b RISC-V°

RISC-V Cryptography Extensions

Volume I
Scalar & Entropy Source Instructions

Version 0.9.0, 04/2021

Table of Contents

Preface
1. Introduction
1.1. Intended Audience
1.2. Sail Specifications
1.3. Policies
2. Implementation Profiles
3. Scalar Cryptography Extension
3.1. Bitmanip Instructions for Cryptography: ZKb
3.2. Scalar AES Instructions
3.3. Scalar SHA2 Instructions
3.4. Scalar SM3 Instructions
3.5. Scalar SM4 Instructions
4. Entropy Source
5. Data Independent Execution Latency Subset: ZKt
6. Bibliography
Appendix A: Instruction Encodings
Appendix B: Entropy Source: Rationale and Discussion
Appendix C: Supplementary Materials
Appendix D: Supporting Sail Code

© 00 00 00 00 00 00 U1 W W N N =

N Yy
(S TS SR NC Ry S

Preface

Contributors to all versions of the specification in alphabetical order (please contact editors to
suggest corrections):

Alexander Zeh, Andy Glew, Barry Spinney, Ben Marshall (Editor), Daniel Page, Derek Atkins, Ken
Dockser, Markku-Juhani O. Saarinen, Nathan Menhorn, L. Peter Deutsch, Richard Newell, Claire
Wolf

Document Version Information:

o dev/next-release @ a8cd3bb6e47be35741934b05543655e8fb2e1065

See github.com/riscv/riscv-crypto for more information.

Copyright and licensure:

This work is licensed under a Creative Commons Attribution 4.0 International License

mailto:ben.marshall@bristol.ac.uk
https://github.com/riscv/riscv-crypto
http://creativecommons.org/licenses/by/4.0/

Chapter 1. Introduction

This document describes the scalar cryptography extension for RISC-V. All instructions described
herein use the general purpose X registers, and obey the 2-read-1-write register access constraint.
These instructions are designed to be lightweight and suitable for 32 and 64 bit base architectures;
from embedded IoT class cores to large, application class cores which do not implement a vector
unit.

This document also describes the architectural interface to an Entropy Source, which can be used to
generate cryptographic secrets. This is found in Chapter 4.

It also contains a mechanism allowing core implementers to provide "Constant Time Execution”
guarantees in Chapter 5.

A companion document Volume II: Vector Instructions, describes instruction proposals which build
on the RISC-V Vector Extension.

1.1. Intended Audience

Cryptography is a specialist subject, requiring people with many different backgrounds to
cooperate in its secure and efficient implementation. Where possible, we have written this
specification to be understandable by all, though we recognise that the motivations and references
to algorithms or other specifications and standards may be unfamiliar to those who are not domain
experts.

This specification anticipates being read and acted on by various people with different
backgrounds. We have tried to capture these backgrounds here, with a brief explanation of what
we expect them to know, and how it relates to the specification. We hope this aids peoples
understanding of which aspects of the specificaiton are particularly relevent to them, which they
may (safely!) ignore, and pass to a colleague.

Cryptographers and cryptographic software developers

These are the people we expect to write code using the instructions in this specification. They
should understand fairly obviously the motivations for the instructions we include, and be
familiar with most of the algorithms and outside standards which we refer to. We expect the
sections on constant time exection (Chapter 5) and the entropy source (Chapter 4) to be chiefly
understood with their help.

Computer architects

We do not expect architects to have a cryptography background. We nonetheless expect
architects to be able to examine our instructions for implementation issues, understand how the
instructions will be used in context, and advise on how best to fit the functionality the
cryptographers want to the ISA interface.

Digital design engineers & micro-architects

These are the people who will implement the specification inside a core. Again, no cryptography
expertise is assumed, but we expect them to interpret the specification and anticipate any
hardware implementation issues. E.g., where high-frequency design considerations apply, or

where latency/area tradeoffs exist etc. In particular, they should be aware of the literature
around efficiently implementing AES and SM4 SBoxes in hardware.

Verification engineers

Responsible for ensuring the correct implementation of the extension in hardware. No
cryptography background is assumed. We hope they are able to identify interesting test cases
from the specification, and knowing how the instructions are used in the real world. We do not
expect verification engineers in this sense to be experts in entropy source design or certification,
since this is a very specialised area. We do expect them however to identify all of the
architectural test cases around the entropy source interface.

These are by no means the only people concerned with the specification, but they are the ones we
considered most while writing it.

1.2. Sail Specifications

RISC-V maintains a formal model of the ISA specification, implemented in the Sail ISA specification
language \cite{sail}. Note that Sail refers to the specification language itself, and that there is a
model of RISC-V, written using Sail. It is not correct to refer to "the Sail model". This is ambiguous,
given there are many models of different ISAs implemented using Sail. We refer to the Sail
implementation of RISC-V as "the RISC-V Sail model".

The Cryptography extension uses inline Sail code snippets from the actual model to give canonical
descriptions of instruction functionality. Each instruction is accompanied by its expression in Sail,
and includes calls to supporting functions which are too verbose to include directly in the
specificaiton. This supporting code is listed in Appendix D. The Sail Manual is recommended
reading in order to best understand the code snippets.

1.3. Policies
In creating this proposal, we tried to adhere to the following policies:

* Where there is a choice between: 1) supporting diverse implementation strategies for an
algorithm or 2) supporting a single implementation style which is more performant / less
expensive; the crypto extension will pick the more constrained but performant option. This fits
a common pattern in other parts of the RISC-V specification, where recommended (but not
required) instruction sequences for performing particular tasks are given as an example, such
that both hardware and software implementers can optimise for only a single use-case.

* The extension will be designed to support existing standardised cryptographic constructs well. It
will not try to support proposed standards, or cryptographic constructs which exist only in
academia. Cryptographic standards which are settled upon concurrently with, or after the RISC-
V cryptographic extension standardisation will be dealt with by future additions to, or versions
of, the RISC-V cryptographic standard extension. It is anticipated that the NIST Lightweight
Cryptography contest, and the NIST Post-Quantum Cryptography contest may be dealt with this
way, depending on timescales.

* Historically, there has been some discussion \cite{LSYRR:04} on how newly supported
operations in general purpose computing might enable new bases for cryptographic algorithms.

https://github.com/rems-project/sail-riscv
https://github.com/rems-project/sail/blob/sail2/manual.pdf

The standard will not try to anticipate new useful low level operations which may be useful as
building blocks for future cryptographic constructs.

Regarding side-channel countermeasures: Where relevant, proposed instructions must aim to
remove the possibility of any timing side-channels. For side-channels based on power or electro-
magnetic (EM) measurements, the extension will not aim to support countermeasures which
are implemented above the ISA abstraction layer. Recommendations will be given where
relevant on how micro-architectures can implement instructions in a power/EM side-channel
resistant way.

Chapter 2. Implementation Profiles

All instructions in the scalar cryptography extension are grouped into functional sets and feature
sets. Functional sets are very fine grained, and are constructed around specific algorithms,
standards requirements, or small logical groupings of instructions. Feature sets are more coarse
grained, and are what cores are expected to implement. The letters used to construct Functional Set
names are explained in Table 1.

The Feature Sets for instructions exclusive to the scalar cryptography extension are listed in Table
Table 2. All Bit-manipulation instructions used by the scalar cryptography extension (Section 3.1)
are always included in the feature sets listed in Table Table 2. Exceptions are RV64 only
instructions, which are not included in RV32 based implementations.

Table 1. Explanation of the functional sets.

Functional Description

Set

Zkg Constant time carry-less multiply for Galois/Counter Mode.

Zkb Bitmanip subset included in the scalar cryptography extension, minus those in Zk.
Zkr Entropy source for seeding random number generators.

Zkne NIST AES Encryption Instructions.

Zknd NIST AES Decryption Instructions.

Zknh NIST SHA2 Hash function instructions.

Zksed SM4 Instructions.

Lksh SM3 Hash function instructions.

Table 2. Explanation of the feature strings used to refer to the functional sets.

Feature Description

Set

K The default scalar cryptography extension, short for Zkn_zZkr
Zkn NIST algorithm suite. Short for Zkne_Zknd_Zknh_Zkg_Zkb.

Zks ShangMi (SM) algorithm suite. Short for Zksed_Zksh_zZkg_zZkb.

Encryption and decryption instructions are separated into different functional groups because
some popular use cases (e.g., Galois/Counter Mode in TLS 1.3, among others) do not require
decryption functionality. The NIST and ShangMi algorithms suites are separated because their
usefulness is heavily dependent on the countries a device is expected to operate in. NIST ciphers
are a part of most standardised internet protocols, while ShangMi ciphers are required for use in
China.

Presence of the cryptography extension in any form is indicated by bit 10 of the MISA CSR. i.e. bit K,
because C is taken and K is for Kappa, the first letter of the ancient Greek word kruptds, meaning
hidden. Detection of fine-grained functionality uses the mechanisms defined by the tech-config
RISC-V Task Group. At the time of writing, these mechanisms are still being defined.

Some example GCC -march= strings:

* rv32ik - Implement the 32-bit NIST feature set (Zkn, the entropy source feature set (Zkr) and all
of the 32-bit Bit-manipulation instructions used by the scalar cryptography extension listed in
Section 3.1.

* rvbdik - As above, but implementing the 64-bit version of the NIST feature set, and additional 64-
bit instructions from the Bit-manipulation subset.

* rvb4i_Zks_Zkr - Implement the Entropy Source instructions, the 64-bit Bit-manipulation
instructions, and the XLEN independent ShangMi suite instructions.

* rvb4i_Zkne_Zknh - Implement only the 64-bit NIST AES Encryption and hash function
instructions.

Table 3. Feature sets for instructions in the scalar cryptography extension.

Instruction Functional Zkn Zkn Zks Zks Zk
Set (RV32) (RV64) (RV32) (RV64) r

aes32dsi Zknd X

aes32dsmi Zknd X

aes32esi Zkne X

aes32esmi Zkne X

aes64ds Zknd X
aes64dsm Zknd X
aesb64es Zkne X
aes64esm Zkne X
aes64im Zknd X
aes64ks1i Zkne X
aes64ks2 Zkne X
sha256sig0 Zknh X X
sha256sigl Zknh X X
sha256sum0 Zknh X X
sha256sum1 Zknh X X
sha512sigOh Zknh X

sha512sig01 Zknh X

sha512siglh Zknh X

sha512sigll Zknh X
sha512sumOr Zknh X
sha512sumilr Zknh X

sha512sig0 Zknh X

Instruction Functional Zkn Zkn Zks Zks Zk

Set (RV32) (RV64) (RV32) (RV64) r
sha512sigl Zknh X
sha512sum0 Zknh X
sha512sum1 Zknh X
sm3p0 Zksh X X
sm3pl Zksh X X
sm4ed Zksed X X
sm4ks Zksed X X
pollentropy Zkr X
getnoise Zkr X
clmul, clmulh Zkg X X X X
xperm.n, xperm.b Zkb X X X X
ror, rol, rori Zkb X X X X
rorw, rolw, roriw Zkb X X
andn, orn, Xnor Zkb X X X X
pack, packu, packh Zkb X X X X
packw, packuw Zkb X X
rev.b, rev8 (grevi) Zkb X X X X
rev8.w (grevi) Zkb X X
zip (shfli) Zkb X X

unzip (unshfli) ZKkb X X

Chapter 3. Scalar Cryptography Extension

As per the RISC-V Cryptographic Extensions Task Group charter: "The committee will also make ISA
extension proposals for lightweight scalar instructions for 32 and 64 bit machines that improve the
performance and reduce the code size required for software execution of common algorithms like AES
and SHA and lightweight algorithms like PRESENT and GOST."

For context, some of these instructions have been developed based on academic work at the
University of Bristol as part of the XCrypto project \cite{MPP:19}, and work by Paris Telecom on
acceleration of lightweight block ciphers \cite{TGMGD:19}.

3.1. Bitmanip Instructions for Cryptography: ZKb

0 todo - convert to asciidoc.

3.2. Scalar AES Instructions

e todo - convert to asciidoc.

3.3. Scalar SHA2 Instructions

e todo - convert to asciidoc.

3.4. Scalar SM3 Instructions

o todo - convert to asciidoc.

3.5. Scalar SM4 Instructions

e todo - convert to asciidoc.

Chapter 4. Entropy Source

o Needs converting from LaTeX

Chapter 5. Data Independent Execution
Latency Subset: ZKt

o todo - merge in existing asciidoc document found here.

10

https://github.com/rvkrypto/riscv-zkt-list/blob/main/zkt-list.adoc

Chapter 6. Bibliography

0 This is a placeholder file while bibliography is being implemented.

11

Appendix A: Instruction Encodings

o Needs converting from LaTeX

12

Appendix B: Entropy Source: Rationale and
Discussion

o Needs converting from LaTeX

13

Appendix C: Supplementary Materials

o Needs converting from LaTeX

14

Appendix D: Supporting Sail Code

o Needs converting from LaTeX

15

	RISC-V Cryptography Extensions Volume I: Scalar & Entropy Source Instructions
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Intended Audience
	1.2. Sail Specifications
	1.3. Policies

	Chapter 2. Implementation Profiles
	Chapter 3. Scalar Cryptography Extension
	3.1. Bitmanip Instructions for Cryptography: ZKb
	3.2. Scalar AES Instructions
	3.3. Scalar SHA2 Instructions
	3.4. Scalar SM3 Instructions
	3.5. Scalar SM4 Instructions

	Chapter 4. Entropy Source
	Chapter 5. Data Independent Execution Latency Subset: ZKt
	Chapter 6. Bibliography
	Appendix A: Instruction Encodings
	Appendix B: Entropy Source: Rationale and Discussion
	Appendix C: Supplementary Materials
	Appendix D: Supporting Sail Code

