Track your ML project!
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
track
.gitignore
LICENSE
README.md
setup.py

README.md

track

Installation

Just use:

pip install track-ml

Right now this requires python 3.

Usage

Report various metrics of interest, with automatically configured and persisted logging.

import track 

def training_function(param1=0.01, param2=10):
    local = "~/track/myproject"
    remote = "s3://my-track-bucket/myproject"
    with track.trial(local, remote, param_map={"param1": param1, "param2": param2}):
        model = create_model()
        for epoch in range(100):
            model.train()
            loss = model.get_loss()
            track.metric(iteration=epoch, loss=loss)
            track.debug("epoch {} just finished with loss {}", epoch, loss)
            model.save(os.path.join(track.trial_dir(), "model{}.ckpt".format(epoch)))

Inspect existing experiments

$ python -m track.trials --local_dir ~/track/myproject trial_id "start_time>2018-06-28" param2
trial_id    start_time                param2
8424fb387a 2018-06-28 11:17:28.752259 10

Plot results

import track
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

proj = track.Project("~/track/myproject", "s3://my-track-bucket/myproject")
most_recent = proj.ids["start_time"].idxmax()
most_recent_id = proj.ids["trial_id"].iloc[[most_recent]]
res = proj.results(most_recent_id)
plt.plot(res[["iteration", "loss"]].dropna())
plt.savefig("loss.png")

Recover saved artifacts

model.load(proj.fetch_artifact(most_recent_id[0], 'model10.ckpt'))
model.serve_predictions()