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Abstract Paradata is data about the data collection process, that allows use and reuse
of data. Within the context of computational research, computer code is the paradata
of an experiment, allowing the study to be reproduced. A recent study recommended
how to make paradata (more) useful, for paradata in general. This study applies
those recommendations to computer code, using the field of genetic epidemiology
as an example. The chapter concludes by some rules how to better code to serve as
paradata, and hence allowing computational research to be more reproducible.

Keywords: paradata, reproducible research, code, software, computational research,
Open Science, best practices, genetic epidemiology

2.1 Introduction

Talk is cheap. Show me the code.

Linus Torvalds, 2000-08-25

Two different researchers in genetic epidemiology (more on that field later), write
two equally good manuscripts that describe an experiment with computational steps.
Both manuscripts are accepted by an equally prestigious journal after peer review.
One researcher, however, does not supply the computer code (from now on: ’code’)
that was used to generate the results, where the other does. Are the conclusion of
these papers to be trusted equally? Is this difference relevant and worth the effort?
How common is it to share code, and, if shared, how can it be preserved? This
chapter discusses why code, a type of paradata, should be supplied and what features
it needs to have for it to be useful.

The concept of paradata (although not named as such yet) was introduced by Couper
and colleagues, who developed a computer-assisted interview program that, among
others, records all key strokes, measures the time used to answer each question and
even the time the monitor is turned off (Couper [1998]). The goal in that context was
to assess and improve survey quality.

There exists no standard definition of paradata (Nicolaas [2011], Sköld et al. [2022],
Huvila [2022]). Without declaring it a formal definition, however, paradata can be
understood in general sense as ’data about processes’ (with e.g. survey paradata
termed alternatively as records and audit trails) Nicolaas [2011], or in more spe-
cific sense in relation to data collection, as ’data about the data collection process’
(Choumert-Nkolo et al. [2019]). This chapter uses the latter as a working definition.

The code used in computational experiments is just that, ’data about the data col-
lection process’, as it commonly downloads data, selects relevant subsets in those
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data, performs statistical tests and generates figures. In each case, code answers the
question: ’Where is it (i.e. the result) coming from?’. Code, hence, is paradata and
this chapter explores and illustrates the consequence of that premise.

A recent paper explores the use of paradata to increase the impact of data, stating
that lack of paradata can be seen as ’a drastic constraint’ in the use of data and
offer some suggestions to make paradata useful for data re(use): paradata should
be comprehensive, documented in a useful way, the documentation and data should
have co-evolved, and the paradata should be computer-friendly (Huvila [2022]). At
first glance, these suggestions appear to work well for code and will be discussed in
detail below.

There are multiple reasons why useful paradata matter. Most obvious is that having
useful paradata gives an understanding how data is produced. This knowledge helps
researchers from different fields to understand each other and collaborate. Addition-
ally, useful open data is needed for Open Science to convincingly show its benefits.
Finally, in computational fields, it can help understand how scholarly knowledge is
produced (Huvila [2022]).

This chapter discusses these general reasons applied to code and its implications
for knowledge management, including recommendations how to make code useful
paradata in section 2.6.

Fig. 2.1 Left: general relation between data, paradata and metadata. Right: the same relations
specified for genetic epidemiology. Input data: genetic data, phenotypic data and associations.
found in earlier studies. Results: associations between genetic data and phenotypic data. Code: the
computer code used in a computational experiment. Paper: the scholarly paper describing the (code
of the) experiment.

2.2 Code availability

To determine how useful code is, it needs to be available. However, it is not common
to publish the code of an experiment or analysis (Stodden [2011], Read et al. [2015])
(with a pleasant exception being Conesa and Beck [2019]). For example, in computer
graphics, a field intimately familiar with computer code, 42% of 454 SIGGRAPH
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papers supply computer code (Bonneel et al. [2020]). Another study analysed the
reproducibility of registered reports in the field of psychology, where 60% of 62
studies supplied the code to redo the analysis (Obels et al. [2020]). For articles in
Science magazine, 12% of 204 studies published the code (Stodden et al. [2018])
(note that these were years 2011-2012). Unpublished code has been the cause of
some saddening examples, such as an algorithm that detects breast cancer from
images better than a human expert, yet failed to ever be reproduced (Haibe-Kains
et al. [2020]).

When code of an academic paper is not published, one could contact the corre-
sponding author and request it. However, the response rate of corresponding authors
with a request for data in computational fields is around 50% (Manca et al. [2018],
Stodden et al. [2018], Teunis et al. [2015]) (the field of emergency medicine seems
to be a pleasant outlier, with 73% of 118 emails being replied (O’Leary [2003])).
When getting an answer of the corresponding author, 48% out of 134 replied emails
will actually result in a sharing of the code (Stodden et al. [2018]). The responses
of unwilling authors (see Stodden et al. [2018] for some real examples) can come
across as so caustic, that one may be excused from not contacting an a corresponding
author.

2.3 Genetic epidemiology

This chapter uses genetic epidemiology as a specific example, to illustrate in which
way code is paradata, and why this type of paradata is relevant. However, any field
that uses computation and sensitive data in its experiments, could be used as an
example.

Genetic epidemiology is a field within biology that tries to determine the spread of
heritable traits and their underlying biological mechanism. For example, we know
that lactose intolerance in adults is caused by a decline in the production of lactose-
degrading enzymes, and is most commonly found in south-east Asia and south Africa
(Storhaug et al. [2017]). The trait is caused by the genetic make-up, or ’genotype’
(see Table S1 in the Supplementary Materials for the definitions of terms used in
this chapter) , of a person. The trait, also called ’phenotype’, in this example is
lactose intolerance at adult age, yet any human property, such as weight or height
can be studied. When an association between genotype and phenotype is found,
these associations, when relevant enough, are used to create so-called ’gene panels’,
where the location of the gene causing an association is measured specifically, to
detect people at risk for the associated phenotype. The rest of this section describes a
genetic epidemiology study in more detail, with special focus on the computational
experiment.
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Fig. 2.2 Picture of Karesuando’s church, the village where the Northern Swedish Population
Health Study started. From Höpfner [2005]

The example study followed is a pseudorandomly selected paper from Ahsan et al.
[2017]. The primary data used by that paper is from a population study called the
Northern Swedish Population Health Study (NSPHS) that started in 2010 (Igl et al.
[2010]). The approximately 1000 participants were initially mostly surveyed about
lifestyle (Igl et al. [2010]) and follow-up studies provided the type of data relevant for
this paper, which are (1) the genotypes (Johansson et al. [2013]), (2) the phenotypes,
in this case, concentrations of certain proteins in the blood (Enroth et al. [2014,
2015]).

The first type of primary data, the genotypes, consists out of single nucleotide
polymorphisms (SNPs, pronounced ’snips’). A SNP has a name and a location
within the genome. At the SNP’s location in the DNA, there will be two nucleotides.
One of these nucleotides is inherited from the mother, the other from the father. The
DNA consists out of billions of nucleotides. There are four types of nucleotides,
called adenosine, cytosine, guanine and thyrosine, commonly abbreviated as A, C,
G and T (see figure 2.3)) respectively.

One SNP example is rs12133641, which is a SNP located at position 154,428,283
(that is, at the 154 millionth nucleotide), where 67 percent of the people within this
study have an A, and 33 percent have a G (also from Ahsan et al. [2017], Table S3).
From this it follow (assuming the nucleotides are inherited independently) that 45%
of subjects have the genotype AA, 44% have AG and 11% have GG.

The second type of data, the phenotypes, are concentrations of proteins in the blood.
The nucleotides of the DNA contain the code for building proteins (see Figure 2.4)
, as well as the rate at which a protein is created (for sake of simplicity it is assumed
that such a rate is constant, yet, in practice there are complex regulation mechanisms).
Some proteins end up in the blood and their presence can be used to assess the health
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Fig. 2.3 A cell has a nucleus that contains chromosomes. Each of these chromosomes (46 in
humans) consist out of DNA. DNA itself consists out of 4 nucleotides, as depicted by the horizontal
sticks with the colours red, yellow, green and blue. From Sponk et al. [2012]

Fig. 2.4 Parts of DNA (so-called ’genes’) code for proteins. The DNA, that always stays put in the
cell’s nucleus, is transcripted to messenger RNA (mRNA). mRNA leaves the nucleus and its code
gets translated to a protein sequence. Near the start of a gene are regions that determine the amount
of proteins produced (not shown in figure). Adapted from Shafee [2005]
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of an individual. IL6RA is one such protein and its concentration may (and will, see
below) be associated with the SNP mentioned earlier.

The field of genetic epidemiology looks -among others- for correlations between
genetic data and biological traits. For example, Ahsan and colleagues show that
SNP rs12133641 is highly correlated (p-value is 3.0−73 (see figure 2.5) , for 𝑛 =
961 individuals) with protein IL6RA (Ahsan et al. [2017]). The direction of the
association is also concluded: the more guanines are present at that SNPs location,
the higher concentration of IL6RA can be found in a human’s blood (see figure 2.5)
. The amount of variance that can be explained by an association (i.e. the 𝑅2) is
rarely 100%, which means that a trait (in this case, the concentration of IL6RA)
cannot be perfectly explained from the genotype (in this case, SNP rs12133641)
alone. In this example, as much as 43% of the variance can be attributed to an
individuals’ genotype (see figure 2.5) . Additional factors, such as the effect of the
environment (e.g. geographic location, time of day the measurement was done),
lifestyle (e.g. smoking yes/no) or having a disease (e.g. diabetes) are needed to
explain the additional variation.

Fig. 2.5 An example result of a genetic epidemiological research. It shows that the SNP named
rs12133641 (located at position 154,428,283 of chromosome 1) is highly correlated (p value is 3.0
* 10e-73, 961 individuals) to the concentration of the protein IL6RA, as measured in blood. The
table is a simplified result from Ahsan et al. [2017].

The conclusions drawn from this paper, may end up in the clinic. For the sake of
having a clear (yet fictitious) example, let’s assume that a high level of IL6RA is
associated with a disease that develops later in life, yet is preventable by lifestyle
changes (see Pope et al. [2003] for an example in Alzheimer’s disease). Would this
be the case, we can create a tailored experiment, called a gene panel, that specifically
measures SNP rs12133641. If the gene panel shows an individual has two guanines,
we know that this person is likelier to develop higher levels of IL6RA and is likelier
to benefit from the lifestyle changes.

From this simple example, it will be easier to measure the level of IL6RA in the blood,
than using a gene panel, as blood tests are easier and cheaper. However, there are
associations published for many diseases, in which one SNP (e.g. phenylketonuria)
or many SNPs (e.g. Bruce and Byrne [2009]) contribute to being more likely to
develop a disease in the future. Here, the phenotype (having a disease in the future)
is impossible to detect at the present and associations found in earlier studies are
used to create a gene panel. As creating a gene panel is costly, those associations
better be correct.
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Fig. 2.6 The relation between the genotype for SNP rs12133641 and the protein concentration of
IL6RA is relatively strong. The X axis shows the the genotype of the individuals, where 0 denotes
AA, 1.0 denotes AG and 2.0 denotes GG. The Y axis shows the concentration of the protein IL6RA
as found in the participants’ blood. n = 1 denotes the number of SNPs that were determined to be
involved.
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Additionally, there is an interdependency of scholarly findings here: the SNP has
received its name based on a computational experiment. This earlier experiment
that concluded the usefulness of that SNP, is based on some DNA sequences. This
experiment is based on assumed DNA sequences. DNA sequences, however, are
(nowadays) not simply read, yet are the result of a complex computational analysis
instead, with its own dedicated field of research. Both studies assumed a correctly
calculated DNA sequence. This means that if the DNA sequence analysis contained
a software bug, this study may be invalidated. Additionally, the result of this study
may be used in follow-up studies, that assume the result to be correctly calculated:
one paper’s conclusion is the next paper’s assumption.

2.4 Why code is useful paradata

The experiment described above is run by code. It was code that detected the rela-
tionship between the genotype (in this case, SNP rs12133641) and the phenotype
(in this case, the concentration of IL6RA). To be more precise, it was code that read
the data, subsetted the data, removed outliers, performed the statistics and generated
the plots. For the rest of the discussion, we assume that the code is available to us (if
not, see section 2.2 for a glum estimate of the chance of obtaining the code).

There are multiple reasons why (useful) code matters, and these are the same reasons
as why useful paradata matters: code gives an understanding how the raw results and
the subsequent scholarly knowledge is obtained from an experiment. Additionally,
code helps researchers from different fields to understand each other and collaborate.
Additionally, code helps Open Science reach its goals of openness and transparency.
The core of these reasons it to achieve reproducible science: that any person in any
field can redo a computational experiment and see exactly what happened.

For computational science, it may appear to be relatively easy to reproduce an ex-
periment, as all it takes is a computer, electricity, an optional internet connection,
the code and the data. In practice, however, only 18% of 180 computational studies
are easily reproducible (Stodden et al. [2018]). To some, it appears that the academic
culture to reproduce results has been lost over time Peng [2011], with labs that
embrace reproducibility (for example, Barba [2016]) being the exception. One sug-
gested way forward is to make the reproduction of research a minimal requirement
for publication (Peng [2011]).

A genetic epidemiologist works with sensitive data as well: the genetic sequences
of participants are private (Clayton et al. [2019]). For research to be reproducible
one needs both the code and the data to reproduce the (hopefully) same results. This
problem is discussed in section 2.7.
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Fig. 2.7 Levels of reproducibility, from Peng [2011]

To illustrate how easy it is to get a mismatch between a paper and the code, consider
this example of a possible text in the fictional genetic epidemiology paper:

We compared the in-blood concentrations of IL6RA between subjects having AA
versus subjects having GG at SNP rs12133641, using an unpaired one-tailed T-test,
as we expect the average concentration of IL6RA for those with AA to be less than
the average concentration in those with GG.

We ignore the choices of words and style of this sentence: what is important is the
content: an unpaired one-tailed T test is performed. Taking a look at the (in this case,
the programming language R (R Core Team [2021])) code, we find the following
line:

t_test_result <- t.test(subjects_with_aa, subjects_with_gg)

The code is correct: t.test is indeed the name of an R function to do an unpaired
T-test and it is reasonable to assume that this code, when glancing over the code of
an article, is correct.

Here, however, we see a mismatch between the English description and the code: by
default, the R function t.test does a two-tailed unpaired T-test. A consequence of
this fictional example is that the published p-values are higher than needed, resulting
in less significant findings, which results in (needlessly) less conclusions drawn in
this fictional paper.

Note that there is another side of this same coin: correctly reporting the t-test in a
reproducible ways is known to be a problem, with only 80 out of a selected 179
papers fully reporting the parity of t-test (i.e. paired or unpaired) (Weissgerber et al.
[2018]). In those unresolved 99 papers, the code (if published) would clarify this.

Code holds the ground truth of an experiment; it does the actual work. The more
complex the computation pipeline is, the easier it is to have a mismatch between
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Fig. 2.8 Gene expression result due to an off-by-one error. The cells in the main table show how
much mRNA is produced per cell line (the columns) for different proteins (the rows). The colours
above the cells, with the dendrogram, shows red for cells that do not respond (red) and do respond
(blue) to an antibiotic. The purple rectangles show samples that are duplicated. Note that, due to
this, some samples that behave identically are both non-responders and responders. From Baggerly
and Coombes [2009]
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the article (that describes what the code does) and the code (that actually does the
work). The moment these two disagree, it is the code that is true.

2.5 Preserving code

Code is rarely preserved (Barnes [2010]). This section discusses the preservation of
code for a short, medium and long term.

2.5.1 Code hosting

To preserve code for a short term, a code hosting website is a good first step. A
code hosting website is a website where its users can create dedicated pages (called
’repositories’) for a project, upload code and interact with that code. There are
multiple code hosting websites, with GitHub being the most popular one (Cosentino
et al. [2017]). The use of code hosting websites has increased strongly (Russell et al.
[2018]), accommodates collaboration (Perez-Riverol et al. [2016]) and improves
transparency (Gorgolewski and Poldrack [2016]), due to its inherent computer-
friendliness. See Cosentino et al. [2017] for an extensive overview of research
conducted on GitHub.

An example from the author is the website (Bilderbeek [2021]), that hosts part of the
code for the paper Bilderbeek et al. [2022], as shown in Figure 2.9. Also, the LATEX
code of this chapter is hosted on GitHub as well, at https://github.com/riche
lbilderbeek/chapter_paradata.

Hosted code commonly keeps a history of file changes, This means that when a
change is made to the code, a new version is created. In the case that the change was
harmful, one can go back to an earlier version and continue again from there. The
version control system keeps track of who-did-what transparently. Figure 2.10 shows
the number of commits the authors of DAISIE (Etienne et al. [2020]) have made to its
code. It is a general recommendation to put version control on all human-produced
data (Wilson et al. [2014]), as well as openly working on the code from the start
(Jiménez et al. [2017]). Half of the published code has such a version control system
(Stodden et al. [2018]).

The degradation of software is a known feature for nearly four decades. This is called
’bit rot’ by Steele Jr et al. [1983], or ’software collapse’ by Hinsen [2019], in which
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Fig. 2.9 A typical GitHub repository Bilderbeek [2021], hosting the code for a computational
experiment, as published with Bilderbeek et al. [2022]. Note that this repository has 72 commits,
where a commit is a change to the code.

Fig. 2.10 An overview of the commits that multiple contributors have made, in this case, to the
code of DAISIE Etienne et al. [2020]
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software fails due to dependencies on other software. Using a code hosting website,
that only passively stores code, ignores this problem.

2.5.2 Continuous integration

To preserve code for a longer timespan, it needs to be embraced that software
degrades (Beck [2000]). Continuous integration (’CI’) allows one to verify if code
still works and, if not, to be notified.

Some code hosts, allow a user to trigger specialised code upon uploading a change,
called a CI script. Such a CI script typically builds and tests the code. This practice is
known to significantly increase the number of bugs exposed (Vasilescu et al. [2015])
and increases the speed at which new features are added (Vasilescu et al. [2015]).
CI can be scheduled to run on a regular basis and notify the user directly when the
code has broken down.

2.5.3 Containerisation

To preserve code for the longest time, both code and its dependencies can be put
into a so-called container. The most reproducible way of submitting the code of
an experiment, is to put all code with all the (software) dependencies in a file that
acts as a virtual computational environment, called a ’virtual container’ (from now
on: ’container’). Such a container is close to the golden standard of reproducible
research as suggested by Peng [2011] (see also Figure 2.7) .

2.6 Making code useful paradata

Useful paradata, in general, are (1) comprehensive, (2) documented appropriately,
(3) documented in co-evolution with the data, and (4) friendly to computers (Huvila
[2022]). In this section, these ideal properties of paradata are applied to code.
However, code has multiple uses, as code can be used to (1) reproduce, (2) replicate,
or (3) extend a computational experiment (Benureau and Rougier [2018]). Depending
on the intended use of the code, there are different requirements for code being useful
paradata.
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2.6.1 Code must be usefully documented

For code to be ideal paradata, it must be usefully documented (Huvila [2022]). For
purposes of reproducing code, it should at least be documented how to run the code
and what it ought to do. Although this may be obvious, only 57% out of 56 Science
papers with obtainable code (in total there were 180 papers) do so (Stodden et al.
[2018]).

When it can be found out how how an experiment is run, it is possible (even ideal!)
that no code is read at all. Within that context, it could argued that no (further)
documentation is needed. However, all code in general should be documented ’ad-
equately’ (Peng et al. [2006]), ideally writing code in such a way that it becomes
self-explanatory (Wilson et al. [2014]) and for the remaining code to document the
reasons behind it, its design and its purpose (Wilson et al. [2014]).

For purposes of extending a study and its code, documentation becomes even more
important, as the code will be read and modified. The extent of investing time in
documenting code is recommended to be proportional to the intended reuse (Pianosi
et al. [2020]) and there exists a clear relationship between the reuse of code and its
documentation effort (Cosentino et al. [2017], Hata et al. [2015]).

2.6.2 Code and documentation must align

For code to be ideal paradata, its creation and documentation need to align, not least
because they shape each other (Huvila [2022]). This emphasised part of the quote
resonates strongly with the idea of literate programming (Knuth [1984]), in which
documentation and code are developed hand-in-hand. Literate programming is the
practice of writing code and documentation in the same file. Contemporary examples
of this idea are, among others, vignettes (Wickham [2015]) for the R programming
language (R Core Team [2021]) and Jupyter notebooks (Wang et al. [2020]) for the
Julia (Bezanson et al. [2017]), Python (Van Rossum and Drake Jr [1995]) and R (R
Core Team [2021]) programming languages. rOpenSci, a community that, among
others, reviews programming code (Ram [2013], Ram et al. [2018]), is one example
of where extensive documentation is mandatory and all code must have examples
(that are actually run) as part of the documentation (rOpenSci et al. [2021]). In
general, when developing software, it is recommended to to write documentation
while writing software, as well as to include many examples (Lee [2018]), as this
leads to both better code and documentation (Reenskaug and Skaar [1989]).

18



2.6.3 Code must be extensive

For code to be ideal paradata, it must be extensive. As code has many properties,
there are many recommendations on this aspect.

Code should be distributed in standard ways (Peng et al. [2006]), as is done by
using a code hosting website (see subsection 2.5.1). Additionally, code must be more
extensive when it is (intended to be) used on different data, as then ’code must act
as a teacher for future developers’ (Sadowski et al. [2018]). Error handling is one of
the mechanisms to do so. In genetic epidemiology, it is common to have incomplete
or missing data, so analyses should take this into account with clear error messages.

Coding errors are extremely common (Baggerly and Coombes [2009], Vable et al.
[2021]) and contribute to the reproducibility crisis in science (Vable et al. [2021]).
Testing, in general, is an important mechanism to ensure the correctness of code. One
clear example is Rahman and Farhana [2020], showing bugs in scientific software
on the COVID-19 pandemic.

Testing is so important that it is at the heart of a software development methodology
called ’Test-Driven Development’ (’TDD’), in which tests are written before the
’real’ code. TDD improves code quality (Alkaoud and Walcott [2018], Janzen and
Saiedian [2006]) and it is easy to integrate the writing of documentation as part of
the TDD cycle (Shmerlin et al. [2015]).

The percentage of (lines of) code tested is called the code coverage. Code coverage
correlates with code quality (Horgan et al. [1994], Del Frate et al. [1995]). and, due
to this, having a code coverage of (around) 100% is mandatory to pass a code peer-
review by rOpenSci (Ram et al. [2018]). When CI is activated, the code coverage of
a project can be shown on the repository’s website (e.g. as shown in Figure 2.11) .

Fig. 2.11 A build badge for the code coverage of an R package (https://github.com/rop
ensci/beautier). The umbrella signals that the code coverage is hosted by CodeCov (https:
//codecov.io/). The text indicates which process it is that the badge signals, which in this case,
is that the code is fully covered by tests.

CI opens up the possibility to informally annotate features of a repository. For
example, Figure 2.12 shows a build badge that indicates that a LATEXdocument (i.e.
this paper) could be built.

It is considered good practice to add a software license (Jiménez et al. [2017]), so
that it is clear that the software can be reused. Although this may seem trivial, only
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Fig. 2.12 A build badge for the GitHub repository of this article. The description indicates which
process it is that the badge signals success (as in this case) or failure of.

two-thirds of 56 computational experiments supply a software license (Stodden et al.
[2018]).

Fig. 2.13 An overview of the issues for the code for LDpred2 Privé et al. [2020]. Of the 310 issues,
300 have been closed. The first four issues have been replied to, as indicated by the talk balloon.
The fifth issues has a label with the text ’feature request’ to signal the issue type.

Code reviews are recommended by software development best-practices (Wilson
et al. [2014]). However, more than half of 315 scientists have their code rarely or
never reviewed (Vable et al. [2021]), although code reviews are known to accelerate
learning of the developers, improve the quality of the code and resulting to an
experiment that is likelier to be reproducible (Vable et al. [2021]).

2.6.4 Code must be computer friendly

The most reproducible way of submitting the code of an experiment, is by providing
the code with all its (software) dependencies in a container. Containers allow a com-
putation experiment to be highly reproducible: given the same data, an experiment
put into a container will give the same results on different platforms, at least in the-
ory. In practice, differences may be observed when peripheral factors are different,
such as the random numbers as generated by an operating system, or data that are
downloaded from online (and hence, probably changing) sources.
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For paradata to be useful, it has to be computer-friendly, yet ’the best paradata does
not necessarily look like ’data’ at all for its human users’ Huvila [2022]. There are
features of code that humans find useful, without directly being able to measure
these. In the end, code is just ’another kind of data’ and should be designed as such,
for example, by using tools to work on it (Wilson [2022]).

A first example is to use a tool to enforce a coding style (e.g. the Tidyverse style
guide (Wickham [2019]) for R, or PEP 8 (Van Rossum et al. [2001]) for Python),
as following a consistent coding style improves software quality (Fang [2001]).
A second example is to use a tool to enforce a low cyclomatic complexity. The
cyclomatic complexity is approximately defined as the number of independent paths
that the code can be executed. For example, code that has only one if statement has
a cyclomatic complexity of 2, as the condition within the if statement can be true or
false, resulting in the body of the if statement being either executed or ignored. The
cyclomatic complexity correlates with code complexity, where more complex code
is likelier to contain or give rise to bugs (Abd Jader and Mahmood [2018], Chen
[2019], Zimmermann et al. [2008]).

2.7 Sensitive data

Next to the code, it is the data used in an experiment that must be made available
for an experiment to be called ’reproducible’ (Peng et al. [2006]). In some fields,
such as genetic epidemiology, the data are sensitive, hence cannot be released, thus
one cannot reproduce an experiment. To solve this problem in the future, there are
some interesting methods being developed to run code on sensitive data with assured
privacy (Zhang et al. [2016], Azencott [2018]).

To alleviate the problem today, a developer should supply a simulated (also called
’analytical’ (Peng et al. [2006])) dataset together with the code. This simulated data
is needed to run tests, as is part of the TDD methodology. In the case of genetic
epidemiology this would mean simulated genotypes and associated phenotypes, as
can be done with the plinkr R package (Bilderbeek [2022]). One extra benefit of
simulated data is that these can be used as a benchmark, as slightly different analyses
should give similar conclusions.
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2.8 Discussion

In a perfect world, all code has the characteristics of ideal paradata and is written
from software development best practices. This section discusses the problems that
arise by doing so.

To know these best practices, one needs to be trained. Articles that suggest these best
practices (such as this one), claim that this initial investment pays off. Code reviews
are a good way to accelerate the learning of team members (Vable et al. [2021]).

Code needs maintenance, as code that will stand the test of time perfectly is deemed
’impossible’ (Benureau and Rougier [2018]). CI can help a maintainer to be notified
when the code breaks, where the use of containers may slow down time, as an entire
computational environment is preserved.

Uploading code, preferably to a code hosting website, may feel like a risk, as all code
can be seen and scrutinised. However, not publishing code may put oneself in the
focus of attention and -after much effect by others reproducing an incorrect result-
at the cost of a scientific career (Baggerly and Coombes [2009]).

When the author of code can be contacted, there will be users asking for technical
support. One solution for the author is to ignore such emails, as is done in a third of
357 cases (Teunis et al. [2015]): it can be argued that no energy should be wasted
on published code and work on something new instead. However, see Barnes [2010]
for a better way to deal with this problem.

When the author of code can be contacted, users will send in bug reports. If the bug
is severe enough, the question arises if all the research that use that code still results
in the same conclusions. One such bug is described in Eklund et al. [2016], with
40,000 studies using that incorrect code. These reports could be ignored to work on
something new.

Containers do have problems. First, they themselves require software to run, with
the same software decay being possible. Second, one needs to install that software
and have the computer access rights (i.e. admin rights under Windows, or root rights
under Linux) to do so. Third, one needs to learn how to build and use containers.
Lastly, containers can be several gigabytes big files, which makes their distribution
harder. Ideally, containers are stored online and distributed in standardised ways.
Although progress is being made, there is no way to do so for all container types.
Additionally, probably due to their novelty, container hosting sites lack metadata.
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2.9 Conclusions

This chapter started with some suggestions to make paradata useful for data re(use):
paradata should be extensive, comprehensively documented, with the creation of doc-
umentation and code going hand-in-hand, as well as friendly to computers (Huvila
[2022]).

Before applying these features, the first step is to publish the code. When applying
these general recommendations to code, this list can be phrased more precisely:

1. Code should be comprehensive in supplying automatically generated metadata
(such as commit history and code coverage).

2. The documentation should be as extensive as recommended by the software
development literature.

3. The documentation should have co-evolved with the code following the best
practices in literate programming.

4. Code should be made machine-readable by, at least, being uploaded to a code
hosting website. Ideally, the code is checked by CI and is put in a container.

For the preservation of code, these recommendations are made:

1. Uploading code to a code hosting website is better than not publishing code at all.

2. Adding CI to code allows one to detect the day when that code does not run
anymore.

3. Putting the code in a container is the best way to preserve code.

When research truly needs to be reproducible, putting the code of an experiment
into a container is today’s best solution, as containers are the best solution to keep
code running for the longest amount of time. Creating such a container, however,
requires more skill that -as of today- is not rewarded, although an experiment put
into a container can be considered the pinnacle of reproducible research.

The simplest and most impactful step to make code more useful paradata is, however,
to publish it on a code hosting website along a publication. From then on, the next
steps can be taken gradually as the skills of the author(s) progress. To quote Barnes
[2010]: Publish your code, it is good enough.

The world of science would be a more open, humble, trustworthy, truthful and
helpful would the code that accompanies a scientific paper be treated like a first class
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citizen. Doing so, however, is yet to be rewarded and still both of the two scientists
at the start of this paper can provide a good rationale for their behaviour. This
will change when reward incentives are put into place that reward making paradata
useful. For code specifically, in any computational field, the rewards are even higher,
as reproducibility should again be a cornerstone in science.

2.10 Data Accessibility

This article and its metadata can be found at https://github.com/richelbil
derbeek/chapter_paradata.
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Richèl J C Bilderbeek. , 2022. https://github.com/richelbilderbeek/pl

inkr [Accessed: 2022-08-25].

30

https://github.com/richelbilderbeek/plinkr
https://github.com/richelbilderbeek/plinkr


Anders Eklund, Thomas E Nichols, and Hans Knutsson. Cluster failure: Why fmri
inferences for spatial extent have inflated false-positive rates. Proceedings of the
national academy of sciences, 113(28):7900–7905, 2016.

31



2.11 Supplementary materials

2.11.1 This chapter

This book chapter has been produced following all recommendations in it: it’s
LATEXcode is hosted on GitHub at https://github.com/richelbilderbeek/
chapter_paradata. Due this, one can, among others, see the complete version
history of this chapter. This alone could allow research to be done on, for example,
the effect of reviewers’ feedback on a first manuscript. The website also supplies an
alternative version of the same chapter with more figures.

2.11.2 Funding

This chapter has not been supported by funding.

Definitions

Term Definition Example
Code Body of text to be run by a computer The scripts run by a computational exper-

iment
Data Individual facts, statistics, or items of in-

formation
The name of a SNP known to have a sig-
nificant association

Genotype The DNA allele at a certain location AA, AC, CG, GT, ...
Paradata Data that describe the process of generat-

ing data
The code to conclude that a SNP has a
significant association

Phenotype How an organism looks like in the broadest
sense

The concentration of IL6RA in the blood

Primary data Data that is the foundation of an experi-
ment

The genotype of individuals

Metadata Data that provide information about other
data

The article that describes an experiment

Raw data Data directly from the real world, that are
not yet ready to be primary data

The raw results of getting the genotypes of
individuals

SNP A named location within a genome rs12133641

Trait A phenotype The concentration of IL6RA in the blood

Table S1 Terms used in this chapter, and their definitions
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Recommendations

Type of code Recommendation
No code Disallow papers that do not supply code publicly
Raw code Don’t publish raw code as text, host it on a code hosting website
Hosted code Use a standardised badge for build status

Use a standardised badge for code coverage
Standardise to link between paper and code host

Runnable code Allow to upload containers without limits
Website to host containers must allow for annotation
Use a standardised badge for the container to be functioning
Standardise to link between container, paper and code repository

Table S2 Recommendations described in this chapter
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