”. This will guide the user (pre-community user) into the channels and
facilities of community.

• Where are the tools ?

• How to start. Firs search, is not necessary to be register to search for information.
Transparency and increasing engagement with the community interacting.

• Guides and rules to write, showing samples. Friendly and human samples. For the
administrator and the basic user.

• FAQs - Resolved issues, HowTo’s, help and where is.

Furthermore we have to use blogs, create and produce content related to the community,
personal blogs, technical blogs, articles, stories about the community, talks and success
cases. This could be another highway to spread information about the community and
the project.

If you are looking for IRC channel, you won’t find it. We started this section referring
us to the appointment of Jono Bacon ”the notes you do not play” therefore we decided
not to create an IRC Channel for the community because we can’t manage it whit our
resources. Ff the community will want one we will be happy and could try to afford this
cost in the future.

I want to include a reference to Issue Tracker System (ITS) in this section as a highway
and encouraged driving element. The ITS is important in a community, in our case
a technical community not focused in an end-user. We include an ITS to manage the
project in the community, communications, RFC - Request For Comments, Doodles,
discussions, documentation, references and of course Netiquette related to how to use an
ITS which is explained widely in Technology Section6.

This tool is the jump for the user after the Forums and Mailing Lists to contribute to the
development aimed by the members of the community. Following Netiquette guidelines
to post a bug into the ITS and stay tuned with issue updates, test the patches and help
developers to fix any bug.

Because of is another communication channel with development team I chose to reference
the ITS inside this section.

13Frequent Ask Questions

16

5.3 Managing volunteers and attracting new users

Managing volunteers and attracting new users is the million dollar question. How
do I attract new users ? and more difficult; How should I do to manage volunteers? How
should I do to avoid losing them?

Our project is based on the excellence of the code, the fight against technical debt
that always creeps into projects. On this basis, every developer wants to develop good
projects. Based on studies of refactoring and code quality from the book Refactoring
by Martin Fowler[11], somehow we want to teach and develop better code using this
tool. Furthermore the easy result visualization of the results and evolution of the code.
The tools to increase and spread visualization of the results and how to are explained
in Technology section6 to attract new users.

This attract every developer and company that want to work better easily. This is the
technical hook.

But we have to focus to the community hook and how to keep volunteers inside the
project.

5.3.1 Managing volunteers

We want users because the users could become contributors, so this door is the
first step to create a community. Following the Onion Model in Figure 8 defined by
Kevin Crowston and James Howison[12] after studying 120 FLOSS projects looking
for a community pattern in communication centralization, they found the onion model
structure.

Figure 8: Onion model

From passive users that are in the corner of project through active users that could

17

become co-developers or not. And finally core developers. Furthermore we must comprise
the role jumps that can occur between the different strata of the community that was
explained by Jennifer Preece, Ben Shneiderman communities study[13] represented in
Figure 9.

Figure 9: Reader to Leader

These Volunteers workflow inside communities depends on the community, so we want to
give opportunities to new users with easy feedback from the community and vice versa.
Know how are they, why they want to contribute, but not directly, nobody answers to a
question directly without knowing nothing about the other people. We need to create a
trustful circle, not about trust epic trust, a circle open to collaboration giving confidence
to self-organization inside the community. Participate by him/herself.

Promoting the users into different levels in the project to share a complete view of the
community. The ROLES could and should change. Pro active community core creates
pro active community members.

Remembering volunteer management, we again seek help at work, offering work to the
community users to collaborate on the project and receive financial remuneration. Work-
ing as a community to benefit from it. In the first instance you will get the benefit per
individual, we will explain how to scale these revenues this in the future into the com-
munity.

And of course, this community badges by meritocracy14 have to be obtained from data.
This has been explained in technology section6 tool by tool.

5.3.2 Attracting new users

We need to publish a consistent and solid project to the community. To create this state
of art we need:

• Documentation - Developer (API).

• Community guides - How to enrol the community and Mentoring program.

• Hello World - hello world Development.

14Oxford Dictionary: Government or the holding of power by people selected according to merit

18

• Tutorials - Build from source and interoperability.

• Real samples - Success cases in real companies, clients and of course our company.

• Turn numbers into Graphics - Use the numbers, the transparency and turn them
into something nice.

Need a good welcome first impression. We must know that we created GreenHouse, the
dedication and the ”love” that we have to the project as Eric Raymond described ”Every
good work of software starts by scratching a developer’s personal itch” in The Cathedral
and the Bazaar essay[15], is not in the same level for every one, because of that we have
to think as a person that doesn’t have anything in common with the project, kind of a
stranger that appears in front of our house door. We don’t know anything about the
volunteer, we have to be more open than ever and not to feel depressed if he never comes
back.

Mentoring programs are the best way to create new active users in community. The
project consistent group of items helps to get a mentoring program, in this case related to
code contributors and its role in the community. Following the main goals in Wikipedia
Tea house15 mentoring project, that helps new editors and facilitate how to edit using
guides with the support of an expertise editor. This is our goal, create a user-to-user
mentoring program but our first step is have a working documentation.

5.3.3 Gamifying Community

Gamifying ? is the second time this word appears in the text. This concept is defined
as the process of awarding badges, achievements, incentives in this case in a FLOSS
community. This is to create a positive reinforcement for a community where users
interact within it. A visible response and comparable with the other members of the
community to encourage competition and participation through badges.

Quoting Richard Sands sample of Nike+ community :

”Services like Nike + have proven health and exercise gamifying That can
create strong incentives behaviors, make a healthy lifestyle more fun, and

Improve players’ well-being.”

And the working example in software development environment is codecademy16. On
its website encourage users to continue with programming courses and compare their
achievements and future challenges with the rest of the community.

15Wikipedia Tea House - http://en.wikipedia.org/wiki/Wikipedia:Teahouse
16Codecademy learn to code - http://www.codecademy.com/

19

http://en.wikipedia.org/wiki/Wikipedia:Teahouse
http://www.codecademy.com/

Figure 10: CodeCademy public user profile

This positive feedback with users they introduce software development as funny as a
game, increasing levels, winning prices and achievements interacting with community.
You don’t have to be the best community member, personal success increase with your
own participation, thus participate in the community is their goal and ours.

Gamifying can be applied to any field around a community, ie a society, as we can see on
the web gamificacion.com17 where we present the different fields and how to Gamifying
it.

Our goal is to attract and maintain active users: create a gamifyied community
introducing users to a more fun community as our mean.

6 Technology

Commodity, around this word, has to turn the choice of technologies for development
and communication in the community. Get in touch with the community, spread and
development using clear and simple steps. The concept that surrounds this commodity
is Application lifecycle management tools.

”The continuous process of managing the life of an application through
governance, development and maintenance.”

17Gamificacion - http://www.gamificacion.com/referencias

20

http://www.gamificacion.com/referencias

6.1 Technical Infrastructure needed

Technical Infrastructure and good practices for source code development for GreenHouse
community have to be easy: to use, to retrieve information, give feedback, be visible and
easy to broadcast. And work, of course has to work.

Using the argument from Jono Bacon related to communication in community with
”the notes you do not play” and KISS principle (Keep It Simple, Stupid![14]) we have
to choose simple Infrastructure tools for the project, we don’t have to reinvent the
wheel18.

• Methodology: Test Driven Development - TDD. ”If it isnt tested then it doesnt
work”. This Agile methodology is perfect to ensure, track, improve and refactor
code development process.

• Issue & Project Tracking System - JIRA19. JIRA is ITS that records and manage a
big amount of information in a project. Is composed by the ITS, Roadmap, Issues
Reports, Development Addons, Interoperability between SCM, Discussion, Voting,
Changelogs, HowTos, Wikis, Continuous Integration, Developers profiles, ROLES.
Thus socialize interaction in community and increase cooperation because is easy,
remember comfort.

• Documentation: User and Developer documentation for GreenHouse. Wiki from
community to develop an extensive and clear documentation divided in two main
groups: Get Involved and Get Started.

– Get Started - Documentation related to users. How to start with GreenHouse,
connect to their existing projects and take advantage from its use. Video
screencast tutorials included.

– Get Involved - Documentation for every user that wants to get inside devel-
opment community. Divided in various sections as: Tutorials, Build from
code, Hello World, etc and how to contribute to our community, not only
development, wiki, documentation, translations, mailing lists.

• DVCS: GitHub20 and Branch per Feature Development [8]. Branch per feature
brings a more collaborative and social development to contributors because they
have to interact more social with other contributor due to multiplication of merges
by DVCS and branch per feature. Coding becomes more interactive as Github
slogan shouts: Social Coding.

• Continuous Integration: Travis-CI 21. Travis-CI gives us easy visibility of project
builds and integration as a FLOSS project with GitHub. Travis integration and
easy continuous builds results in GitHub Main page and Development Mailing list

18Reinventing the wheel - http://en.wikipedia.org/wiki/Reinventing_the_wheel
19JIRA - http://www.atlassian.com/software/jira/overview
20https://github.com
21https://travis-ci.org/

21

http://en.wikipedia.org/wiki/Reinventing_the_wheel
http://www.atlassian.com/software/jira/overview
https://github.com
https://travis-ci.org/

connection. This Continuous Integration gives more transparency to the project
and shows all the process just using the Repository source.

• Code Quality: GreenHouse. Our project has to be used and integrated with de-
velopment in a real case to spread with the example.

• Forum: StackOverflow22 as our forum. Thus, developers don’t have to get another
registered user in another network and they are used to StackOverflow environ-
ment. We define the tag greenhouse and publish documentation related to the
project. This network helps us to view users and developers status, badges and
statistics.

• Mailing List: Development and general. Two Mailing lists for the project could
be necessary as another ”highway”. ITS acts as Mailing lists too because every-
one could subscribe to a bug or feature, vote and discuss. Voting rules must be
established and explained easy.

• Repository of Repositories (RoR): To spread the work we need to use the facilities
that are online for FLOSS projects. RoR is a Tool to generate public statistics
from a repository. We choose ohloh.net23 from BlackDuck Software24 - Software
and Consulting at the Heart of Open Source. This is another chapter that surrounds
Gamifying concept and use existing tools to improve community feedback.

• Blog - Create a community blog with success cases, developers presentations, com-
pany projects, partners and personal blog posts from community members, thus
we can create a brand for the community not only code. Include references from
other technologies and analysis. And human-personal information about anything,
a community is not only the code you write. Remember that a blog entry is a mar-
keting tool that could be updated to make a good first impression on a new user
to see recent updates on the website.

• Social Network - Technological Social Networks as identi.ca25 and Twitter26. Cre-
ate a user group to get in touch with users and spread news, community blogs,
new versions, roadmap. Instant connection to users and other FLOSS communi-
ties around the world, you only need an internet connection and a terminal to use
these microblogging sites. We have to move and spread our community using by
others’ highways.

”Make a Difference, Not Noise”

• Virtual Environment Services - Blue Box for deploying FLOSS projects that want
to be hosted and Qualified by GreenHouse. We need to provide this service to
interoperate whit GitHub hooks and provide an easy configuration hooks for other

22StackOverflow - http://stackoverflow.com/
23ohloh.net - http://www.ohloh.net/
24BlackDuck Software - http://www.blackducksoftware.com/
25Identi.ca - http://identi.ca/
26Twitter - https://twitter.com/

22

http://stackoverflow.com/
http://www.ohloh.net/
http://www.blackducksoftware.com/
http://identi.ca/
https://twitter.com/

Repositories of Repositories platforms like Bitbucket, GitlabHQ, Gitolite, etc. . . to
spread our functionalities. This investment is very important because gives us
visibility and attract new possible users.

• Community Gamification - Through Mozilla Open Badges27 develop a solution in
our community retrieving all information from other tools (social networks, blog,
ALMTools, Methodology, RoR, Documentation) displaying in our own badges so-
lution thus creating a community exportable user profiles.

7 Business scalability

Our business goal publishing this project as Dual-License is to be expertise as Technical
Debt fighters spreading our success with the community and giving to community the
chance to earn money.

Scale business is important to predict our project grown and be alert of possible changes,
new models, new solutions, amount of users, product demand and of course project
death. Last factor isn’t good but we have to have a plan for cover it too, what could we
do with GreenHouse if disappear or gets old ?

We need to focus to become an expertise in Quality Analysis Tools (QATools). Is not
full linked with project evolution because our project development give us an expertise
in QATools. Community project helps our company to learn from other people and
have another point of view. Including analysis from other QATools we increase our and
community knowledge to evolve hand in hand.

We want to attract users per month exponentially so we have to become very productive
and seductive, different. Spread information in selected channels and promote the use
of this product into larger networks as Universities, other FLOSS Communities, On-
line ALM platforms (like GitHub), Workshops, thus we will be present in specialized
media.

7.1 Evolution

Teams, Volunteers, Expansion. Where , How, Which mechanisms ?

Volunteers management is directly associated with teams and expansion, so we try to
catch up in the same evolution area. We have to focus on create an auto-learning
community in which its members interact to each other and accept new ones introducing
them to the community. Sustainability is our goal here, so to reach this goal we need
to increase efforts in documentation and knowledge generation from the community to
outside the community, to attract new users/volunteers.

27http://openbadges.org/

23

http://openbadges.org/

Here we want to mark a key point to this goal, online courses. An online course base is to
create an interactive documentation roadmap to show GreenHouse main goals and get in
touch. These courses have to be leaded by the community to transform documentation
into a course.

Through Gamifying community we want to increase sustainability and collaboration this
is a mean and a goal.

At least but not last important point for social-political is that the community has to be
heterogeneous. We must explain that all members have same opportunities to express
their opinions and new thoughts using a voting system to present their work. A serious
and argued decision-making process.

Become a foundation to manage possible incoming revenues. Cover legally Code Garden
and community volunteers. This scenario is covered but not feasible in the short
term (talking in months) for what we have in mind to get the necessary information and
make it ready if the project reaches a huge fees and receives donations of money from
users/customers etc.

7.2 Emphasis

Integration, Upstream and cooperation becomes community.

We emphasize community development and promote technology standards, such as new
interoperability functions, free courses, bug fixing parties. Those means focused to
retrieve upstream as an end.

Main emphasis is focused on retrieve feedback from our community, in other words,
we want to start receiving upstream, so we increase communication and facilities with
community to make upstream easier. We use gamification badges to give users incentives
for contributing to the community. Furthermore we want to become reference experts
in Quality Development using our brand GreenHouse thus companies could implement
solutions and deployments related to this product and wee could maintain them as a
reference.

At least but not last, we want to emphasize in spread GreenHouse using Github hooks
between users and thus become a known name inside developers. This invest, monetary
invest, is related to explained development providing space to deploy and analyze projects
using BlueBox (explained in technology section 6), in this way this will return a non-
monetary benefit directly and indirect monetary benefit. Our idea is to retrieve feedback
and usability from users that wouldn’t invest and thus companies would look for us to
implement solutions related.

Therefore, we want customers to for us to provide them a right solution. Basing our
strategy in diffusion and use of the product generated through online visibility. Create

24

a brand around GreenHouse. Is a complicated and ambitious goal, but in this company
are committed to doing things right.

References

[1] Philip H. Albert,
Dual Licensing: Having Your Cake and Eating It Too,
http://www.linuxinsider.com/story/38172.html

[2] Milking The GNU,
Dual-licensing: revoking the GPL,
http://blog.milkingthegnu.org/2008/05/dual-licensing.html

[3] Milking The GNU,
Dual-licensing is unfair and community debilitating,
http://blog.milkingthegnu.org/2008/05/exisiting-dual.html

[4] StackOverflow,
MIT GPL Dual-license in commercial software,
http://stackoverflow.com/questions/3336161/mit-gpl-dual-license-in-commercial-software

[5] Producing OSS,
Dual Licensing Schemes,
http://producingoss.com/en/dual-licensing.html

[6] Elena Blanco,
Dual-Licensing As A Business Model,
http://www.oss-watch.ac.uk/resources/duallicence2

[7] Brian Behlendorf,
Open Source as a Business Strategy,
http://oreilly.com/openbook/opensources/book/brian.html

[8] Martin Fowler,
FeatureBranch,
http://martinfowler.com/bliki/FeatureBranch.html

[9] Jono Bacon,
The Art of Community,
http://www.artofcommunityonline.org/

[10] Richard Sands,
Wins and FLOSSes - A Discussion on Gamifying FLOSS Community Participation,
https://fosdem.org/2013/schedule/event/gamifying/

[11] Martin Fowler,

25

http://www.linuxinsider.com/story/38172.html
http://blog.milkingthegnu.org/2008/05/dual-licensing.html
http://blog.milkingthegnu.org/2008/05/exisiting-dual.html
http://stackoverflow.com/questions/3336161/mit-gpl-dual-license-in-commercial-software
http://producingoss.com/en/dual-licensing.html
http://www.oss-watch.ac.uk/resources/duallicence2
http://oreilly.com/openbook/opensources/book/brian.html
http://martinfowler.com/bliki/FeatureBranch.html
http://www.artofcommunityonline.org/
https://fosdem.org/2013/schedule/event/gamifying/

Refactoring,
http://martinfowler.com/books/refactoring.html

[12] The social structure of Free and Open Source software development by Kevin
Crowston and James Howison,
First Monday, Volume 10, Number 2 - 7 February 2005,
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/rt/

printerFriendly/1207/1127

[13] The reader-to-leader framework: Motivating technology-mediated social participa-
tion,
Jennifer Preece, Ben Shneiderman - 2009,
http://www.cs.umd.edu/~ben/papers/Jennifer2009Reader.pdf

[14] The KISS principle,
Filip Hanik,
http://people.apache.org/~fhanik/kiss.html

[15] The Cathedral and the Bazaar,
Eric Raymond,
http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/

26

http://martinfowler.com/books/refactoring.html
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/rt/printerFriendly/1207/1127
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/rt/printerFriendly/1207/1127
http://www.cs.umd.edu/~ben/papers/Jennifer2009Reader.pdf
http://people.apache.org/~fhanik/kiss.html
http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/

	SME Introduction
	Publish the project
	Dual License

	Market niche - Competitors analysis
	Code climate
	Sonar

	Management general path
	Community Manager
	Technical Developer
	Enterprise ROLE
	Social and political organization

	Management Policies
	Where will be published the code ?
	Communication strategy and channels
	Mailing Lists
	Forums

	Managing volunteers and attracting new users
	Managing volunteers
	Attracting new users
	Gamifying Community

	Technology
	Technical Infrastructure needed

	Business scalability
	Evolution
	Emphasis

