
A Guide to Error Handling that Just Works Part I 1

💣
A Guide to Error Handling that
Just Works (Part I)

Error handling in Rust is straightforward: every competent Rust developer knows
the libraries like anyhow and thiserror , writes ? operator like an expert to make the
compiler happy everyday. Error handling in Rust could still be hard: thereʼre tons of
opinionated articles or libraries promoting their best practices, leading to an epic
debate that never ends.

As a large Rust project, we were all starting to notice that there was something
wrong with the error handling practices in RisingWave, but pinpointing the exact
problems is challenging. In the past few months, Iʼve taken on the task of
exploring the better error-handling practices for RisingWave. Suffering from the
letdowns as the dreamlike worlds painted by so-called “best practicesˮ crumbled
one by one, I finally came to realization that…

Thereʼs no one-size-fits-all solution for a Rust project as complicated as
RisingWave.

Bugen Zhao

Revisit trait Error
Describe it
How come?
Provide any stuff
Worldʼs complicated

Formatting the Error
Make it a Report
Format in tracing ?
Backtrace meh?
Format in anyhow ?
The machine power

To be continued…

A Guide to Error Handling that Just Works Part I 2

The user-facing changes are the best guideline to this extensive project.

Achieving a consensus on what is good will never be possible. Focus on what
is generally considered bad and address that instead.

Embrace the community and practice generosity.

During the process Iʼve tried to do the most improvements on my own, but finally
realize that the gained knowledge has to be shared with all our teammates in order
to maintain the good status of error-handling in RisingWave, which is why this
guide has been written. A considerate portion of the contents is derived from the
discussions with reviewers of the refactoring PRs, with special thanks to

 for his valuable insights.

So letʼs get started!

Revisit trait Error
Perhaps you have been quite used to defining a new error type with thiserror , or
interacting with existing error types, but do you really know how the language
designers think what an error should look like? The concept is illustrated in the
definition of trait Error in the standard library, so letʼs take a glance first.

/// `Error` is a trait representing the basic expectations fo

r error values,

/// i.e., values of type `E` in [`Result<T, E>`].

pub trait Error: Debug + Display {

 /// The lower-level source of this error, if any.

 fn source(&self) -> Option<&(dyn Error + 'static)> { ...

}

 /// Provides type based access to context intended for er

ror reports.

 fn provide<'a>(&'a self, request: &mut Request<'a>) { ...

}

}

Describe it

Tianxiao Shen

A Guide to Error Handling that Just Works Part I 3

First of all, thereʼre two super-traits on the Error trait which are both required to
describe the error in different circumstances. Specifically,

Debug representation is used when calling Result::unwrap or Result::expect .
Since this is less commonly encountered (in happy paths), there are no
specific requirements regarding the format.

Most of the error types directly #[derive(Debug)] to implement that,
including those from standard libraries.

anyhow::Error customizes to make the debug representation human-
readable [ref]. This makes the error message more friendly if one put
anyhow::Result as the return type of the main function, which will call
Termination::report then Debug on the error type.

Display representation is to give a user-friendly description of the error,
commonly known as the "error message" which we should pay the main
attention to. Followings are the conventions:

The message should be lowercase sentences without trailing
punctuation [ref].

BAD Failed to connect to server.

GOOD failed to connect to server

The message should only describes itself, without (recursive) formatting
on the source (or cause) error [ref]. Weʼll talk about the “sourceˮ later but
Iʼm sure you can get the idea through the example.

BAD failed to bind expression: {source}

for example, failed to bind expression: function "foo" does not exist

GOOD failed to bind expression

The message should not include other stuff as well, especially the
backtraces.

BAD failed to parse statement "foo"\n\n Backtrace: {backtrace}

GOOD failed to parse statement "foo"

Some of the conventions above might be surprising to you. You might be
wondering…

https://docs.rs/anyhow/latest/anyhow/struct.Error.html#display-representations
https://doc.rust-lang.org/stable/std/error/trait.Error.html
https://stackoverflow.com/questions/62869360/should-an-error-with-a-source-include-that-source-in-the-display-output

A Guide to Error Handling that Just Works Part I 4

Isnʼt there a loss of information if we donʼt mention the cause of the error?

How can we effectively debug if we donʼt include the backtrace?

To answer these questions, letʼs now go through the methods on the Error trait to
see how they can work together to provide a concise yet informative message for
both users and developers.

How come?
Modern software is structured in layers. Itʼs common that we donʼt know about the
details how external systems or libraries work but only interact with them through
interfaces. When thereʼs something wrong within them, weʼll get an error based on
which we can determine the next steps.

In most cases, we attach our own interpretation (called context) based on our
own interpretation to create a new error, making the original one as the “source .ˮ
This is what the source method is for.

The source method provide cause information, which is
generally used when errors cross “abstraction boundariesˮ
(like modules or crates). [ref]

You might not have made any direct interaction with this method, but you are likely
familiar with the attributes like #[source] when defining an error type with
thiserror . #[source] will help to implement the source method to return the inner
error. By the way, #[from] implies #[source] so we donʼt need to specify them
together.

#[derive(thiserror::Error, Debug)]

enum BatchError {

 #[error("failed to run expression")]

 Expr(#[from] ExprError)

}

The method helps to maintain the error cause into a chain, as the source error can
then have its own source again. To visit the source chain, call Error::source

https://doc.rust-lang.org/stable/std/error/trait.Error.html

A Guide to Error Handling that Just Works Part I 5

recursively on the root error. Thereʼs recently a new and unstable Error::sources
method help to do this as well [ref].

Being able to provide the source chain explains why we donʼt have to refer to the
source (or inner) error while implementing Display : the root-level error can
choose its own way to composite the sources into a final error message, which
is called report by convention [ref].

If you are observant, you might have already noticed how we apply this in
RisingWaveʼs user-facing error reporting via psql, where each line represents a
source error.

ERROR: Failed to run the query

Caused by these errors (recent errors listed first):

 1: Failed to get/set session config

 2: Invalid value `maybe` for `rw_implicit_flush`

 3: Invalid bool

In the meanwhile, we connect the error source chain in a single line to get them
printed in the logs, which can be much more concise for our developers to read
and analyze.

failed to collect barrier: Actor 233 exited unexpectedly: Exe

cutor error: Chunk operation error: Division by zero

Itʼs not hard to find that maintaining the source chain in a structured way leads to
much more flexibility than directly embedding them in the Display implementation
of a single error. Weʼll cover the part for how you should format the error into
reports and benefit from this later.

Provide any stuff
An error message can actually be much fancier and more informative than the
multi-line one above. For example,

Include span information to indicate the location of the syntax error for users.

Instruct users how to fix the error with some hints or suggestions.

https://doc.rust-lang.org/stable/std/error/trait.Error.html#method.sources
https://docs.rs/thiserror-ext/latest/thiserror_ext/struct.Report.html

A Guide to Error Handling that Just Works Part I 6

Display the captured backtrace showing where the error first occurred in the
source code.

The need for a more user-friendly error message can be quite varying depending
on the application, thatʼs why the trait defines another method named provide
allowing an error to provide any kind of context to the outside world.

Not being stabilized, this method has not been widely used by the ecosystem.
However, there are still conventions that an error should…

Call Error::provide on the source error, if exists.

Provide a std::backtrace::Backtrace if captured, which is the primary purpose of
this method at present.

fn provide<'a>(&'a self, request: &mut std::error::Request<'a

>) {

 if let Some(backtrace) = &self.backtrace {

 request.provide_ref::<Backtrace>(backtrace);

 }

 if let Some(source) = &self.source {

 source.provide(request);

 }

}

To request a value from an error, call std::error::request_ref . Similar to source , this
is not something we typically encounter in our daily lives either. Error reports will
handle this for us, again, which will be covered later.

if let Some(backtrace) = std::error::request_ref::<Backtrace>

(&error) {

 println!("Backtrace:\n{backtrace}");

}

Worldʼs complicated
You may now find the error friends you meet everyday can be much more
powerful than you thought. However, the world is complicated. Do you also know

A Guide to Error Handling that Just Works Part I 7

that not all stuff named “errorˮ is actually an Error ?

This might be mainly because thereʼs no Error trait bound on the type parameter
E in Result<T, E> . Some interfaces returning Result actually mean the more
general Either , while others may simply forget to implement the trait on the error
type. There usually wonʼt be a problem until you want to make it a source of a new
error.

Another different case is anyhow::Error . Yes, anyhow::Error is not an Error 😄. It's
not that it doesn't want to be, but unfortunately it cannot be. To explain it in short:

// `anyhow::Error` aims to be the container of any kinds of e

rror types:

impl<E: Error> From<E> for anyhow::Error { .. }

// So if...

impl Error for anyhow::Error { .. }

// We'll get it conflict with the blanket implementation from

`std`:

impl<T> From<T> for T { .. }

Blame the compiler, no reservation! The limitation makes it more difficult to write
generic code that works with all Error types as desired, since the large piece for
anyhow support is missing. However, if you didnʼt notice this fun fact, itʼs likely
because of those clever type tricks that make anyhow::Error behave like a normal
Error type. Letʼs discuss this later if thereʼs a chance.

Formatting the Error
Now that weʼve mastered the basic knowledge of how errors should behave, letʼs
move on to something more practical. Iʼm going to cover the topics in a top-down
manner to avoid losing ourselves in this long journey. So first, imagine youʼve got
an error from some other folks, how should we format it to get it displayed to the
users or appeared in the logs?

Make it a Report

A Guide to Error Handling that Just Works Part I 8

Weʼve already known the concept of source chain and how it should be leveraged
to create an error report. thiserror_ext::Report can handle all the stuff for us [ref].
You can check the documentation on docs.rs to find the detail usages, or in simple
terms…

Instead of writing format!("error: {}", error) , use

format!("error: {}", error.as_report()) if you want a concise inline
representation

format!("error: {:#}", error.as_report()) if you want a pretty multi-line
representation

If you want to include the backtrace in the report, add an extra ? to use Debug
format:

format!("error: {:?}", error.as_report()) for inline

format!("error: {:#?}", error.as_report()) for multiline

Use the following sugars if you just want to_string :

pub trait AsReport: Sealed {

...

 fn to_report_string(&self) -> String { ... }

 fn to_report_string_with_backtrace(&self) -> String {

... }

 fn to_report_string_pretty(&self) -> String { ... }

 fn to_report_string_pretty_with_backtrace(&self) -> St

ring { ... }

}

So simple, right? But wait, I must now clarify that in most cases, calling format on
error report is not what you want, or even sometimes bad.

Format in tracing ?
In RisingWave, we leverage tracing to emit runtime logs. At first glance, it may
seem like just a println with level-filtering support, but this is far from accurate.

https://docs.rs/thiserror-ext/latest/thiserror_ext/struct.Report.html
https://docs.rs/thiserror-ext/latest/thiserror_ext/struct.Report.html
https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#e94f7bb3d0cb47a29235aee14cae6ba9
https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#e94f7bb3d0cb47a29235aee14cae6ba9
https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#e94f7bb3d0cb47a29235aee14cae6ba9
https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#325e0e04fa4b4948afa951a1e5d2319d
https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#325e0e04fa4b4948afa951a1e5d2319d
https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#325e0e04fa4b4948afa951a1e5d2319d

A Guide to Error Handling that Just Works Part I 9

The most powerful functionality of tracing is the support for structured logging to
gain better observability for the system [ref].

This topic is too extensive to cover in this article. However, all you need to know
now is that, instead of formatting everything into the log message like the old-
println way, record the variable parts into fields as much as possible. This is to
make the logs more machine-readable so that we can do analysis on them
programmatically.

Hereʼs an example:

// BAD

tracing::info!(

 "failed to parse column `{}` for source {}, error: {}",

 name, id, error.as_report(),

);

// GOOD

tracing::info!(

 name,

 source_id = id,

 error = %error.as_report(),

 // error = ?error.as_report() /* with backtrace */

 "failed to parse column",

);

The % before error.as_report() indicates that the error field will be a string
formatted with Display trait on the report, which will be one-liner without
backtrace as youʼve already known. If you want the backtrace, replace it with ? to
use the Debug representation.

Backtrace meh?
When should we include the backtrace in the error report? Here are some tips to
consider:

If the error occurs on happy and critical paths, do not include since it
introduces overhead while resolving the symbols.

https://docs.rs/tracing/latest/tracing/#recording-fields

A Guide to Error Handling that Just Works Part I 10

If the error occurs frequently, do not print since it can be really verbose!

If the report will be shown to users, do not print the backtrace. Imagine what
the user looks like when scared by hundreds of lines of incantation. 👻⪛ 😨

If the error is simple and self-explanatory, or soon gets resolved after being
created, do not print the backtrace since itʼs likely to be meaningless.

Only if the error is significant, unexpected, and complicated, print the
backtrace. A typical example is the error logging after an actor exited (failed).

// Intentionally use `?` on the report to also include the

backtrace.

tracing::error!(actor_id, error = ?err.as_report(), "actor

exit with error");

BTW, I would also like to emphasize that, log the error only if youʼre going to
ignore or resolve it. This approach guarantees that the error will only be logged
once to avoid cluttering the logs, as it will eventually be resolved during
propagation (otherwise we get panic).

Format in anyhow ?
anyhow::anyhow! is again a stuff that feels quite similar to format! . However, it must
be pointed out that formatting error (report) in anyhow! is generally a bad idea.
Consider the following example:

return Err(

 anyhow!("failed to fetch offset: {}", mysql_error.as_repo

rt())

);

The intention of this line is to create a new anyhow::Error indicating that we failed to
fetch the offset, preserving the cause of the original error from the external
MySQL library. Having the knowledge of how Display and source are supposed to
work on an error type, I believe that itʼs not hard to figure out why this is not a
good practice. To be clear:

A Guide to Error Handling that Just Works Part I 11

The description (message) of the new error will contain the description of the
cause mysql_error , which violates the convention mentioned above.

The source chain of the new error is not well-maintained. The source method
will return None in this case.

The best way for doing this is to attach context through anyhow::Error::context . Weʼll
discuss about that in the “error constructionˮ section later.

return Err(

 anyhow!(mysql_error).context("failed to fetch offset")

);

The machine power
As you can imagine, formatting an error without using Report can be problematic
in most time: we may lose the information from the entire source chain! Luckily,
we can leverage the power from machine to identify the problems.

Thanks to cargo-dylint which allows everyone to write his own lint rules with the
exactly same experience as cargo-clippy , Iʼve also created one named format_error
to cover the problem. It has been integrated into CI for a while. As a result, if you
introduce some error formatting without practicing the best, you can refer to the
instructions provided to fix it.

Given that the lint may not able to cover all the edge cases and the suggestions
can be inaccurate, please kindly be sure to have a good understanding of this
guide before taking actions. 🥰

To be continued…
Thatʼs all for the very first part of this guide series, while the journey is far from
over. In the upcoming parts, weʼll dive into some lower-level topics by shifting our
focus from error consumption to production, including…

how to define an error type, choose thiserror or anyhow ?

the best practices to construct an error instance respectively with both
libraries,

https://www.notion.so/e108f8d0845b4bddaa0e5843791a8cac?pvs=25#eab1778bc7824415974872d1bb626c09
https://github.com/risingwavelabs/risingwave/blob/3c3e75f36b0660d7a0091fa7904229cdf7ce8bb4/lints/src/format_error.rs

A Guide to Error Handling that Just Works Part I 12

and more interesting stories or tricks in the ecosystem.

Stay tuned for more updates!

