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SECTION 1. INTRODUCTION

i.I. General. This final report identifies and describes the design
criteria and accomplishments, and conclusions and recommendations of the
MIL-STD-1862B (Nebula) Brassboard system development project.

1.2. Backaround. The objectives of this effort have been: to design,
implement and install a Brassboard System which incorporates an
implementation of the Nebula Instruction Set Architecture (ISA) defined by
MIL-STD-1862B; to develop and install programs which support the
development and execution of software targeted for this ISA; and to
provide the programs required to test and maintain the hardware and
microcode comprising the system. The Brassboard System and all software
delivered and installed as part of this effort are the major elements of
an experimental computer evaluation facility (testbeds) to be used for
evaluating the 32-bit Nebula ISA in the context of Air Force applications.

The Nebula ISA is an outgrowth of the Military Computer Family (MCF)

N Project under the direction of the U.S. Army, which provides
instruction-set-compatible computers of varying performance capabilities.
.This ISA has been developed in response to a need for a family of standard
computers that decreases the life-cycle costs of automated battlefield
systems by reducing the proliferation of ISAs. This is accomplished by
increasing the portability and reliability of software through the use of
a standard ISA. -1.ormerly the acquisition of various ISAs embedded in
military computer iystems had been based on a strategy that involves
purchases of processors with specified performance and physical
characteristics from the lowest-cost sources. This approach results in a
proliferation of instruction sets. Therefore these unique computers host
different software-support capabilities, executives, data base systems,
etc. %Different parts of a major'4 temin may utilize different ISAs and
support software, greatly increasing life-cycle costs. This proliferation
has resulted in major problems which limit growth and flexibility and has
produced severe interoperability problems, especially during system
upgrades The MCF project has focused on problems similar in nature to
those experienced by the Air Force and the Navy. In addressing the
problem the Navy has developed its own series of ISAs (AN/AYK-14,
AN/UYK-43 and AN/UYK-44).

The Air Force has developed MIL-STD-1750A, the specification of a 16-bit
ISA designed for use in avionics systems, and MIL-STD-1553B, a
time-multiplexed data bus used extensively in avionics systems and having
general applicability in real-time military systems. Based upon the
success of these standards the Air Force is aware of the advantages to be
realized by standardization at the ISA level. The use of MIL-STD-1862B in
major Air Force systems has the potential of continuing this favorable
trend. Within the next 5 years many of the existing computers in the Air
Force inventory will have exceeded their useful life. Logistic support
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problems are currently being encountered and it is difficult to properly

support projected and changing mission requirements. The desirability of

achieving software compatibility limits the ability to upgrade and

modernize ISAs by exploiting modern technology. Although a specific ISA

implementation such as the Nebula Brassboard might not utilize the latest

hardware technology, it will be possible to employ the latest technology

in future implementations. This approach achieves higher performance and

greater system reliability while diminishing the amount of costly

reprogramming.

1.3. Objectives. The primary objectives involved in the development and

delivery of the Brassboard System are as follows:

1) Design, implement, and install a brassboard system which
incorporates an implementation of the Nebula ISA defined by
MIL-STD-1862B.

2) Develop and install software which supports the development and

execution of software targeted for the ISA.

3) Provide the software and hardware required to test and maintain

the hardware and to develop and test the microcode.

4) Provide documentation and familiarization of delivered hardware,

firmware, and software.

5) Provide, as required, maintenance and spares following
installation and acceptance.

Figure 1-1 contains a high-level block diagram of the Brassboard System
hardware and software.

1.4. General Description. The Brassboard System includes the following
items.

0 Nebula Computer - A Nebula ISA implementation to be used in a

laboratory environment.

Major Components of the Nebula Computer are:

o the power supply

o 4 megabytes of semiconductor random access memory (RAM)
(expandable to 8 megabytes) which receiveb program modules
downloaded from disk storage in the Computer Control Panel (CCP);
organized in 4-byte words (32 bits) addressable at the byte
level. Each word has additional check and control bits for a
total of 45 bits per words.
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o an associative relocation cache of 4K x 82-bit words of
random-access memory; organized in two partitions of 4K x 41-bit
words each, which in turn are divided into 1K blocks of
user/supervisor instruction and operand addresses.

o a memory map cache of 4K x 32-bit words

o a microcode (firmware) memory of 4K x 64-bit words distributed in
various modules of the Input/Output Controller (IOC) (also
downloaded from the CCP).

o a microcode (firmware) memory of 8K x 96-bit words distributed in
various modules of the Central Processing Unit (CPU) (also

downloaded from the CCP).

o additional microcode memory of 4K x 32 bits located in the
Instruction Reformat (IR) portion of the Instruction
Fetch/Reformat Module of the CPU.

o a cache of 4K x 32-bit words for the context stacks and working
files.

o various read-only control memories and associated gate arrays
which together are state sequencers.

o instruction fetch/reformat/distribution, memory management,
input/output control, and arithmetic modules and
interrupt/condition/event handlers.

o interface ports of various types and quantities, with the
capability of having the quantity and types of ports changed.

o Computer Control Panel (CCP) - A group of devices designed to
interface with the Nebula Computer to provide control, test and
software development support functions. See the CCP-related manuals
referenced in Appendix A. This provides the operator and maintenance
interfaces and consists of items obtained from Heurikon Corp. and
other vendors:

o MC68000-based processor including 256K on-board memory and an
additional optional 512K memory board

o 20 megabyte hard disk

o 1.2 megabyte floppy disk

o Visual 210 keyboard and display terminal

o Anadex DP9501A dot matrix printer

o a UNIX System V operating system

4



o Microexecutive - A Nebula executive program installed in the Nebula
Computer to provide an environment supporting the execution of Nebula
programs. See the Executive User's Manual.

o Nebula Cross-Assembler and Linker - The GFE Nebula cross-assembler
and linker are used to generate object and load modules for the
Nebula Computer. These items reside in the host software development
facility (HSDF). The CCP provides the storage and on-line interface
for downloading the target modules from the HSDF to the Nebula
Computer. See the Nebula Assembler and Linker User's Manuals.

" Nebula Microcode Development and Maintenance Tools - The tools
required to maintain and modify the microcode (firmware) resident in
the Nebula Computer have been developed and documented. These tools
reside in and execute on the HSDF. The microcode routines developed
using these tools are downloaded from the HSDF to the Nebula Computer
using the CCP storage and maintenance interface. See the Universal
Microcode Assembler and Linker User's and Maintenance Manuals.

o Nebula Emulator Microcode - The firmware has been developed to
provide flexibility in the computer's normal operation by changing a
firmware module. See the Nebula Brassboard Firmware User's and
Program Maintenance Manuals. The firmware simulator allows the
firmware to be tested prior to changing the brassboard. The Nebula
Microcode Simulator User's Manual describes the firmware simulator.

o Validation Test Software - A loader/driver program has been written
to control the running of validation routines and hardware/firmware
integrity tests. A performance test measures the Nebula Brassboard
execution rates. See the Acceptance Test Plan and the Nebula Test
Software User's and Maintenance Manuals.
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SECTION 2. DESIGN CRITERIA/ACCOMPLISHMENTS

2.1. Design Procedures/Criteria. This section briefly describes the
design techniques and procedures used to develop all elements of the
Nebula brassboard computer related to the Nebula ISA.

The hardware was designed on an in-house CYBER computer. Schematics were
drawn on an in-house CAL4A system. Hardware simulation was performed on
the CYBER electrical computer-aided desiln (ECAD) system. The simulation
output, a netlist, was sent to Multiwire (aRdivision of Kollmorgen
Corporation) for production of the Multiwire boards. The boards were
assembled and checked out in-house. The CCP was purchased off-the-shelf
and best commercial practices were used in its prior development.

The logic module used in the brassboard is populated with small-scale
integration (SSI) and medium-scale integration (MSI) logic devices. The
Fairchild Advanced Schottky TTL (FAST) is used for the brassboard for the
following reasons.

1) Low propagation-delays and power requirements

2) Improved dc thresholds

3) Reduced input loading; Schottky output drive

4) State-of-the-art logic functions

The module has the capacity to hold 375 devices. 343 of these may be in
packages with 20 or fewer pins; 8 of these may be in packages with 28 or
fewer pins; 4 of these may be in packages with 40 or fewer pins. Ceramic
capacitors are distributed around the module to filter high-frequency
noise on the power plane which may be caused by normal switching
transients. Two bulk filter capacitors are located adjacent to the module
connector. The module uses a 300-pin, low insertion force connector. It
also has 125 test points arranged in five blocks. The module is 14.7
inches by 15.5 inches.

Specific design practices are documented in the Revised Design Plan for
MIL-STD-1862B Brassboard System (13202326) and the Final Implementation
Dependencies Addendum to Design Plan for MIL-STD-1862B Brassboard System
(13202326). The latter document provides detailed descriptions of 48
design areas (39 of which were predefined to be implementation dependent;
the remainder are specific to the implementation of the Nebula ISA design)
requiring attention during implementation. Table 2-1 contains a list of
these implementation dependencies.

All contractor-developed documentation followed Air Force standards.
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TABLE 2-1. IMPLEMENTATION DEPENDENCIES

Description Description

Use of PSW Bits 2:3 Device Vector Assignments & Use
Use of ASR Bits 1:7 of Low Memory Space
Representation of Context Stacks Result of Illegal Access to I/O
Exact Location Referenced by Space Registers

Context Pointer Result of Writing Context & Map
Setting of PSW Bits 2:3 for a Pointers in I/O Space

New PSW Trap or Exception Chosen Within
Size and Format of Parameter Instruction

Descriptors Order of Emulation Between
Exception Handler State Encoding "Nexts" in Instructions
Order of Acceptance of I/O LTASK Method of Forcing Consis-

Interrupts of Equal Priority tency
Ability to Detect Hard or Soft SETSEG Action on Illegal Segment

Memory Errors Specifier Address
Halt Required by RESET Function SETSEG Information Transmitted
Definition of BIT Traps to IOC for Virtual Address
Implementation Virtual Address Exact Time of Floating Underflow

Space Check
Number of Hardware Supported Use of OP codes FA:FE

Map Segments Order Timing of Accesses to
Effect of Self-Modifying Code Memory Map Entries
Memory Map Caching Mechanisms Implementation of Memory Interlock
Effect of Aliasing of Physical Size of Parameter Three for MemoryI

Addresses Management Traps
Subsetting of Memory Management PPP IPL Parameter Code
Channel Configuration Register Floating Point Add/Subtract with

Definition Internal Result of Zero
Recognition of Access to Program Computer Generated Not a Number

Counter (NAN)
Recognition of Access to Message Conversion of Not a Number (NAN)

Pointer Between 32 and 64 Bit Formats
Channel Status Register Bits 2:14 NAN Could Get Converted to

Optional RT Mode Commands Infinity
Base Address of IOC Register Floating Underflow

Blocks
Implementation Reserved IOC

Registers

7



2.2. Hardware Design Accomplishments. This section describes the

studies, design, and development work to be accomplished for the

brassboard hardware, the Computer Control Panel (CCP), and interfaces.

The brassboard hardware development includes the design or modification,
fabrication, checkout, and documentation of the following module types:

i) Microprogrammable Processor (MP) Element

o Microsequencer
o Maintenance Interface

2) CPU
o Context Cache/Arithmetic
o Instruction Fetch/Reformat
o Memory Management
o Extended Arithmetic

3) Memory
o Memory Control
o Memory Storage

4) Input/Output (I/0)
o Instruction Execution
o Serial/Parallel I/0

o Serial/Digital (1553B) I/O

5) Motherboard

6) Chassis Assembly

Specific analyses and trade-off studies performed included implementation

of memory segmentation and an analysis of micromemory width and depth. In

conjunction with the CCP, an analysis of the interface between the CCP and

brassboard was made.

The CCP development activity was divided into hardware and software. The
hardware effort involved the selection and procurement of a commercial

computer system to satisfy the CCP requirements. The software development
is discussed in section 2.4.

CCP Hardware
o CCP Selection/Procurement
o CCP Communication/Data Interfaces

Specific analyses and trade-off studies perforred included the
CCP/Brassboard communications link and microprocessor system selection.
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2.2.1. Brassboard Hardware Overview. The Nebula brassboard processor
provides a vehicle for evaluation and optimization of the MIL-STD-1862B
Instruction Set Architecture (ISA). To be a useful tool, the brassboard
provides a flexible hardware architecture that will allow ISA
experimentation. In addition, the processor executes 400 KIPS with I/O
and 438 KIPS without I/O, contains 4 megabytes of memory (expandable up to
8 megabytes), and provides four I/0 channels--two serial point-to-point,
one parallel point-to-point, and one 1553 bus interface.

To achieve the flexibility required to allow experimentation with the ISA,
and to handle the complexity inherent in the ISA, the brassboard makes
extensive use of microprogrammable processors. The majority of the
functions needed to implement the ISA are provided by hardware controlled
by microcode. The microprograms that control the hardware are stored in a
read/write control store to allow adaptation and experimentation.

There are four subsystems in the Nebula brassboard. Three of these
contain microprogrammable processors. The CCP subsystem is based on an
off-the-shelf microprocessor. The subsystem provides software and
firmware loading capabilities and a man-machine interface. The CPU
subsystem is based on a microprogrammable processor designed by Control

Data. This subsystem performs the basic ISA processing. The third
microprogrammable processor is located in the I/O subsystem. This
subsystem provides the input/output channels for the brassboard. The
final subsystem in the brassboard is the memory subsystem which provides

the storage and control for up to 8 megabytes of memory.

The block diagram of the brassboard system is shown in Figure 2-1. The
CCP subsystem is a commercially available microcomputer system. Each of
the other subsystems is composed of logic modules, each of which can hold
up to 375 dual in-line packages (DIPs). The modules utilize a multiwire
board and is populated mostly with TTL circuitry. A single oscillator
provides a clock signal to each of the modules. This signal allows each
module to generate its own timing and keeps the system synchronized.

The CPU subsystem has six logic modules. Two modules implement a
Microprogrammable Processor called an MP element. A description of an MP
element is given in section 2.2.1.1. The other four modules in the CPU
subsystem are the Memory Management module, the Context Cache/Arithmetic
module, the Extended Arithmetic module, and the Instruction Fetch/Reformat
module. The CPU subsystem performs basic ISA instruction processing
(i.e., instruction fetching and interpreting), interrupt processing, and
implements the Memory Management system defined by the ISA.

The I/O subsystem is composed of seven modules. Two modules implement an
MP element; a third module is the Instruction Execution module. Together,

these three modules implement an I/0 Controller (IOC). The four other
modules in the subsystem each provide one I/0 channel. The I/0 subsystem
performs basic IOC instruction execution, transfers data to and from the

9
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memory subsystem, and from and to the I/O channels, and provides the I/0
channel interfaces.

The memory subsystem is composed of at least three modules and may have as
many as five modules. One module implements a memory control function.
The other modules provide 1 or 2 megabytes of storage each. The memory is
organized as 32-bit words, but each byte in the memory is individually
addressable and accessible. The Memory subsystem provides a parallel bus
port and four nibble bus ports. The subsystem performs basic storage,
memory access prioritization (between CPU and I/O requests), data
alignment for read and write operations, single error correction/double
error detection (SECDED), and memory error logging.

2.2.1.1. The Microprogrammable Processor (MP) Element. The
microprogrammable processor element (MP) is a standardized microprogrammed
controller. It is intended-to be combined with other application
dependent parts to perform a specific processing function. Possible
applications include central processing units, I/O channel controllers,
memory controllers, and other processor type applications.

The MP element was created as one board or chip set to perform all the
standard control functions of a processor. This controller is then used
over and over again in many applications. This feature reduces design
times and increases reliability. With the advent of very large scale
integrated circuit (VLSI) technology, these become very important
qualities.

Features of the MP element include:

o Micromemory control

o Micromemory sequencing

o Maintenance channel interface

o Fault detection/isolation

o Deadstart bootstrap

o Condition/event monitoring

All application dependent operations are implemented on additional boards
or chips.

The MP element is partitioned into three major subsections; the
microsequencer, the maintenance interface, and wicromemory. They
communicate with each other and the rest of a system over five buses; the
data bus, the condition/event bus, the microcommand bus, the micromemory
address bus, and the serial maintenance bus. The three subsections are
synchronous and run off of a single 13.33 MHz oscillator.

11



The micromemory in the MP element is 32 bits wide by 8K words deep and
contains some or all of the microcommand bits for the specific
application. The RAM can be loaded with special firmware or diagnostic
procedures from the console via the maintenance channel.

The maintenance interface performs the console interface functions. These
functions involve transmission, detection, and responses to control
messages sent via the maintenance channel. Console capabilities via the
maintenance interface include:

o Firmware level start/stop

o Micromemory address and command display

o Software/firmware breakpoints

o Software debug aids

o Display of test point and error status data

The microsequencer module controls the address sequencing of micromemory
and the micromemory read/write functions. A deadstart Read-Only Memory

(ROM) is included in the microsequencer to perform the initial load of the
RAM micromemory on power up. Event and condition structures monitor the

overall status of the system and are used to affect the flow of the
firmware.

In the Nebula brassboard version of the MP element, the microsequencer and
the micromemory share one multiwired board. The maintenance interface
populates another board. For the VLSI version, it is hoped that the
microsequencer and the maintenance interface shall each be on its own VLSI
chip. The micromemory in this case is standard Field-Programmable Logic
Array (FPLA) and RAM chips.

2.2.1.1.1. Microcommand Structure. A basic 32-bit microcommand is
incorporated into the MP element design. This format provides enough
parallel fields to handle all MP element controls, plus controls for
application dependent parts. For high performance CPU emulation tasks,
more microcommand parallelism is needed than is provided for by the basic
format. Therefore, expanded microcommand formats are made possible.

The expanded microcommand format consists of the basic 32-bit format plus
some expansion bits. The expansion bits are used entirely to control
additional modules or VLSI chips. Each module in an MP element
application receives only part of this microcommand. This feature cuts
down on the number of pins required in a VLSI implementation.

2.2.1.2. The CPU Subsystem. The Central Processing Unit (CPU) subsystem
of the Nebula brassboard is a microprogrammable processor consisting

12



of six interconnected modules. Two modules comprise an MP element. The
other four modules provide the hardware needed to efficiently emulate the
MIL-STD-1862B ISA.

The CPU is the mind of the brassboard system. Under microprogram control
it performs the basic ISA instruction execution. The CPU fetches the
instruction byte stream from memory. It interprets an instruction by
fetching the operands, performing the operation(s), and storing the
operand(s). The CPU also implements the ISA defined Memory Management
system and interrupt scheme.

The MP element, consisting of two modules, provides the control function
and the maintenance interface for the CPU subsystem. The MP element
contains 8096 words of 32-bit micromemory and a microsequencer to address
the memory. Each micromemory word is a command that controls the rest of
the hardware in the CPU subsystem. A more detailed description of an MP
element is contained in section 2.2.1.1.

2.2.1.2.1. Instruction Fetch and Reformat Module. The Instruction Fetch
and Reformat module contains hardware that operates in the background with
little help from firmware. This hardware fetches the instruction byte
stream from memory; it preprocesses the instruction byte stream to produce
instruction packets that are easier to decode; it passes the instruction
packets across the instruction distribution bus to a FIFO buffer; and it
reformats, upon firmware command, the instruction packet into entry points
to firmware routines that interpret the instruction or access the
operand. The remaining functions are CPU support functions. These
functions include the interrupt system, the MIL-STD-1862B timers, and a
nibble channel interface for CPU to IOC subsystem communication.

2.2.1.2.2. Memory Management. The Memory Management function of
translating virtual memory addresses to physical memory addresses (also
known as memory mapping) is performed using a high-speed associative cache
memory called the Relocation cache. Portions of virtual memory addresses
are used as indexes into the cache memory, other portions of the virtual
addresses are used as associative data search keys, and relocated physical
addresses are stored as data in the memory. This scheme performs address
translation in one machine cycle (when the data is in the cache), and the
associative cache memory is structured to provide a very good hit rate.
The cache and its control take up a very large portion of the hardware on
this module.

2.2.1.2.3. Context Cache/Arithmetic Module. The desired data
manipulation section of the CPU is contained on two modules: the Context
Cache/Arithmetic module, and the Extended Arithmetic module. The
partitioning of functions between the two modules is as follows:

13



Major functions of the Context Cache Arithmetic (CA) module:

1) 32-bit arithmetic and logic section

2) Data transform section for conversions between differing
operand word sizes

3) Floating point exponent section

4) Processor status word manipulation section

5) Context/file section to aid ISA register access, context
file management, I/0 space register storage, and extended
working register storage which contains 1024 cached task
context stack words, 1024 cached kernel context stack
words, 1536 working file words, and 512 I/O space words

6) Shift matrix/shift-count control section

7) Data-test section that allows 46 distinct data-test
functions for firmware conditional branching

8) High speed working register section with 25 individual
specialized working registers

9) Set of interfaces to the CPU data bus, the memory bus,
the Extended Arithmetic (EA) module, the CPU condition
bus, and the standard CPU control signals

Major functions of the Extended Arithmetic (EA) module:

1) 32-bit arithmetic and logic section that is used along
with the CA ALU to perform 64-bit operations, or that is
used separately to allow two distinct 32-bit operations
in one firmware instruction

2) 64-bit shift matrix that is able to shift left or right
up to 31 positions

3) Multiplier section that multiplies 8-bit factors with
32-bit factors, thus producing 40-bit partial products

4) Parameter descriptor/floating point reformat section for

firmware vector branching

5) 32-bit microcommand (UCMD) literal generator

6) 8096 x 48-bit micromemory with parity
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7) UCMD matcher that produces pauses

8) Working register section with 11 individual specialized
high-speed registers

2.2.1.2.4. Extended Arithmetic Module. The Extended Arithmetic (EA)
module, in conjunction with the Context Cache/Arithmetic (CA) module,
comprises the data manipulation section of the Nebula CPU. The EA module
contains the following functional sections:

1) a 32-bit (LSB) extension of the CA module Upper Arithmetic Logic
Unit (ALU) called the Lower ALU. Independent control of this ALU
and the working registers in the EA module allows one 64-bit fixed
or floating point arithmetic operation or else two independent
32-bit operations per instruction

2) a 64-bit input, 32-bit output shift matrix that is able to shift
left or right up to 31 bit positions per instruction (SHIFT
MATRIX)

3) a multiplier section which performs a 32-bit by 8-bit multiply and
40-bit partial product add iteration per instruction (8x32-BIT
MULTIPLIER)

4) a 32-bit zero test unit (ZERO TEST)

5) a 32-bit microcommand literal generator (UCMD LITERAL)

6) a parameter descriptor/floating point reformat vector generator

(PAR/F.P. RFMT)

7) an 8192 x 48-bit micromemory with parity (RAM MM)

8) a microcommand matcher that generates pauses when commands that
initiate slow functions are recognized (COMMAND MATCHER)

2.2.1.3. The Memory Subsystem. The memory subsystem provides the Nebula
brassboard with bulk storage for programs and data. The subsystem is
composed of at least two modules. One module provides a memory control
function for one or more (up to four) storage modules. Each storage
module provides 1 or 2 megabytes of storage. The memory is organized as
32-bit words, but each byte in the memory is individually addressable and
accessible. The memory subsystem provides a pa.'allel bus port and four
nibble bus ports. The subsystem performs basic storage, memory access
prioritization (between CPU and I/O requests), data alignment for read and
write operations, SECDED, and memory error logging.
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The memory storage module contains the integrated circuit memory array to

provide storage for 256K of 45-bit words. Each half of the storage array
consists of four ranks of 64K x 1 bit dynamic memory elements and
associated data buffers and multiplexers. The 45-bit word contains 32
bits of data, 7 bits of SECDED code, 2 reserve bits, and 4 byte breakpoint
bits.

2.2.1.4. The Innut/Outvut Subsystem. An I/O subsystem in a general
purpose computer provides one or more communication paths or channels into
and/or out of the computer. The I/O subsystem for the Nebula brassboard
consists of seven modules. Three modules constitute an I/O channel
controller (IOC). The four other modules provide the hardware necessary
to implement the four channel types specified in the SOW. The IOC is a
microprogrammable processor that interprets channel programs composed of
Nebula I/O controller instructions. These programs move information from
a channel to the computer's memory and vice versa.

2.2.1.4.1. The I/O Channel Controller (IOC). The IOC is composed of
three modules; two for the MP element, and one called the Instruction
Execution module. The MP element shall provide a 32-bit microcommand word
to control the other modules and is described in sections 3.1.2. The
Instruction Execution Module shall contain a 32-bit x 4096 micromemory
used for the control of the Instruction Execution Module.

The Instruction Execution module provides all the hardware needed to
execute up to a maximum of eight I/O channel programs in a time-shared
manner. There is a large (4096 words x 32 bits) register file to hold
channel configuration registers, channel status registers, channel program
status registers, channel program address registers, pointer registers,
etc., for the channel programs. 4096 words of storage support up to eight
sets of 32-bit I/O space registers for Nebula I/O channels. The channel

registers are easily accessible. The Register File is accessed by both
the IOC firmware and by the CPU via the XIO nibble bus.

The module also provides an ALU to be used by the firmware when
interpreting instructions and/or performing memory mapping and
management. The module provides an 8 x 16 bit file to be used as an
accumulator by the different channels. The module also provides the
firmware with valuable internal status and conditions via an event and a
condition system. The IOC communicates with the CPU via the XIO nibble
bus. The final major portion of the hardware on the Instruction Execution
module is the REFORMAT function to convert ISA instruction OP codes into
micromemory addresses.

2.2.1.4.2. 1/O Channel Modules. The memory interface handles all I/0
channel transfers to and from the computer memory. It is also responsible
for all instruction fetches and message transfers needed by the individual
channels. The modules have the hardware necessary to perform these
transfers independent of the IOC. The modules inform the IOC that a
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transfer has completed via the event system. At the completion of a

transfer, the status of the transfer is relayed to the IOC via the

condition system and allows the IOC to read various status registers.

One of the modules provides a serial point-to-point interface and a
parallel point-to-point interface. The other module provides a serial
point-to-point interface along with a 1553B interface. Each module has
the necessary hardware to allow the software to select what interface
shall be assigned to each module. Each module also has the hardware
necessary to make the appropriate internal "modifications" needed to
handle the different interface types.

Each module provides a 4-bit high speed nibble bus to be used to transfer
data between the 1/0 subsystem and the memory subsystem. With its own
high-speed nibble Direct Memory Access (DMA) bus to memory available, and
hardware packing and unpacking 32-bit words, each channel is capable of
over three times the 0.5 megabytes/second aggregate I/O rate required for
the system.

2.2.1.5. Computer Hardware Physical Descrivtion. Descriptions of the
brassboard cabinet, logic modules, I/O connectors, and cables are provided
in the Revised Design Plan for MIL-STD-1862B Brassboard System.

Motherboard Design Avvroach. The Nebula brassboard contains two
motherboard assemblies; one contains and interconnects the CPU and memory
subsystem modules, and the other contains and interconnects the I/O
subsystem modules. Each motherboard consists of a multiwire board with
space for 15 module connectors and wiring for intermodule signals.
Several maintenance module connectors are located on the back of the
motherboard. The maintenance connectors allow a module to be removed from
the front of the motherboard and reinserted in the appropriate maintenance
connector. This feature allows access to module components for scoping
and other maintenance and troubleshooting activities.

2.3. Firmware Desirn AccomDlishments. This section describes the design
and development work accomplished for the brassboard firmware.

The brassboard firmware development involved the design, coding, debug,
and documentation of the following subsystems:

o CPU Emulation
o IOC Emulation

Microprogramming is a design implementation involving the execution of
each software-level instruction by executing a series of microcommands
stored in a control memory. The control memory (micromemory) exists
within the logic structure of the machine. The series of microcommands
forms a microprogram, referred to as the firmware.
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Firmware source code contains the microprogram and the mnemonic
definitions for microcommands. Mnemonic definition at assembly time

provides the flexibility to reflect hardware changes to microcommand
formats and is accomplished by simply changing the firmware source. The

assembler output may be downloaded to the CCP and saved on the CCP disk

for loading into the brassboard micromemory.

Firmware segments can be loaded from the CCP disk. Segment No. 1 is
loaded by a deadstart program and contains the firmware loader, a firmware

debugging package, and basic self-test firmware. Segments No. 2 through
N-1 contain firmware tests for those functions required to execute
software test modules. The last segment loaded contains the MIL-STD-1862B

ISA emulator and the firmware used for the software CCP interface.
Additional flexibility is gained by providing the capability to change the
microprogram after it is loaded into the brassboard micromemory.

Firmware for the IOC is defined, assembled, downloaded, and loaded into
the IOC micromemory using the same procedure and support software used for
the CPU firmware.

The brassboard firmware consists of a series of independent, functionally
cohesive modules that interface with each other through a control
structure. Within the control structure, each of the modules provides a
specific function. For example, there is a functionally cohesive module
for each software instruction, each event (microprogram interrupt), each
CCP function, etc. This firmware design approach allows the flexibility
to change the function of a software instruction, event, or other
functions by changing a single firmware module.

The power up sequence includes testing the hardware using a sequence of
firmware tests called the Initial Program Load (IPL) Test Firmware (ITF).

2.3.1. CPU Emulation. The CPU firmware is initialized during the
firmware startup sequence and enters the idle loop to wait for an active
event to occur. The CPU firmware consists of Instruction Fetch (IF),
Instruction Reformat (IR), and Instruction Processor (IP).

Each software instruction execution begins when the IF obtains an
instruction from memory and decodes it into individual characters or
tokens, such as OP code and operand specifiers. These tokens are then
packed into the IR FIFO stack.

The IR takes the instruction tokens from the IR FIFO and translates them
into a series of firmware vectors and literal values. These vectors are
IP firmware addresses that point to the various IF firmware routines

needed to fetch operands, perform the operation, and store the result.
The literal values can be sign/zero extended literals from the instruction
stream, displacements, or the instruction stream virtual address.
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The IP fetches each operand by using the appropriate firmware routine.
The operation is performed using a firmware routine unique for each
instruction. After the results are stored and the instruction process is
completed, the firmware cycles to begin processing the next instruction.

For a detailed example of an instruction execution, refer to the Nebula
Brassboard Firmware Program Maintenance Manual.

2.3.2. IOC Emulation. The IOP firmware consists of various event
routines used to accomplish the I/O functions. I/O instructions are
initiated by an event from the appropriate I/O channel. The firmware then
reads the I/O instruction and uses the hardware format to obtain a
firmware address vector. The vector points to an instruction processing
routine which executes the instruction and returns to wait for the next
event.

The IOC also has event routines to process unique I/O channel functions
and error conditions.

Software visible I/O information is transferred to the CCP via the
maintenance interface. Firmware event routines are used to process the
requests from the CCP.

2.4. Software Design AccomDlishments. The support software required for
the Nebula brassboard computer system emulating the Nebula instruction set
architecture (ISA) consists of the following:

1) Nebula Support Software (GFE)
o Nebula Assembler
o Nebula Linker

2) Microcode Support Software
o Microcode Assembler
o Microcode Linker
o Microcode Simulator

3) An Executive to control execution of programs on the brassboard
system.

4) CCP Software

All of the above programs, except the executive, execute on the host
software development facility (HSDF). The HSDF is a VAX 11/780 running
the VMS operating system at RADC. All software developed or modified is
in a higher order language (HOL), FORTRAN 77 or Instruction Set Processor
Specification (ISPS), with the exception of the executive, which executes
on the brassboard and must be written in the IFebula ISA.
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2.4.1. Nebula Sumport Software. The Nebula support software consists of
a GFE macro-assembler and a linker program written in FORTRAN. This
system is used to assemble and link Nebula ISA programs.

2.4.2. Microcode Suport Software. The Nebula brassboard computer is a
microprogrammed machine, and, therefore, requires software running on an
HSDF to support the microcode development. The support software consists
of a microcode assembler to translate ASCII source to linkable object
modules and a microcode linker to link these separately assembled object
modules into an executable form for loading micromemory. A microcode
simulator is required by contract to functionally simulate the linked
microcommands and produce reports to assist in debugging microcode
sequences.

2.4.2.1. Microcode Assembler. The microcode assembler, hereafter called
UASSM, developed for the Nebula brassboard computer produces relocatable
object modules to be linked later by the microcode linker, to produce a
microcommand load module. UASSM is an enhancement of an existing
assembler, written in FORTRAN, to accomplish the above.

The enhancements to the current assembler to develop UASSM include the
following:

o Expand the size of the microcommand assembled from 48 bits to 96

bits.

o Previously, the assembler required the user to define the

mnemonics used during coding, what their meaning is, and how they

fit into the microcommand. The assembler built tables from this
input each time it was invoked. The capability has been provided

to dump these tables to a file once they have been created, and to

use this file as input at assembly time until directed to recreate

the tables by the user.

o Delete the automatic memory allocation from pass 1. This feature

did not disappear, but was moved as a feature to the linker.

o Produce output consisting of relocatable object modules and a

relocatable listing with errors flagged. The object modules
produced by UASSM get quite lengthy compared to the source input.
This feature is necessary to provide the information required by
the linker for automatic memory allocation and the linking of
separately assembled microcommand modules.

2.4.2.2. Microcommand Linker Editor. The microcommand link editor,
hereafter called ULINK, accepts relocatable object modules produced by
UASSM as input. These object modules accepted by ULINK are assigned space
in micromemory and linked together to produce an absolute microcommand
load module. ULINK was developed and implemented in FORTRAN.
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The nature of the microcode dictates that the modules accepted by ULINK be

a combination of relocatable, partially relocatable, and/or fixed

sequences of microcommands. ULINK may be thought of as a generic linker

with additional capabilities. The additional capabilities consist of:

1) Automatic memory allocation, which assigns memory to the fixed

sequences first, then the partially relocatable sequences next,

and, lastly, the run anywhere sequences based on longest

sequence to smallest sequence of microcommands.

2) Producing an ORG TABLE. This table contains information such
that when relinking and adding or deleting or changing object

modules, the unchanged modules can be assigned to the same
micromemory addresses they had from the previous linker run.

This table is also used to deallocate an object module from
memory assignment (when it is the module that changed). This
file only exists after an initial linker run and is used and

regenerated on subsequent runs.

3) Accepting the relocatable listings from the assembler as
additional input, and, at link time, generate new listings with
the microcommands absolute address replacing the relocatable

address. Only those listings input are regenerated.

4) Accepting a command language to direct the linking process with
respect to what the user wishes to accomplish. One command is
accepted per line. Commands may be typed in directly from the
user's terminal or can be retrieved from a command file.

As in most linkers, ULINK produces a number of reports, in addition to
absolute listings, such as a micromemory allocation map and a
cross-reference listing.

2.4.2.3. Microcommand Simulator. The microcommand simulator, hereafter
called USIM, is a functional simulation of the real machine. USIM is
coded in the ISPS hardware description language. The use of ISPS makes
the implementation, modification, and maintenance of USIM a much simpler
task. The ISPS language and run-time system support a wide range of
applications, and its development was supported by the Defense Advanced
Research Projects Laboratory. ISPS allows the user to describe the
interfaces (external structure) and the behavior of hardware units (called
entities). The interface describes the number and types of carriers used

to store and transmit information between units. The behavioral aspects
of the unit are described by procedures which specify the sequence of
control and data operations in the target machine. The ISPS language
favors the behavioral aspects of a machine over the structural aspects by
abstracting information.
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2.4.3. Executive. The executive (hereafter referred to as the EXEC) is
a single tasking executive. The source language for EXEC is the Nebula
assembly language. A User's Manual and Programmer's Maintenance Manual
have been generated for EXEC.

The user structures an application program into one or more tasks. A task
is an executable entity that performs a particular function required in
the application program. The application program and hence the tasks run
under the control of EXEC. The major functional sections of EXEC are
listed below.

o Task Management

o Memory Management

o I/O Management

o Interrupt Management

o Error Management

o Initialization

2.4.4. CCP Software. The CCP software operates the CCP which, in turn,
controls and monitors the Nebula computer. The CCP software also provides
a data transfer mechanism between the brassboard and the HSDF, and
provides tools for firmware and software development on the brassboard.
The CCP function is implemented by a series of software programs resident
on a commercial microcomputer. These programs are written in C and take
full advantage of the Unix V operating system based on the microcomputer.

The CCP software consists of two main programs, NEBCCP and Kermit. The
NEBCCP program monitors and controls the Nebula brassboard. It consists
of routines which perform the various command and display functions of the
program. The NEBCCP program is described in the Final Computer Control
Panel (CCP) Software User's Manual for MIL-STD-1862B Brassboard, document
number CRDBMOO1. Kermit is a standard computer interface package, used
here as the interface between the CCP and the HSDF. A C language
implementation of Kermit was used, and was modified to meet the particular
constraints of this system. Kermit is described in the Kermit (VAXLNK)
Reference Manual.

2.5. T . This subsection describes the test software. The
following test software was developed:

o Performance Test

o System Function Test (SFT)
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2.5.1. Performance Test. The performance (benchmark) test developed by
the Military Computer Family (MCF) program was used to measure the
instruction execution rate of the brassboard. This test implements the
instruction mix specified in Appendix 1 of Annex 1 of the Statement of
Work (SOW). The performance test included one exception to the
instruction mix as specified in Appendix 1. Because it was determined to
be feasible and practical, the test included a single execution of each of
the instructions listed as unused. The WINDOW, EXCEPT, and RAISE
instructions were implemented in the performance test. The interval
timers available to the software were used to measure instruction
execution rate. The source language was the Nebula assembly language.
The test was loaded and controlled via the CCP.

The performance test was run three ways: without memory mapping and
without I/O the system executed 441 KIPS; with memory mapping and without
I/O the system executed 438 KIPS; with I/O the system executed
approximately 400 KIPS.

2.5.2. System Function Test. A system function test (SFT) was developed
to verify proper operation of the brassboard. The SFT included several
individual programs. The major functional tests included were CPU,
memory, I/O controller, 1553B I/O channel, parallel I/O channel, and
serial I/O channel. All of these tests were individually linked and run
under the control of an executive. Testing of the I/O channels was
accomplished via wraparound.

The validation tests developed by Tartan Labs provided the bulk of the
testing to be included in the SFT. The GFE validation software verified
the following ISA characteristics:

o Variable length instructions and operands

o Addressing modes

o Control structure

o Data types

o 1/0

o Exception handlers

Validation tests for the firmware implementation of MIL-STD-1862B were
included as part of the CPU/IOC programs.

2.5.3. Accevtance Test. Successful completion of the acceptance test
at the customer site constituted acceptance of the entire Nebula ISA
brassboard system including hardware, firmware, and software. The same
acceptance test was used for both the preliminary and final acceptance.
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SECTION 3. CONCLUSIONS

3.1. Hardware. The Nebula hardware implementation, architecture
concepts, and performance parameters closely match the Revised Design
Plan. Due to the nature and philosophy of the Nebula ISA, the brassboard
implementation is somewhat hardware intensive. The approach is to
eventually take advantage of high gate counts available in VLSI integrated
circuits to provide a processor with features to efficiently execute Ada
software. The brassboard hardware design makes extensive use of cache
memories, microprogrammed hardware architectures, and hardware "state
machine" processors based on FPLAs (field programmable logic arrays), PROM
memories, and RAM memories.

Cache memories are used in the memory management section to gain
performance in the logical to physical address mapping process. Cache
memories are also used in the main arithmetic section, to provide fast
access to general registers and parameters associated with the current
procedure context.

Microprogramming is used to control the execution of software instructions
by the CPU hardware modules. This technique provides flexibility, and
also utilizes high density memory devices to contain the complex control
sequences involved in instruction execution. The IOC also utilizes
microprogram control.

Hardware state machines are essentially small-scale microprogrammed
controllers. They are used in the memory control section to provide the
DRAM (dynamic random access memory) control signal sequences, and to
implement the complex memory access commands. These commands involve
variable-length data accesses which may begin on any byte address. Thus,
a data access may cross 32-bit main memory word boundaries. Two hardware
state machines are used in the instruction fetch and reformat section.
These machines control the instruction fetch from main memory,
pre-processing of the instruction OF code and operand specifier fields,
and conversion of the instructions to information packets executable by
the firmware. Finally, a state machine is used in the memory management
section to control the memory map table search when the required mapping
information is not in the associated cache memory.

The resulting hardware design has the potential to be implemented using
VLSI technology. This implementation would consist of several VLSI parts,
along with memory parts for micromemory, cache memory, state machine
control memory, and main memory.

The hardware utilizes a fully synchronous, single clock-per-cycle timing
mechanism. A 75 nanosecond cycle time is achieved by use of Fairchild
FAST TTL circuits, and by choosing a three-stage pipeline in the main
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microprogram control structure. (The three stages include microcommand
addressing, access, and execution.) The 13.33 MHz clock signal is
distributed to each module in the system, including processor, memory, and
10 sections, in a manner which minimizes clock skew.

The hardware performance, combined with the firmware emulator, achieves a
machine performance of approximately 400 KIPS, compared to the required
250 KIPS. The synchronous timing approach would be compatible with a
higher performance future VLSI implementation.

3.2. Firmware. The Nebula firmware implementation and structure closely
match the Revised Design Plan. Due to the complexity of the Nebula ISA,
the firmware needed to implement the ISA is also complex. The general
organization of the firmware is a sequence of micromemory overlays. The
overlays include a loader overlay, several test overlays, and the emulator
overlay.

The use of the firmware overlays to accomplish firmware testing of the
various hardware functions allows the hardware to be set up in test modes
not possible with the ISA emulator in micromemory. These firmware test
modes reduce the test generation times and improve test coverage.

The CPU ISA emulator is organized into the three levels of firmware: the
instruction fetch (IF), the instruction reformat (IR), and the instruction
execution (IE) processor. The use of three levels of firmware is an
effective way to reduce the complexity of the firmware and increase
performance by pipeline processing. Additional performance is obtained by
the use of a wide microcommand (96 bits) in the IE processor. The use of
structured firmware modules in a control structure reduces the complexity
of individual firmware functions to a manageable level.

The IOC event (firmware interrupt) driven processor allows the IOC
functions to be independently structured firmware modules. Each module's
complexity is easily reduced to manageable levels.

Firmware mnemonic definition at assembly time and under control of the
senior firmware design engineer allows rapid changing of microcommand
mnemonic definitions. The rapid response to changing hardware also allows
the microcommand mnemonic definitions to become the communication tool to
define hardware functions. The resulting up-to-date hardware definitions
significantly reduce firmware coding and hardware design time.

The mnemonic style used is free-field arithmetic expression. An example
of this style is A-B+C+1 (add the content of register B to the content of
register C plus one and place the result into register A). This mnemonic
style is easy to read and understand by anyone picking up a firmware
listing.
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The firmware is assembled as small modules and links with the existing
firmware or as a complete package if required. Multiple use of
microcommand bits for control and jump fields is facilitated by
micromemory address matching and allocation functions of the firmware
linker. The linker also takes care of deallocation of removed or changed
firaware modules. Complete linking of all modules is only required when
matching memory addresses are no longer available.

3.3. S. The microcommand support software developed for assembly
of the firmware proved to be quite valuable. The assembler allows for
definition of mnemonics at runtime; this allows the firmware programmers
to change the mnemonics without changing the assembler. The linker
optimizes micromemory usage by its memory allocation scheme that assigns
memory to the fixed locations first, then the partially relocatable
sequences, and lastly, the wrun anywhere" sequences based on longest
sequence to smallest sequence of microcom-ands. The absolute listings
that the linker outputs are valuable in checkout. The flexibility of the
assembler and linker allows the firmware programmer to generate patches in
the lab; this allows for much better checkout times since there is no wait
before new firmware could be tested.

The ISPS simulator matches the hardware, and was used to verify hardware
design of individual modules. As a system simulator though, it did not
meet the original design expectations. Due to the complexity of the
hardware, the simulator became large and cumbersome often requiring over 8
hours to initialize the system. This makes simulation of the majority of
the functional firmware impractical compared to running on the actual
hardware.

After simulation using the government furnished software simulator, the
Executive ran on the hardware with only a few minor modifications. The
test software provided by the government is useful for debugging the
firmware.

Midway through the development process it was discovered that Kermit, a
standard file transfer protocol, fit the needs that were to be provided by
a transfer utility we were going to develop. Rather than develop a new
utility, it was decided to use Kermit; this provided a download capability
from a greater number of systems.
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SECTION 4. RECOMMENDATIONS

Recommendations dealing with detailed implementation dependencies are
included in the Revised Design Plan addendum and Table 2-1. Specific
items not addressed by the addendum are described in this section.

4.1. aina. For a future, higher performance VLSI implementation,
two additional changes should be considered. First, a main memory cache
structure would be useful for enhanced performance. This cache memory
would be at the expense of additional parts, however, and may be
complicated due to the byte addressing nature of the ISA. Second, the
size (in terms of bits per word) of the existing micromemory and memory
management cache memory should be reduced if the performance impact is not
too great. This would reduce the number of VLSI chip pins required to
interface to these memories, and may reduce the number of required VLSI
parts.

4.2. Firmware. The firmware design, mnemonic definitions, extensive
in-code documentation, and the use of the UASSM and its linker produced a
modular and supportable firmware package. The firmware development tools
have applicability to future developments.

The hardware simulator was not available until late in the project,
therefore reducing checkout efficiency and allowing errors to remain
undetected until the hardware design was difficult to change. The
simulator would have been more beneficial if it would have been available
in advance of the hardware.

Small performance improvements may be obtained by the optimization of some
firmware modules.

Significant performance improvements can be accomplished by the redesign
of the instruction reformat (IR). The approach would involve moving the
operand fetch, operand store, and branch instruction processing to the IR.

4.3. Software. More software diagnostics should have been added to the
set provided by Tartan Labs that would more fully test addressing modes of
instructions.

The computer generated arithmetic tests provided by Tartan Labs would have
been more helpful if the computer generated addresses and offsets had been
in hexadecimal rather than in decimal. It became difficult to calculate
the complex addressing modes using 10-digit decimal numbers.

The CCP software should have been completed much earlier in the project to
facilitate development of the ISA.
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82-4-27.

o Amendment No. 1 to Revised Statement of Work, dated 82-6-18.

o Annexes to Revised Statement of Work.

o Annex 1 - Revised Development Specification for Nebula Computer

o Annex 2 - Revised Development Specification for Computer Control
Panel

o Annex 3 - Revised Development Specification for Serial
Point-to-Point Interface

o Annex 4 - Revised Development Specification for Parallel Digital

Point-to-Point Interface

o Control Data MIL-STD-1862A Brassboard Technical Proposal,
DG82GO01082, dated June 1982.

o Contract for MIL-STD-1862A Brassboard, F30602-82-C-0175.

o Revised Contract Data Requirements List, dated 82-4-27 and
associated CDRL backup sheets.

o Contract Modifications for Engineering Change, Spare Parts and
Software License.

o UniPlus+7T System V Unix Operating System Manuals
- User's Manual, sections 1-6
- Administrator's Manual
- Administrator's Guide
- User's Guide
- Document Processing Guide
- Support Tools
- Programming Guide

o Heurikon Introduction to Unix
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APPENDIX C. GLOSSARY OF TERMS

ALU Arithmetic Logic Unit
BIT Built-In Test (in MI module)
C Programaing Language used for the CCP software
CA Context Cache Arithmetic Module
CCP Computer Control Panel
CDRL Contract Data Requirements List
CPU Central Processing Unit
DIP Dual In-line Packages

DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EA Extended Arithmetic Module
ECAD Electrical Computer Aided Design
EXEC Executive
FAST Fairchild Advanced Schottky TTL
FIFO First-in, First-out
FPLA Field-Programmable Logic Array
GFE Government-Furnished Equipment
HOL High Order Language
HSDF Host Software Development Facility (VAX-ll/780)
IE Instruction Execution Module
IF Instruction Fetch/Reformat Module
I/0 Input/Output
IOC I/O Controller; I/O Peripheral Controller mode (for PPP)
IP Instruction Processor
IPL Initial Program Load
IR Instruction Reformat
ISA Instruction Set Architecture
ISPS Instruction Set Processor Specification
ITF IPL Test Firmware
KIPS Thousands of Instructions Per Second
LSB Least Significant Bits
MCF Military Computer Family
MHz MegaHertz
MI Maintenance Interface Module (part of MP Element)
MP Microprogrammable Processor element (has one each MI and US)
MSI Medium-Scale Integration
RADC Rome Air Development Center
RAM Random-Access Memory
ROM Read-Only Memory
SECDED Single Error Correction/Double Error Detection
SFT System Function Test
SOw Statement of Work
SSI Small-Scale Integration
TTL Transistor-Transistor Logic
UASSM Microcode Assembler

UCMD 32-bit Microcommand
ULINK Microcommand Link Editor

UNIX Operating System that runs on the CCP

US Microsequencer Module (part of NP element)
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USIM Microco mand Simulator
VLSI Very Large Scale Integrated Circuit
1553B Time-multiplexed data port

A b s is an item used for experimentation or tests to demonstrate
the technical feasibility of a design and to determine its capability of
achieving performance requirements.

An emulator is that part of the firmware for a computer which controls the
hardware in a manner that allows execution of a specific ISA.

Firmware consists of two types of microcode: volatile and non-volatile.
Volatile code is downloaded from disk storage into random access memory
each time the system is initialized. Non-volatile code is burned into
programmable read-only chips during fabrication and is not subject to
dynamic alteration. The latter, together with burned gate arrays and
other logic devices, may be thought of as hardware state sequencers; but
the burned code must first be assembled, just as is the volatile code.
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