MIL-STD-18628B

3 January 1983
SUPERSEDING

. MIL-STD-1862A
2 November 1981

MILITARY STANDARD

Nebula Instruction Set Architecture

FSCIPSC

Table of Contents

1. SCOPE AND PURPOSE
1.1. Scope
1.2. Purpose

2. REFERENCED DOCUMENTS
2.1. Issue of document

3. DEFINITIONS
3.1. Assembler Notation Conventions

4, OVERVIEW

4.1. Memory Organization
4.2, Instruction Format
4.3, Control Structure
4.4, Addressing

4.5, Data Types

5. OPERAND ADDRESSING MODES
5.1. Maximum Accessible Register
5.2, Compound Modes

5.3. Address Operands

5.4, Register Mode

5.5. Short Literal Mode

5.6. Literal Mode

5.7. Memory Addressing Modes
8.7.1. Indirect Register Mode -
5.7.2. Register Indexed Modes
5.7.3. Absolute Mode

5.8. Parameter Addressing Modes
5.8.1. Short Parameter Mode
5.8.2. Extended Parameter Maode
5.8.3. General Parameter Mode
5.9. Unscaled Index Made

5.10. Scaled Index Mode

5,11. Reserved Specifiers

5.12. Undefined Operand Sizes

6. PROCESSOR STATUS WORD
6.1. Kernel/Task Mode

6.2. Last Mcde

6.3. Reserved Bits

6.4. Priority

6.5. Carry Condition Code

6.6. Truncate Condition Code

NN

L]

OO o,

6.7. Negative Condition Code

6.8. Zero Condition Code

6.9. Debugging Control

6.10. Privilege

6.11. Base of Context

6.12. Supervisor Mode

6.13. Up/Down Level Exception Propagation (UDLE)
6.14. Enable Arithmetic Error

6.15. Maxreg Field

6,16, Number of Parameters

7. AUXILIARY STATUS REGISTER
7.1. Soft Memory Error Enable

7.2, Reserved Bits

7.3. Floating Point Mode Control
7.3.1. Infinity Control

7.3.2, Exception Event and Mask Bits
7.3.3. Rounding Control

8. PROCEDURE INTERFACE

8.1, The Context Stacks

8.1.1. Context Pointers

8.1.2. Structure of Context Stacks

8.1.3. Cacheing of the Context Stack
8.1.4. Changing of Context Stack Pointers
8.1.5. Alignment of Context Pointers

8.2, Procedure Descriptor ,

8.2.1. Fixed/Variable Number of Parameters
8.2,.2, Reserved Bit

8.2.3. Exception Propagation Control
8.2.4. Arithmetic Error Control

8.2.5. Available Registers

8.3. Procedure Invocation

8.3.1. Determination of a New PSW

8.3.2. Register Set Allocation

8.3.3. Initialization of Exception Handler
8.3.4. Initialization of Parameter List

8.4, Parameter Lists

8.4.1. Parameter Specification

8.4.2. Parameter Access

8.4.3. Example of Parameter Linkage
8.4.4. Mechanism of Parameter Addressing
8.5. Vectored Calls: SVC and OPEX

8.6. Vector Format

8.7. Return from Procedures

9. EXCEPTIONS

9.1. Procedure Exception Handler

9.2, D .inition of an Exception Handler
9.3. Raising an Exception

9.4, Exception Handling
9.5. Supervisor Exception Handler

~ 10. DEBUGGING FACILITIES
10.1. Program Tracing

11. INTERRUPTS AND TRAPS
11.1. Interrupt Priority

11.2. 170 Interrupts

11.3. Software Interrupt Requests
11.4. Power Failure Interrupt
11.5. Power Restore Interrupt
11.6. Memory System Error Traps
11.6.1. Hard Memory Errors
11.6.2. Soft Memory Errors

11.7. Privileged Instruction Trap
11.8. Memory Management Traps
11.8.1. Instruction Execution
11.8.2. Task Context Stack
11.8.3. Kernel Context Stack
11.9. Reset and IPL

11.10. Built In Test Traps

11.11. Simultaneous Events

12, MEMORY MANAGEMENT SYSTEM
12.1. Virtual Address Space

12.2, Mapping of Virtual Addresses
12.2.1. Map Pointer Registers

12.2.2, Memory Map Structure

12.2,3. Segment Association

12.2.4. Relocation of Virtual Addresses
12.2.5. Access Protection

12.2.5.1. Self-Modifying Code

12.2.6. Crossing Segment Boundaries
12.2.7. Protection of the Supervisor
12.3. Implementation Considerations
12.3.1. Cacheing of Memory Maps
12.3.2. Aliasing of Physical Addresses
12.4, Memory Management Traps

12.5. 170 Space Selection

12.6. Subseting of Memory Management

13.1/0 CONTROLLERS

13.1. Channel Configuration Registers
13.2. I0C Programs

13.2.1. Program Counter

13.2.2. Message Pointer Register
13.2.3. Accumulator

13.2.4, Channel Status

13.2.5. Channel Program Status

.
jii

QR

88888888 88

EEEE553A25522R88

888

iv

13.3. Virtual Addressing

13.3.1. Segment Specifiers

13.4. Physical Addressing

13.5. Instruction Execution

13.6. Operand Accessing

13.7. 10C Interrupts

13.7.1. 10C Error Interrupts

13.8. 10C Instructions

13.8.1. IOC Instruction Descriptions

13.8.2. Transfer Instructions

13.8.3. Control Instructions

13.8.4. Channel Specific Instructions

13.8.4.1. Parallel Point to Point Interface

13.8.4.2, Serial Point to Point Interface

13.8.4.3. MIL-STD- 1553 Serial Interface ,
13.8.4.3.1. MIL-STD-1553 RT Mode Specific {instructions
13.8.4.3.2, MiL-STD- 1553 BC Mode Specific Instructions
13.9. MIL-STD-1553B Remote Terminal Mode Operation
13.9.1. Message Pointer Register

13.9.2. Status Word

13.9.3. Vector Word

13.9.4. Transfer Commands

13.9.5. Mode Commands

13.9.6. RT Mode Interrupts

13.10. Interrupt Vector Assignments

13.11. 10C Control Register Assignments -

14, TIMER SUPPORT
14.1. Time of Day
14.2. interval Timers

15, ASSIGNED PHYSICAL ADDRESSES
15.1. Memory Space Assignments
156.2. 1/0 Space Assignments

16. CONCEPTUAL MODEL OF INSTRUCTION EXECUTION

16.1. The Serial Model

-16.2, Effects of Parallelism
16.3. Instruction Fetch
16.4. Operand Address Calculation
16.5, Operand Fetch
16.8. Instruction Execution
16.7. Operand Storage
16.8. Memory Accesses
16.9. Interruptible Instructions
16.10. Serialization
16.11. 10OC Serialization

17. INSTRUCTION DESCRIPTIONS
17.1. General Information

52

54

54

55

65
59
62
62

€4

66
€6

67
67

69

70
70
70

71
71
72

73

73

73
75
76
76
76
76
76
77

77

78
78

17.2. Operands

17.2.1. Signed Integers
17.2.2. Unsigned Integers
17.2.3. Logicals

17.2.4. Floating Point

17.2.5. Address Operands
17.3. Symbols and Functions

18. INTEGER ARITHMETIC
18.1. Integer Data Types .
18.2. Integer Arithmetic Instructions

19, LOGICAL INSTRUCTIONS

20, SHIFT AND ROTATE INSTRUCTIONS
21. MOVE AND CLEAR INSTRUCTIONS

22, COMPARE AND TEST INSTRUCTIONS
23, CONTROL INSTRUCTIONS

24. PROCEDURE CALL AND RETURN INSTRUCTIONS
25, TASK CONTROL INSTRUCTIONS

26. EXCEPTION HANDLING INSTRUCTIONS
27. STRING INSTRUCTIONS

28. BIT FIELD INSTRUCTIONS

29. MISCELLANEOUS INSTRUCTIONS

30. FLOATING-POINT ARITHMETIC
30.1. Floating-Point Data Classes
30.2. Floating-Point Formats
30.3. Floating-Point Operands

' 30.4. Floating-Point Exceptions
80.4.1. Invalid.Operation
30.4.2. Divide.By.Zero
30.4.3. Floating.Overflow
30.4.4. Floating.Underflow
80.4.5. Floating:Inexact
30.5. Rounding
30.6. Infinity Arithmetic
30.7. Floating-Point Instructions

31. OPCODE ALLOCATION
31.1. Unimplemented Opcodes

32. NOTES

78
78
79
79
79
79
79

80"
80
81

95

- 101

105°
109
121
126
181
135
140

145

155

165
165
156
156
167°
168 .
158
168
158
158 °
159

169

177

177

178

vi

\

32.1, Prime ltem Specification considerations 178
32.2, Implementation dependencies) 179

vil

List of Figures

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1;
Figure 6-1:
Figure 7-1:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 8-9:
Figure 9-1:
Figure 9-2:
Figure 12-1:
Figure 12-2:
Figure 12-3:
Figure 12-4;
Figure 13-1:
Figure 13-2:
Figure 13-3:
Figure 13-4:
Figure 14-1:
Figure 16-1:
Figure 30-1:
Figure 30-2:
Figure 30-3:

Instruction Format 5
Integer Data Types 6
Floating Point Data Types 6
Operand Specifiers 8
Processor Status Word 19
Auxiliary Status Register 21
Stacked Procedure Contexts 23
Procedure Descriptor 24
Example of a Call Context 28
Normal Operand Processing 29
Parameter List Operand Processing 30
Parameter Access 30
SVC and OPEX Vector Registers 3N
Vectored Call Address Calculation 32
Vector Format 33
States of an Exception Handler - 34
Transfer to an Exception Handler 36
Map Data Structure 43
Memory Map Pointer Registers 45
Map Entry Format 45
Address Relocation . : 46
Channel Configuration Register 50
Channel Status Register ‘ 51
Channel Program Status : 52
IQC Virtual Addressing 53
Timer Control Register 70
Conceptual model of instruction execution 74
Floating Point Number Representation : 156
Floating Point Control Bits in ASR 1857
The Compare Operation 171

MIL-STD-18628B
3 January 1983

1. Scope and Purpose

1.1.Scope. This standard defines the Nebula Instruction Set Architecture. The instruction set
architecture includes all information required by a programmer in order to write any time independent
program that will execute on computers conforming to this standard. This standard does not define -
any specific implementation details of a computer.

1.2. Purpose. The purpose of this document is to define the Nebula Architecture, independent of
any specific implementation or vendor, with sufficient precision to permit independent
implementations of this architecture that execute identical programs in the identical manner.

MIL-STD-1862B T
3 January 1983 : -

2. Referenced Documents

I
2.1.Issue of document. The following document, of the issue in effect on date of invitation for bid
or request for proposal, forms a part of the standard to the extent specified herein. In the event of
conflict between the documents referenced herein and the contents of this standard, the contents of
this standard shall be considered a superseding requirement.

Standard

Military . . -
MIL-STD-1553 - Aircraft Internal Time Division Command/Response Muitiplex Data Bus

MIL-STD-18628
3 January 1983

3. Definitions

- The following terms are used in this document:

Cacheing

The term cacheing is used to refer to a variety of implementation techniques for
enhancing performance by maintaining the active copy of some quantity in a
place other than its assigned storage. The technique invoked may be as simple as
the loading and storing of a register (file) or as complex as an assocuatxve memory
scheme.

implementation Dependent

Interruptible

Reserved

Undefined

Unpredictable

The behavior of an action or feature described as lmplementatuon dependent is
not defined by this document. The actual behavior seen by the programmer is
dependent on the hardware he is using. This behavior will differ between
machines.

An instruction designated as interruptible shall be restartable from the point of
interruption.

The use of reserved as a madifier indicates that the entity described is set aside
for future definition. Unless otherwise specified, responsibility for definition of a
reserved entity lies with the Nebula Control Board (NCB). Any assumptions about
the behavior of such entities by anyone other than those responsible for the
definition of the entity is forbidden.

Reserved (value) A reserved value is a bit pattern that, when written into a
particular bit field, will cause unpredictabie results. The use of
such values by the software is forbidden.

Reserved (bit field) A reserved bit field is a sequence of bits that may produce a
- Specification.Error exception or unpredictable actions if set:
to a value other than zero. Reserved bits or reserved bit fields

yield undefined results if read.

An undefined result may produce arbitrary bit patterns in all fields that it was
specified as modifying.

An unpredictable action may produce any change in the state of the machine that
is consistent with the rights of the program that caused it. For example, an
unpredictable operation performed by a user task may destroy any of the
locations it can access normally, but shall not destroy any state protected by the
protection mechanisms. This restriction may be breached by a supervisor that
gives a user access to critical memory or functions. For this reason, access to the
CPU registers in the 1/0 space should be controlled by means of the memory
management system. !t should be noted that while the programmer cannot rely on
any properties of an unpredictable action, it is considered desirable to make such
actions as innocuous as is practical.

MIL-STD-18628B
3 January 1983

3.1. Assembler Notation Conventions. The notation used in example instructions in this
document is a subset of the Nebula assembly language. A synopsis of the notation used is included
below.

Types

Register numbers and parameter numbers are distinguished by prefix type specifiers. A number
preceded by a % character is interpreted as a register number; a number preceded by a ? Is
interpreted as a parameter number. Examples:

%4 iregister 4
73 iparameter 3

Instruction Operands
Instruction operands are sbecified as a sequence of mode specifiers separated by commas. The

syntax used to specify each mode is described below. Words enclosed in {} describe the contents of
the field; the {} is not part of the assembiler notation.

Syntax Example Addressing Mode
%{number} %3 Register

{value} ' #52 Short Literal or Literal
@%{number} @%4 Indirect Register
{index}(%{number}) 16(%2) Register Indexed

@ ({address}) @(64) Absolute Address

?{number} 24 Short or Extended Parameter
A{simple mode}) %4) General Parameter
{base}({index}) @%3(%4) ‘Unscaled Index
‘{base}[{index}] @%3[%4] Scaled Index

Size Specifiers

Operands that address memory must also select the size of the data item referenced. Sizes are
specified by following the mode specifier by a postfix size specifier. These specifiers are listed below:

+B Byte

tH Halfword

W Word

D Doeble Word

MIL-STD-1862B
3 January 1983

4. Overview

The Nebula architecture is a 32 bit general register architecture. Some of the characteristics of the
architecture are:

¢ Variable length instructions with variable numbers of operands.

o_Epricit addressing of all instruction operands.

‘e Multiple addressing modes for register, literal, memory and parameter access.
o Procedure based control structure with a local register set for each procedure.
e Support for several data types and representation lengths.

o Memory mapped /0 control.

e Vectored Interrupts and Exceptions.

" 4.1. Memory Organizatign. Main memory is byte addressable. The architecture provides for a
virtual address space of 2% g.pit bytes. Bits are numbered from left to right; memory words are
addressed by the address of their most significant byte with the following address locations
(increasing addresses) containing the less significant bytes. Multi-byte data (halfwords, words,
doublewords) may be aligned on arbitrary byte boundaries, aithough performance improvements may
be expected with aligned data. The first 22° bytes of the physical address space are called 170 space
These addresses are used to access device and channel control registers.

4.2, lnstruction Format. lnstruct1ons are specified by a one byte opcode followed either by a list
of operand specifiers or by a signed displacement. Each of these operand specifiers allows fully
general addressing of the operand. The number of operand specifiers used by an instruction is
determined solely by.the nature of the operation it performs. No arbitrary restrictions are placed on
the number of operands an instruction can address.

OPCODE OPERAND ;\ " OPERAND A

Figure 4-1: Instruction Format

4.3. Control Structure. The architecture provides a high level procedure based control structure.

Procedures may be invoked by various types of calls, interrupts, traps, or as independent tasks. - The

procedure mechanism automatically provides for the passing of parameters and the maintenance of

control linkages. Each procedure is provided with its own register set of up to 15 general registers for

local use. The protection provided by the procedure structure allows privileged code to commumcate
. with non-privileged code in a meaningful way.

MIL.STD-1862B
3 January 1983

4.4. Addressing. Addresses are calculated using 32-bit 2's complement arithmetic. Overflow in
these calculations is ignored. Instructions can specify addresses using short displacements from
registers or the instruction address. For address calculations, these short displacements are sign or
zero extended as specified in the appropriate sections of the standard.

4.5. Data Types. The architecture provides support for integer, logical, and floating data types with
muitiple size representations for each. Integers are fully supported in 8, 16, and 32-bit lengths and
some extended precision support is provided for 64-bit lengths. Integers are represented in 2's
complement notation.

(720 (=)

15

D le

31

Nl

a1

N lo

32 63
Figure 4-2: Integer Data Types
Logical qﬁantities are supported in 1, 8, 16, 32, and 64-bit lengths. These data types may be used
Interchangeably as unsigned integers and bit patterns. The ability to access signed and unsigned bit
‘fields is also provided. . : ' '

Floating point numbers are provided in singte (32-bit) and double (64-bit) length representations.

01 89 : 31

5| Exp FRACTION

01 11 _12 - 63
| EXP FRACTION

Figure 4-3: Fioating Point Data Types

Conversion between integer and floating peint representations is provided. Conversion between
different lengths is provided implicitly; no conversion instructions are necessary.

MIL-STD-18628
3 January 1983

5. Operand Addressing Modes

Operands are identified by the instructions through the decoding of multi-byte strings called .
operand specifiers. Operand specifiers contain the information needed to determine the location
and the size of the operands to be accessed.

The location of each operand is fully general and may be:
e a literal constant in the code stream
e aregister
o a memory location

The operand specifier selects the size of the operand from the supported primitive data types:

e 8-bit integer/logical
¢ 16-bit integer/logical
32-bit integer/logical
e 64-bit integer/logical
e 32-bit floating point
® 64-bit floating point

The overall structure of the Nebula architecture places a design restriction on the operand
specifiers. - The location (address) of all operands must be computable in the absence of any context
information provided by the opcode. This permits operands to be "pre-evaluated” in the absence of
such information as required by the procedure interface. Addressing modes are also required to be
free of side effects. This eliminates any order dependencies in operand evaluation.)

An overview of the addressing modes is shown in figure 8.

5.1. Maximum Accessible Register. Several of the addressing mades specify a four bit register
field. This field is checked against the Maxreg field of the Processor Status Word to insure that the
specified register is available in the current context. If the specified register number is greater than
Maxreg, an lllegal.Register exception shall be initiated.

5.2. Compound Modes. Three addressing modes, General Parameter, Unscaled Index, and Scaled
Index, use other operand specifiers as a "subpart" of their complete operand specification. These
are referred to as compound modes. The subpart operand specifiers (that form a part of the full
compound mode specifier) shall be restricted to non-compound modes. For example, as part of its
specification the unscaled index mode calis for two other operands to be specified and used as part
of the calculation of the unscaled indexed operand. These two subpart operands cannot be unscaled
index or either of the other two compound operands. If a compound type operand is encountered
when a subpart operand is being decoded, an Illegal.Mode exception shall be initiated.

MIL-STD-1862B

3 January 1983

0 1 2 3 4 § 6 7
Short Literal 0 0O 0 |Unsigned Literal
Register 0 0.1 0 Register
Short Parameter 0 0 1 1 (o Number
ExtendedParameter (0 0 1 1 0 0 0 0] 33::,, §
General Parameter 0 0 111 0 0 0 Operand “\
Unscaled index 0 001 1 1 0 0 1| |operand \\ Operand \\
Scaled Index 0O 01 11 0 10 Operand \ Operand \\
Literal 0 01 1 1 1 Siz,e- Literal \\
Absolute {1 1[sze o 0 0 of |23 \
Indirect Register 1 1 | Size Register
Byte Indexed 0 1 | Size Register 8Bit \\ Signed
Word Indexed o Size Register 32Bit \\ Pisplacement
Reserved : O o1 11 0 11
Reserved 0 0100000

Figure 5-1: Operand Specifiers

5.3, Address Operands. Addressing modes that have their operands in memory may be used as
address operands. When an instruction calls for an address operand, the operand specifier is
evaluated until the address of the operand Is obtained. That address Is returned to the instruction
rather than the value of the operand. If an operand specifier whose operand is NOT in memory (for
- example, register mode) is specified as an address operand, an lllegal.Address exception shall be
initiated. The size field of an address type operand specifier Is ignored unless otherwise specified by
the individual instruction description.

MIL-STD-1862B
3 January 1983

5.4. Register Mode. In register mode the operand is located in the register (1 to 15) specified by
the second half (bits 4:7) of the operand specifier byte. Register operands shall be word (32-bit) size
and therefore require no size field specification. The Maxreg restriction applies to register mode.

EXAMPLE: MOV %3, %4

OPC,)ODE REGISTIER MODE REGIST|ER MODE

r ™ N 3
0 7 0 3 4 7 0. 34 7
MOV 0010 | o011 0010 | 0100
R3 R4

In this example, the contents of registér 3 are copied into register 4.

5.5. Short Literal Mode. In order to facilitate the use of short literals, a single byte specifier
allowing unsigned literals of up to 5 bits is provided. Bits 3:7 of the specifier byte form the short literal.
This short literal (0 - 31 decimal) is zero extended internally to the size necessary for further
computation. An attempt to write into a short literal mode operand shall generate an

lflegal.Write exception.

EXAMPLE: MOV #9, %4

OPCIJODE SHORT |LITEFZAL REGIST'ER MODE

N 7)

0 7 0 2 8 7 0 3 4 7
MOV 000 | 01001 0010 | 0100
#9 R4

The literal 9 (encoded in the lower part of the short literal specifier) is zero extended and placed in .
register 4, .

MIL-STD-1862B -

3 January 1983

5.6. Literal Mode. When a literal that is negative or too large for short literal made (larger than 31)
must be specified, Literal Mode may be used. Literal mode addressing allows the specification of
literals that are one, two, four, or eight bytes long. The literal follows the first specifier byte in the

code stream. Bits 6:7 of the first specifier byte contain the encoded size of the literal. The encoding
is:

¢ 00 - Byte (8 bits)

« 01 - Halfword (2 bytes, 16 bits)

e 10 - Word (4 bytes, 32 bits)

¢ 11 - Double word (8 bytes, 64 bits)

Once the literal Is fetched, it may be extended internally, based on the requirements of the
operation. An attempt to write into a literal mode operand shall generate an lllegal.Write exception:

EXAMPLE: MOV #-5, %4
OPCODE . LITERAL MOQE . bREGlSTIER MODE

I l N Is ~
o . . 7 0 56-7 0 7 0 3 4 7

- MQV 001111 00 11111011 - 0010 | 0100

J

R g

SIZE #-5 R4

(BYTE)

The single byte literal -5 is sign extended and copied into register 4.
5.7. Memory Addressing Modes. The addressing modes described in this section all address

memory. They may be used as address operands. Memory operands may be 1, 2, 4, or 8 bytes in
length as specified by bits 2:3 of the first specifier byte,

1o

MIL-STD-1862B
} 3 January 1983
Si‘ze field encoding: 4
00 - Byte (8 bits)
‘e 01 . Halfword (2 bytes, 16 bits)
¢ 10 - Word (4 bytes, 32 bits)

* 11 - Doubleword (8 bytes, 64 bits)
5.7.1.Indirect Register Mode. In indirect register mode, the second half of the operand specifier
byte (bits 4:7) designates a register that contains the address of the operand. The Maxreg restriction

applies to the register designation. Note that specification of 0 in the register field indicates absoclute
addressing described below. :

EXAMPLE: MOV @%3tW, %4

OP(‘DODE INDIRECT]REGISTER REGlSTIER MODE

— N O N N
0 7 01234 7 0 34: 7
MOV 11 (10 | 0011 0010 |} 0100
SIZE R3 R4
(WORD) : :

The word operand located at the address specified in register 3 is copied into register 4,

11

MIL-STD-18628
8 January 1983

5.7.2. Register Indexed Modes. There are two register indexed modes, Byte Indexed and Word
Indexed. Each one specifies a register (bits 4:7) and a size (bits 2:3) in the first operand specifier byte
followed by a signed displacement that is 8 or 32 bits long respectively. The signed displacement is
added to the contents of the designated register to form the address of the operand. The
Maxreg restriction applies to.the designated register. The address of the displacement may be
designated as the index In both register index modes by specifying a 0 in the register field of the first
specifier byte. The specifier is then evaluated as though the index register were pointing to the
displacement when calculating the memory address.

EXAMPLE: MOV 3(%2)W, %4
OPCODE . INDEXMODES o -REGISTER MODE
r I B N L Y ' Id ! N
0 7 01234 7 0 7 0 3 4 7
8BIT MOV 01|10 | 0010 -a0caoo11 . 0010 [0100
o 7 04284, 7 0. 3 o a4 7
32 BIT MOV 10 {10 | 0010 0000//011 0010 | 0100
AT S T g L
SIZE R2 DISPLACEMENT R4
(WORD)

The displacement 3 is added to the contents of register 2 to form an address. The contents of the
word at this address are copied into register 4. Note that this operation is the same for Byte Indexed
and Word Indexed. The only difference is the size of the displacement.

12

MIL-STD-1862B
3 January 1983

5.7.3. Absolute Mode. In absolute mode, the first specifier byte is followed by the 32-bit address
of the operand. -

EXAMPLE: MOV @(6)H,%4
OPCODE ABSOLUTE MODE REGISTER MODE
N l) r N
0 7 01234 7 0 31 0 3 4 7
- MOV 11| 01| 0000 | [oo000 ~A10 | | coto | o100
T R g

SIZE ADDRESS R4
(HALFWORD) A

The halfword starting at location 6 in memory is copied into register 4.

18 .

MIL-STD-1862B
3 January 1983

5.8. Parameter Addressing Modes. Parameter addressing modes allow access to parameters
defined by the caller of a procedure. The parameter modes specify an unsigned integer parameter
number. If this number is greater than the Number of Parameters field in the processor status word
an lllegal.Parameter exception is raised. Parameter numbers are bound to the actual parameters
by the procedure call. Parameter modes may be used as address operands if the paraméter
referenced is memory type. See section 8.4 for more information on parameters, their generation and
use,

5.8.1. Short Parameter Mode. Bits 5:7 of the specifier byte designate a parameter number in the
range1to7.

5.8.2. Extended Parameter Mode. Specifier 001 10000, ihdicates Extended parameter mode.
The byte following this initial specifier contains an unsigned parameter number in the range 0 to 255.

EXAMPLE: MOV ?3, %4

OP(IDODE SHORT PﬁRAMETER REGIS'II'ER MODE

N N 2\
0 7 0 4 5 7 0 3 4 7
- MOV 00110 | o11 0010 | 0100
3 R4
0 7 0 . 4 6 7 b} 7] 3 4 7
MOV 00110 | 000 3 0010 | 0100
(. I J _.I_J
EXTENDED PARAMETER R4

The contents of parameter 3 are copied into register 4.

14

MIL-STD-1862B
3 January 1983

5.8.3. General Parameter Mode. General Parameter Mode Is one of the compound modes
described above. The first byte of the operand specifier is followed by another complete operand
specifier. This second operand specifier is evaluated as an unsigned integer parameter number.

EXAMPLE: MOV 2A%3), %4
PARAMETER OPERAND
r I - N
OPCODE PARAMETER MODE REGISTER MODE REGISTER MODE
r | N7 | N7] ™ 7 aY
0 7 0 7 0 34 7 0 34 7
MOV 00111000 0010 | ocOM 0010 | 0100
. R3 R4

The parameter whose number is in register 3 is accessed and its vaiue is copied into register 4.

MIL-STD-1862B
3January 1983

5.9. Unscaled Index Mode. Unscaled Index is another of the compound modes. The first specifier
byte is followed by two complete operand specifiers, the first is the index and the second is the base.
The base operand specifier is an address type operand, and must evaluate to a memory address as
described in section 5.3 above. In order to access the Unscaled Index Operand, the index specifier is
evaluated as a signed integer operand and its value is added to the address obtained from the base
specifier. This forms the full address of the operand. If the index specifier's size is 64 bits, an’
Operand.Size exception is raised. The size of the Unscaled Index Operand is determined by the size
field in the base (second) specifier. Unscaled index mode may be used as an address operand.

EXAMPLE: MOV @%3(%2)W, %4
INDEXED OPERAND
' | N
INDEX BASE
r | N\ 7 !)
OPCODE UNSCALED INDEX REGISTER MODE INDIRECT REGISTER
r I N A N ' N — N
0 7 0 7 0 3 4 7 012384 7
MOV ‘00111001 0010 | G010 11 {10 | 0011
R2 SIZE RS3
(WORD)
REGISTER MODE
'S l N
0 84 7

Next Word » 0010 0100

;I_J

- R4

The index In register 2 is added to the base address in register 3. The value of the word at this
location is copied .into register 4.

16

MIL-STD-18628
3 January 1983

5.10. Scaled Index Mode. Scaled Index is the third compound mode. It is very similar to unscaled
index described above. The first specifier byte is followed by two complete operand specifiers, the
index and the base. The base operand specifier is an address type operand, and must evaluate to a
memory address as described in section 5.3 above. The address of the Scaled index operand is
found by evaluating the index specifier as a signed integer operand, scaling it, and adding it to the
address obtained from the base specmer The scaling is based on the size field In the base specifier.
The scale factor is 1, 2, 4, or 8 based on the number of bytes in the operand specified by the base
specifier size field. Scalmg is simply multiplying the index value by the scale factor (since all of the
scale factors are powers of 2 the multiplication can be accomplished by shifting). If the index
overflows during scallng, the low order 32 bits are added to the base to form the operand address. If
the index specifier's size is 64 bits, an Operand. Suze exceptnon is ralsed Scaled index mode may be
used as an address operand

EXAMPLE:© MOV @%3[%2]W, %4
INDEXED OPERAND
INDEX - BASE
r 7 —
OPCODE. SCALED INDEX REGISTER MODE INDIRECT REGISTER
l N N 7 N\ 7 N
0 7 0 7 0 3 4 7 0123 4 7
MOV | |- co111010 0010 | 0010 11 {10 | 0011
R2 SIZE R3
(WORD)
REGISTER MODE o
r I N
(o) 3 4 7

| NextWord > 001 0 01 00
R4

The index value in register 2 is scaled by 4 (size = word) and added to the base address found in
register 3. The value of the word found at the resulting address is copied into register 4,

17

MIL-STD-1862B -
3January 1983

“« .) ¥
5.11. Reserved Specifiers. Specifiers (301110112 and 00100000, are reserved for future
definition. If they are encountered during operand specifier evaluation, an Illegal.Mode exception
shall be initiated, o o

5.12. Undefined Operand Sizes. The individual instruction descriptions indicate the defined sizes

for each operand. I, during execution, an instruction encounters an .operand whose size is not
defined in the instruction description, an Operand.Size exception shall be initiated.

18

MIL-STD-1862B
3 January 1983

6. Processor Status Word

Control information related to the current execution context is maintained in the 32-bit Processor
Status Word. Bits 0:12 contain information global to the currently executing task. Bits 13:31 contain
information related to the current procedure's context. The procedure call and return facllities alter
only bits 13:31, while initiation or completion of interrupts or tasks alters the entire PSW.

01234 8 910111213 141516171819 20 23 24 31

Priority |C{T{N[Z MaxReg p{\é‘ﬁ;"n?g{e?;
A
Debug Control —j [E- Enable Exception on Arithmetic Error
Reserved Up/Down Leve! Exception
Last Mode Supervisor/Task Mode
Kernel/Task Context Base of Context Stack
Privilege '

Figure 6-1: Processor Status Word
The form of the PSW is shown in figure 6-1. The fields of the PSW are defined below.

6.1. Kernel/Task Mode. Bit 0 specifies whether the processor is in kernel or task mode. lfbit O is
clear, the processor is in kernel mode. The Kernel Context Stack shall be used for the context of
calls. If bit 0 of the PSW is set, the processor is in task mode. The task context stack shall be used for
procedure calls.

6.2. Last Mode. Bit 1 shall be set on intefrupt and trap operations to reflect the state of the
Kernel/Task mode bit prior to the interrupt or trap. This information is used by the RET instruction to
. determine which context stack is to be reactivated.

6.3. Reserved Bits. Bits 2:3 of the PSW are reserved for implementation dependent functions. A
PSW saved as part of an interrupt or trap context change may have an implementation dependent bit
pattern in this field. This PSW should be restored with this pattern unaltered to restart the interrupted
context. The results of altering this bit pattern in such a case are unpredictable.

6.4. Priority. Bits 4:8 of the PSW shall define the current priority of the processor. Hardware or
software interrupt requests at an equal or lower priority shall be masked.

6.5. Carry Condition Code. Bit9 of the PSW is the carry bit. The C bit shall be set by integer add
and subtract instructions to reflect the carry from the most significant bit _of the internal result,

6.6. Truncate Condition Code. Bit 10 of the PSW is the truncation flag. The T bit shall be set if the
integer result of an operation cannot be correctly represented in the- specified result operand. The
setting of truncate indicates that significant bits (bits not equal to the stored sign bit) were lost. The
truncate bit shall also be set on the occurrence of certain -floating point errors, when the
corresponding floating point exception is disabled. Refer to section 30.4.

19

MIL-STD-18628 °
3 January 1983

6.7. Negative Condition Code. Bit 11 of the PSW is the negative condition code The N bit shall
be set as specified in the instruction descriptions. Generally, setting of the N bit implies a negative or
less than condition.

6.8. Zero Condition Code. Bit 12 of the PSW is the zero condition code. The Z bit shall be set as
specified in the instruction descriptions. Generally, setting of the Z bit implies a zero or equal
condition.

6.9. Debugging Control. Bits 13:14 of the PSW control the instruction and procedure level
debugging facilities. Refer to section 10 for a description of their function.

6.10. Privilege. Bit 15 of the PSW specifies whether the current context is privileged. If this bit Is
set, privileged instructions may be executed. If this bit IS clear, an attempt to execute a privileged
instruction shall cause a trap.

6.11. Base of Context Bit 16 of the PSW indicates the execution context base. If this bit Is set, the
currently executing context has no caller. Execution of a RET instruction with the Base bit set shall
cause an interrupt return operation as defined in the RET instruction description. Bit 16 shall be setin
the PSW of the new context produced by an interrupt, trap, TINIT instruction, or PINIT instruction.

6.12. Supervisor Mode. Bit 17 shall indicate whether the current context is in Supervisor mode. If
this bit is set accesses through the supervisor map may be made.

6.13. Up/Down Level Exception Propagation (UDLE). Bit 18 shall indicate the direction of
exception propagation. If bit 18 is clear, the exception shall be directed to the current exception
handler or to the caller, If bit 18 is set, the exception shall be directed to the Supervisor Exception
Handler: Refer to section 9.4 for a detailed explanation of exception propagation.

6.14. Enable Arithmetic Error. EAE, bit 19 of the PSW, shall control the generation of exceptions
related to arithmetic errors. If EAE is set and the T bit (bit 10 of the PSW) is set at the end of an
instruction, a Truncation exception shall occur. If EAE is clear, truncation exceptions shall be
suppressed EAE is also used as a mask for floating point errors. Refer to section 30.4.

6.15. Maxreg Field. Bits 20:23 of the PSW define the unsigned maximum accessible register
number in the current context. An attempt to access a register number greater than that specmed in
Maxreg shall cause an lilegal.Register exception.

6.16. Number of Parameters. Bits 24:31 define the unsigned number of parameters accessible in
the current context. An attempt to access a parameter number greater than that specified in bits
24:31 shall cause an lllegal.Parameter exception.

MIL-STD-1862B
3 January 1983

7. Auxiliary Status Register

The Auxiliary Status Register is a 32-bit register located in the 1/0 space. It contains various
processor control and status bits that need be accessed only infrequently. It is not saved and
restored on context changes. The format of the ASR is shown in figure 7-1. The fields of the ASR are
described below.

01 7 8 17 18 19 23 242526 27 31

Implementation Reserved 1 QqouP| |RCliQourP

T ~ A
Infinity Control
Soft Memory

Masks for Floating Exceptions

Error Enable

Reserved

Rounding Control
Floating Condition Bits

Figure 7-1: Auxiliary Status Register

7.1. Soft Memory Error Enable. Bit 0 shall control the generation of traps on soft memory error
conditions. If this bit is clear, no traps shall be generated. Refer to section 11.6 for a description of -
the memory error handlingfacility.

7.2, Reserved Bits. Bits 8:17 and 24 are reserved for future definition. Bits 1:7 are reserved for
implementation dependent functions. The ASR may have an implementation dependent bit pattern in
this field. .

. 7.3. Floating Point Made Control. Bits 18:23 and 25:31 are dedicated to control and status
information for the varicus modes supported by the floating point system. Refer to sectlon 30.4 for a
detailed discussion of each.

7.3.1. Infinity Control. Bit 18 shall control the ordering of the special floating point lnfinity¢
symbols. [f set, negative infinity shall be considered less than positive infinity. If clear, negative and
positive infinity shall be considered equal,

7.3.2. Exception Event and Mask Bits. For each of five different exception conditions supported
by the floating point system there shall be an event and a mask bit in the ASR. The mask bit shall
control generation of an exception on occurrence of the corresponding condition. Refer to section
30.4 for a description of floating exception processing. The assigned bits and exceptions for each
condition are listed below.

. Condition Mask Bit Event Bit Exception
Invalid Operation = 19 27 o Invalid.Operation
Divide By 0 20 28 Divide.By.Zero
Overflow 21 29 Floating.Overflow
Underflow 22 30 . Floating.Underflow
Inexact Result 23 31 Floating.Inexact

7.3.3. Rounding Control. Bits 25:26 select the rounding mode used by floating point operations.
Refer to section 30.5 for a complete description.

21

MIL-STD-1862B
3 January 1983

8. Procedure Interface

The fundament_al unit of execution in the Nebula architecture is the procedure. A procedure is a
code sequence with an associated context. The context of a procedure includes:

PSwW The processor status word contains information about the current procedure,
Included is the number of registers accessible, the number of parameters, the
method of dealing with exceptions, and certain privilege information. The context
for each procedure includes the PSW that describes its capabilities,

Registers Each procedure is provided with its own set of registers that are separate from
those of any other procedure.

Parameters Procedures may have parameters. If a procedure has parameters, then the list of
parameters for the procedure is included in the procedure’s context.

Exception Handler Each procedure may define a sequence of code to be executed when an error or
abnormal condition is detected. This error-code is called an exception handler.
The location and state of a procedure’s exception handler is recorded in its
context. :

This collection of information, called the Procedure Context, defines the current state of execution
of a procedure.

Procedures may call other procedures. This implies that the current procedure context should be
preserved and a new procedure context created for the called procedure. Completion of the called
procedure should cause Its context to be eliminated and the calling procedure’s context to be
restarted. Thus the call/return behavior of pracedures produces a stacking of procedure contexts.
In the Nebula architecture, the stacked procedure contexts are maintained on a Context Stack.
Figure 8-1 shows the general form of the context stack.

In each task there Is a procedure (usually called the "main program") that has the unique property
that it has no caller. The context for this procedure was created by the initiation of execution of the
task. A return from this "main program" implies termination of the task. The context of the "main
program" forms the BASE of the stack of procedure contexts for this task. This unique procedure
context is identified by the fact that its PSW has bit 16, the BASE bit, set. The collection of procedure
contexts (the currently active routine plus its caller plus the caller's calier... down to the "main
program") is called an Execution Context.

8.1.The Context Stacks. There are two active context stacks in the Nebula architecture: the
Kernel Context Stack and the Task Context Stack. These stacks are accessed by using one of two
context pointers. The context stack used by the executing code is determined by the current PSW,
Normal call and return operations do not change the context stack in use. Interrupts, traps, and task
completions may cause a context stack switch, ’ :

8.1.1. Context Pointers, There shall be two 32-bit registers, called the Kernel Context Pointer and
the Task Context Pointer, that contain the virtual addresses of the currently active procedure contexts
on the Kernel and Task context stacks, respectively. The Context Pointer currently in use shall be
selected by bit 0 of the current PSW. If this bit is clear, the Kernel Context pointer shall be used, if this
bit is set the Task Context pointer shall be used. These registers shall be accessible in the 170
space and by the privileged LTASK and STASK instructions. The operation of these instructions -
nsure that the address contained in the context pointer is aligned on a 32-bit word boundary.

-

22

Context Pointer ——»

L — — —— -

Instruction Addr

General
Registers

Parameter-
Descriptors

Exception Handler

Decreasing
Addresses

Previous PSW

Previous IAR

General
Registers

v

e

Figure 8-1: Stacked Procedure Contexts

|

MIL-STD-1862B
3 January 1983

Current

™ Context

Previous
Context

8.1.2. Structure of Context Stacks. The context .stack selected by the current context pointer
shall'be used by the executing code. The context of each executing procedure shall be stored in the

following order (increasing addresses):

1. The PSW for this.procedure.

2. The registers for this procedure, starting with the'instruction address register, up to the

maximum accessible register as defined in this procedure’'s PSW.

3. The parameter descriptors for this procedure (defined in section 8.4.4).

4. The state of the exception handler for this procedure (defined in section 9).

The context stack shall expand downward. A call by the currently executing procedure shall cause
the context pointer to be decremented by the size of the context of the called procedure. The context
of the called procedure shall then be placed in the area defined by the decremented context pointer.

Note that contexts are not position independent in the virtual address space.

23

MIL-STD-18628
38 January 1983

8.1.3. Cacheing of the Context Stack. The context of a procedure contains areas reserved for a
variety of frequently accessed quantities such as the instruction address register, the PSW, the
general registers and so on. In many implementations it will be desirable to maintain such information
in fast registers. This is particularly true for the currently executing procedure’s instruction address
register and general registers. The Nebula architecture does not define the properties of any such
cacheing mechanism. The representation of the context stored on the Kernel and Task context
stacks is IMPLEMENTATION DEPENDENT. The value of such memory locations is undefined. The
effect of storing into such memory locations is unpredictable. The memory management system
provides a mechanism for protecting against such invalid software actions.

8.1.4. Changing of Context Stack Pointers. The Nebula architecture provides two active
context stacks, corresponding to the Kernel Context Pointer and Task Context Pointer, Since each
task in the system has associated with it a unique execution context, a mechanism for changing the
active Task Context Pointer is provided. The LTASK and STASK instructions provide this facility.
Additionally, these instructions shall force consistency between the context in memory and any
cached state. Subsequent to the execution of STASK all context information necessary to restart the
task context shall be stored in addressable memory in the context stack. For a complete description
of their functions, refer to the individual instruction descriptions.’

8.1.5. Alignment of Context Pointers. The knowledge of which item in the current procedure
context is pointed to by the context pointer is implementation dependent. The address in the context
pointer shall be greater than or equal to the smallest address occupied by the current context. When
anew procedure context is created, the context pointer (prior to being decremented) shall be greater
than the address of any byte of the newly created context. These restrictions imply that a context
stack may be inltialized by-setting the context pointer to the greatest word address in the context
segment plus 4,

8.2. Procedure Descriptor. The characteristics of a procedure are specified by a procedure
descriptor located at the entry point(s) of the procedure. This 16-bit descriptor will be aligned on a
word boundary. The format of the procedure descriptor is shown in figure 8-2. Upon invocation of
the procedure, the information contained In bits 2:15 is recorded in bits 18:31 of the PSW. Execution
of the procedure shall begin at the location immediately following the procedure descriptor located at
the addressed entry point. The function of each field of the procedure descriptor is describéd below.

0123 4 7 8 16

0 Maxreg Fl’\::ranber! of

A
i i Maximum Register

— Exception on Arithmetic Error
Up/Down Exception Propagation
Reserved
Variable/Fixed Number of Parameters

Figure 8-2: Procedure Descriptor

MIL-STD-1862B
3 January 1983

8.2.1.Fixed/Variable Number of Parameters. Bit 0 of the procedure descriptor shall specify
whether the number of parameters for this procedure is fixed or variable. If bit 0 is clear, bits 8:15 will
contain the number of parameters. If bit 0 is set, bits 8:15 are reserved and the first byte of the
parameter list shall be evaluated as the unsigned integer number of parameters. In either event, the
number of parameters for the procedure shall be placed in bits 24:31 of the PSW.

] Some procedure entries, such as interrupt and trap handlers, have their number of parameters
fixed by the hardware. In such procedure descriptors, bit 0 is reserved and bits 8:15 are ignored.

8.2.2. Reserved Bit. Bit 1 of the procedure descriptor shall be reserved for future definition.

8.2.3. Exception Propagation Control. Bit 2 of the procedure descriptor shall be copied to bit 18
of the PSW. This bit defines the direction of exception propagation. See section 9.4.

8.2.4. Arithmetic Error Control. Bit 3 of the procedure descriptor shall be copied to bit 19 of the
PSW. This bit defines the action to be taken on arithmetic errors. See section 6.14.

8.2.5. Available Registers. Bits 4.7 shall determine the maximum -numbered register accessible
to this procedure. This value shall be copied to bits 20:23 of the PSW. This number of registers (and
an instruction address register) shall be allocated for use by this procedure.

8.3. Procedure Invocation. In the Nebula architecture calls, supervisor calls (SVCs),
unimplemented opcodes (OPEXs), supervisor handled exceptions, task initiations, interrupts, and
traps are all handled as procedure invocations using a common mechanism. They differ primarily in
the manner in which they determine the entry address of the procedure to be invoked and the
parameters to be passed.)

The procedure call mechanism is driven by the procedure descriptor located at the entry addre
of the procedure. Invocation of a procedure shall cause the following actions to occur: :

e The current PSW is saved in the context stack and a new PSW is created.
e The register set of the invoked procedure is allocated.
o The exception handler for the procedure is initialized.

o The parameter descriptors for the procedure are initialized.

The current context pointer shall be updated to reflect the new procedure context added to the
context stack. Each of these actions is detailed below.

8.3.1. Determination of a New PSW. The contents of the new PSW are determined by the type of
invocation (call, trap, etc.) and by the procedure descriptor. Bits 18:31 of the PSW shall be
determined by the procedure descriptor as described in section 8.2. Bit 16 (BASE) shall be set by
interrupts, traps, the TINIT and PINIT instructions (task initiation), and by invocation of the supervisor
exception handler with a Task.Failure exception. It shall be cleared otherwise. Bit 17
(Supervisor) shall be set equal to the most significant bit of the procedure entry address. Note that
the call instructions will produce a trap if a non-supervisor program attempts to set this bit.Bits 2:3 are
set/reset in an implementation dependent manner, Bits 0:1 and 4:14 of the PSW shall be set in the
following manner: . . .

CALL, CALLU Unchanged

SVC Bits 13:14 are cleared. Bits 0:1 and 4:12 are Unchanged

25 .

MIL.STD-18628B
3 January 1983

Supervisor Exception Handler
Bits 13:14 are cleared. Bits 0:1 and 4:12 are Unchanged

Unimplemented Opcode (OPEX)
Bits 13:14 are cleared. Bits 0:1 and 4:12 are Unchanged

Task Initiation The TINIT and PINIT instructions specify the contents of bits 0:1 and 4:15 of the
PSW as one of their operands. Bits 2:3 are implementation dependent,

Traps Last mode (bit 1) shall be set to the previous value of bit 0. Bit 0 (Kernel/Task)
shall be clear. This forces the trap to use the Kernel context stack. Bits 4:8 shall
be set to 1F (Hex). Bits 9:14 (the condition codes and debug control) shall be
clear. Bits 2:3 are Implementation dependent.

Interrupts " The new PSW shall be determined as for traps except the priority (bits 4:8) shall be
set to the priority of the interrupting device. :

The privilege bit of the new PSW (bit 15) shall be set equal to bit 31 of the vector for trap and interrupt
entries. For SVC, Supervisor Exception Handler, unimplemented opcode (OPEX) entries, the
privilege bit of the new PSW shall be formed by OR'ing the privilege bit of the old PSW with Bit 31 of
the vector. Task initiation specifies this bit explicitly. Call instructions leave the bit unchanged or
clear it, depending on the opcode.

8.3.2, Register Set Allocation. The registers of a called procedure are separate from those of the
caller. The number of registers available to the invoked procedure shall be determined by the
procedure descriptor. Space shall be allocated on the context stack for each register starting with
the instruction address register followed by the number of registers specified In the procedure
descriptor. The contents of the newly created general registers are undefined with the exception of
register 1. If this is not a task initiation, interrupt or trap invocation, and register 1 exists in both the
caller and called procedure's registers, then the value of the caller's register 1 shall be copied to the
called procedure’s register 1. Otherwise, the contents of register 1 are also undefined. With this
single exception, there is no inheritance of registers in the Nebula architecture. Note that this
inheritance of register 1 applies to the supervisor exception handler. If register 1 is defined for the
Supervisor Exception Handler and for the procedure that Invoked it, the contents of the invoking
procedure’s register 1 are copied into register 1 of the Supervisor Exception Handler. If the
Supervisor Exception Handler is invoked due to a Task.Failure exception, no invoking procedure is
presumed and register 1 of the Supervisor Exception Handler is undefined.

8.3.3. Initialization of Exception Handler. Space in the procedure context shall be provided to
contain the state of the exception handler for this procedure. The exception handler shall be set in
the Disabled state (see section 9).

8.3.4. Initialization of Parameter List. The parameters for a procedure invoked by a CALL,
CALLU, SVC, or unimplemented opcode (OPEX) are specified explicitly in a parameter list. The
parameters of an interrupt, trap, or supervisor exception handler invocation are implicitly defined by
the architecture. Task Initiations have no parameters. An area of the procedure context shall be
reserved for the parameter descriptors of the invoked procedure. There shall be one such descriptor
for each parameter of the procedure. Parameter descriptors are defined functionally in section 8.4.

8.4. Parameter Lists. The passing of arguments or parameters to a called procedure Is
accomplished by specifying a parameter list. In calls, supervisor calls, and unimplemented opcode
exceptions (OPEXs) the parameter list is explicitly specified while in interrupts, traps and the
supervisor exception handier it is implied by the architecture. The specified parameters are accessed
using the parameter addressing modes that determine the number of the parameter to be accessed

26

.

MIL-STD-1862B
3 January 1983
[} [}
(1st, 2nd, 3rd, etc.). The representation of these addressing modes is described in section 5.8. The
semantics of parameter access are defined below.

8.4.1. Parameter Specification. Explicit specification of parameters is accomplished by a
parameter list that immediately follows the call opcode (for OPEX) or the index specifier (for SVC) or
the entry address specifier (for CALL and CALLU). The parameter list shall consist of a sequence of
operand specifiers or a byte literal followed by a sequence of operand specifiers. These operand
specifiers may use any of the addressing modes described in section 5. The number of operand
specifiers shall be determined in the following manner:

1. The calling instruction (CALL, CALLU, SVC, or OPEX) will specify the address of the
procedure to be called. At this address there willbe a procedure descriptor, as described
in section 8.2.

2. If bit O of the procedure descriptor is clear, bits 8:15 of the procedure descriptor shall
specify the number of parameters. If bit 0 is set, the first byte of the parameter list shall be
interpreted as the unsngned integer number of parameters. The remaining operands of
the reduced parameter list shall be interpreted as the actual parameter list.

Each operand specifier in the parameter list specifies the location and size of one operand. .The
location of each operand shall be determined using the state of the CALLER at the time of the call.
Any registers specified in the parameter list shall refer to the caller's registers; any addresses in the
parameter list shall be computed using the caller’s registers as they exist when the call is executed.

8.4.2. Parameter Access. The parameters specified in the parameter list are conceptually
numbered in increasing order, starting at 1. The parameter addressing modes specify a parameter
number. The appearance of a parameter addressing mode as an operand shall be interpreted as an
access to the correspondingly numbered parameter of the current context. Parameter 0 shall be
interpreted as the number of parameters accessibie in the current context; this information is
recorded in bits 24:31 of the PSW. Parameter O cannot be written; an attempt to do so shall cause a
Illegal.Write exception. Bits 24:31 of the PSW specify the maximum parameter number In the
current context. An attempt to access a parameter number greater. than this shall cause an
lllegal.Parameter exception.:

8.4.3.Example of Parameter Linkage. The context stack generated by this example (assuming 2
registers for both the caller and callee) is shown in figure 8-3. Assume X is a procedure with a fixed
number of parameters =3 and that both X and its caller have access to a register 2 (%2). The

following call:
Call X, #6,ATW, %2

would set up the following correspondence between parameter numbers (written as ?n) and
parameters in the parameter list:

10 - #3 +Number of parameters

71 = #5 tA Yiteral &

72 = AtW +A 32-bit word in memory named A

73 = . %2 iThe caller's register 2

74,76,... ~ 111egal

The use of parameter addressing modes in this context would have the following effects:

MOV 71,%2 <=> MOV #56,%2
MOV 72,%2 <=> MoV ATW, %2
MOV ?3,%2 <=> MoV %2%,%2

NOTE: The last example moves the contents of the CALLER‘s register 2 to the called routine's
register 2.

27

MIL-STD-18628
3 January 1983

CONTEXT POINTER ——»

%1

[+
X: .ENTRY NP =3, REG = 2 ;12
2
23
Call X, #5, AtW, %2
%1
%2

Figure 8-3: Example of a Call Context

Context
Stack .

PSW of X

IAR of X

—— S— — — -

pr— et C—— —

Exc. Handler

PSW of Caller

|AR of Caller

—— C— —— — "

f— — —— ot— -

MIL-STD-18628B -
3 January 1983

8.4.4. Mechanism of Parameter Add ressing. The parameter access mechanism can be viewed
as a splitting of the operand access mechanism used by all instructions. Figure 8-4 is a conceptual
picture of the Nebula microengine. Operand specifiers are reduced to location and size information
by operand pre-evaluation. This primitive information is used for operand access during operand
evaluation. :

TYP® (1nteger, Function
Logical, A
Floating)
Address
Operand
peran Size N Operand N
Pre- ' Location Evaluation ALU
Evaluation (Register, |
- Memory, :
. Literal, :
Constant)
Operand
Descriptors
Memory Registers

Figure 8-4: Normal Operand Processing

The operands of parameter lists, however, are not fully evaluated in this manner. Instead, the
location and size information from pre-evaluation is diverted to the appropriate parameter descriptor
in the context stack as shown in figure 8-5. This reduces the parameter list to a linear descriptor
array.

Access to parameters is accomplished by parameter addressing modes. These operand specifiers
evaluate to an unsigned integer parameter number. This index is used to recover the position and
size information corresponding to the specified parameter. The mechanism is diagrammed in figure
8-6.)

29

MIL-STD-1862B
3 January 1983

Context -
Stack
Operand ggldress |
Pre- . 1z e Parameter
, Location {~7~~~~"7 Descriptors
Evaluation (Register,
: Memory,
Literal,
Constant)
Operand
Descriptors.

Figure 8-5: Parameter List Operand Processing

Context TYP® (nteger, Function
Stack Logical,
Floating)
________ - Address '
________ ' a
Pararpeter ________ Size : EOpler zd ALU
Descriptors |~~~ """ Location valuation
(Register,
Memory,
Literal, ,
Constant)
Memory Registers

Figure 8-6: Parameter Access

MIL-STD-18628
3 January 198"

¢
The size and format of the parameter descriptors is implementation dependent. The encoding of
these descriptors is constrained only by the functional requirements placed on the parameter passing
and access facilities. The following is an example of an encoding sufficient to meet these
requirements. In this example the parameter descriptors specify one of four possible locations for the
parameter:

Constant The parameter is a value contained in the parameter descriptor. Such a
parameter is read-only. An attempt to write a constant parameter will cause an
lllegal.Write exception.

Literal The parameter is a literal contained in the instruction stream. The address and
size of the literal are encoded in this descriptor. This parameter is read-only. An
attempt to write this parameter will cause an llegal. Write exception.

Register The parameter is a register in the context stack. The size of the parameter is 32
bits. A pointer to the register in the context stack is encoded in this descriptor.

Memory The parameter is a memory location. The size and address of this location are
encoded in this descriptor.

8.5. Vectored Calls: SVC and OPEX. The supervisor call (SVC) and unimplemented opcode
{OPcode EXception or OPEX) facilities utilize a vectoring mechanism controlled by the supervisor.
Vectoring shall be controlled by a pair of processor registers for SVCs and a pair for OPEXs. The first
register specifies the limits for the vectoring index. The second register specifies the word address of
the vector table. The two low order bits (bits 30:31) are ignored. The format of these registers is
shown in figure 8-7.

0 15 16 - 31
Low Limit Vector Maximum
Vector Table Address

Figure 8-7: SVC and OPEX Vector Registers

The vectored instruction shall select the appropriate register pair (SVC or OPEX) and specify an
unsigned index. This index shall be compared with the unsigned fow limit specified in the first register
of the pair. If the index is less than the low limit, or if (index - low limit) is greater than vector maximum
(unsigned), the 32-bit word located at the word address before the virtual address in the second
register (Vector Table Address - 4) shall be used as the vector. If the index is within the specified
range, the quantity Vector Table Address + (index - low limit)*4 shall be used as the virtual address
of the vector. The contents of the 32-bit vector shall be used as the entry address of the procedure.
Access to this vector and to the procedure descriptor shall be allowed regardless of the state of the
privilege or supervisor bits of the PSW. The vectoring operation is shown in figure 8-8, .

3

“MIL-STD-1862B
:*3January 1983

o

0 1516 31

Low Limit- | wedar

Vector Table Address [---
|

ol p———

, (Index - Low Limit)*4

0

Vector Table

81

Index Out of Range

Low Limit Vector

High Limit Vector

Figure 8-8: Vectored Call Address Calculation

32

MIL-STD-1862B
. C 3 January 1983
8.6, Vector Format. All vectored operations in the Nebula architecture (interrupts, traps, SVCs,
OPEXs and Supervisor Exception Handler entries) use a common vector format. Vectors are 32 bit
words with the format shown in figure 8-9. Bits 0:29 of the vector specify bits 0:29 of the entry
address. Bits 30:31 of the entry address are assumed to be zero. Bit0is copied into bit 17 of the new
PSW. Bit 31 of the vector is used in determining the privilege of the called procedure. For interrupts
and traps bit 31 of the vector is copied to bit 15 of the new PSW (privilege). For SVCs, OPEXs and
supervisor exception handler calls bit 31 of the vector is OR’ed with bit 15 of the caller's PSW to form
bit 15 for the new PSW, o

01 29 30 31

| Entry Address : 0}
[l\‘ Supervisor/User Reserved j i
. Privilege

Figure 8-9: Vector Format’

8.7. Retu rﬁ from Procedures. The return from a procedure is accomplished through the use of a
return instruction. Execution of a RET instruction causes a normal return. Execution of an ERET or
ERP instruction causes a return with exception information. See the individual instruction

descriptions for detalils.

MIL-STD-1862B
3 January 1983

] '

9. Exceptions

Program errors are handled by the exception facility. Exceptions may be handled by the procedure
in which they occur, or by the supervisor, or by the caller of the procedure in which they occur.

9.1. Procedure Exception Handler. There shall be an entry in the context of each procedure
defining the state of the current exception handler associated with that procedure. The exception
handler of a procedure shall be in one of three states:

Disabled No exception handler is currently defined for this procedure.

Handler Defined The starting address of the exception handler for this procedure is recorded in the
context stack. ’)

Exception Cade Available , ‘
No exception handler is currently defined for this procedure. The exception code
for the last exception is recorded in the contéxt stack.

The states of the exception handler for a procedure, and the typical transitions between states, are
shown In figure 9-1. Encodings of the states in the context area shall be implementation dependent.

Disabled

ECODE Instruction EXCEPT Instruction

Handler
Defined

. . -EXCEPT Instruction
Exception D

Hardware Exception or
RAISE Instruction

" Figure 9-1: States of an Exception Handler

9.2. Detinition of an Exceptlion Handler. Upon invocation, a procedure's exception handler shall
be set in the disabled state. The exception handler associated with a procedure can be defined by
use of the EXCEPT instruction. When EXCEPT is executed; the exception handler for the current
~ procedure shall be defined to start at the address specified by the EXCEPT instruction.

9.3. Raising an Exception. An exception may be raised by the RAISE, ERET, ERP, TRAISE, or
PRAISE instructions, or by the detection of an abnormal condition by the hardware. An exception
code is associated with each exception raised. The exception code Is explicitly specified by the
RAISE, ERET, ERP, TRAISE, and PRAISE instructions as an operand. The exception code specified
shall be treated as an unsigned integer of 16 bits. Hardware generated exceptions shall have -
-associated with them the following fixed codes:

MIL-STD-1862B

) , 3 Ja‘nuary 1983
Exception Name Code (Decimal) Described in Section
Specification.Error 1 25
lllegal.Mode 2 5.2, 5.11
lllegal.Parameter 3 8.4.2
lllegal.Register 4 5.1,6.15
lllegal.Write 5 5.5,5.6,84.2
Bit.Field.Size 6 28
lllegal.Address 7 53
Operand.Size 8 5.9,5.10,5.12, 27
Context.Alignment 9 25
Context.Base 10 29
Segment.Specifier 11 29
Supervisor.Check - . 12 29
Task.Load.Error 138 25
I0C.Busy 14 29
{llegal.Divisor 16 18.2
Truncation 17 18.2
Range.Error 18 22
Invalid.Operation 19 30.4.1
Divide.By.Zero 20 30.4.2
Floating.Overflow 21 30.4.3
Floating.Underflow 22 30.4.4
Floating.Inexact 23 30.4.5
Unordered 24 , 30.7
Task.Failure 32 9.4, 26
Break .33 29
Instruction.Break 34 10

Call.Break 35 10.

NOTE: Software should avoid using exception codes 0 to 63. These should be reserved to indicate
the conditions listed above and others that may be added in the future,

9.4. Exception Handling. The control transfer on an exception is diagrammed in figure S-2. When
an exception is raised, the action that occurs shall depend upon the Up/Down Level Exception bit, bit
18 of the PSW. If UDLE is set, the state of the current procedure’s exception handler shall be
unaffected, and the Supervisor Exception Handler shall be invoked (described below). If UDLE Is
clear, the action taken shali depend on the state of the cuirent context's exception handler. if the
current state is Handler Defined, the instruction address register shall be set to the starting address
specified, the T bit shall be reset, the state shall be changed to Exception Code Available, and the
exception code shall be recorded in the current context area. If the current state is not Handler
Defined, the action taken shall depend on the Base bit (bit 18) of the PSW. If this bit is clear, the
current context shall be removed from the context stack and the exception shall be re-raised In the
caller's context. If the Base bit is set, there is no caller. The current context shall be removed from
the context stack and the Supervisor Exception Handler shall be invoked with the
Task.Failure exception. The BASE bit in the PSW of the Supervisor Exception Handler shall be set.

NOTE: The exception control transfer described above may lock out interrupts Until an exception .
handler is found. In time critical applications that are deeply nested, an exception handler should be
inserted every few levels to insure proper response to interrupts. This handler may just pass the

MIL-STD-18628
-3 January 1983

Restore Caller's
Context

Remove Current -

Context

£\

Call Supervisor
Exception Handler

Te«0
PC + Handler Start

Exception Code
Available

Exception =
TASK FAILURE

Call Supervisor

Figure 9-2: Transfer to an Exception Handler

exception on to the caller, but it wiil allow interrupts to be processed.

36

Exception Handler :

MIL-STD-18628
' 3 January 1983

9.5. Supervisor Exception Handler. The Supervisor Exception Handler is a procedure defined by
the supervisor to which control may be transferred on occurrence of an exception. This facility is
enabled at the procedure level by the UDLE bit in the procedure descriptor. The entry address of the
Supervisor Exception Handler is specified in a single word vector at physical address 100024 (Hex).
The Supervisor Exception Handler shall be invoked as a procedure using the current context stack as
described in section 8.3. There shall be three parameters to this pfocedure implicitly defined by the

architecture:

71

72

23

The exception code associated with the exception. This parameter shall be a
literal constant; it cannot be written. The size of this parameter is one halfword.

A reference to the opcode of the instruction causing the exception. The size of
this parameter is one byte. The address of the offending instruction can be
obtained by: MOVA 72, X (where X is a local variable).

The instruction address register of the context that invoked the supervisor
exception handler, as a register. This instruction address register contains the
address of the instruction to be executed if the supervisor exception handler does
a RET with the base bit clear. If the exception is not of type Truncation or break
(Break, Instruction.Break, or Call.Break) and no contexts were removed in
the propagation of the exception, then the address of the item referenced by 72 is
equal to this parameter when the supetvisor exception handler is initiated. [f the
exception is of type Truncation or break and no contexts were removed in the
propagation of the exception then this parameter is equal to the address of the
instruction to be executed after the one that caused the exception. If any contexts
were removed during the propagation of the exception, this parameter initially
contains thé return address from the context that invoked the Supervisor
Exception Handler. This parameter may be read or written. Writing this parameter
is equivalent to altering the invoking context's instruction address register by
reference. If the Supervisor Exception Handler is invoked by a
Task.Failure exception, this parameter is not defined. The size of this parameter
is one word.

Thus transfer to the Supervisor Exception Handler looks like a procedure call with the exception code
and offending instruction as parameters. The Supervisor Exception Handler may choose to take
corrective action, abort the task, return the exception to the offending procedure (using ERP), or
simply continue (using RET).

37

MIL-STD-1862B
3 January 1983

10. Debugging Facilities

The Nebula architecture provides the ability to monitor the execution of a program through tracing
and break facilities at the instruction and procedure levels. These facilities operate through the
supervisor exception handler mechanism that serves as the interface between the debugger and the
rest of the system. Control may be transferred to the Supervisor Exception Handler either by explicit
use of the BREAK instruction or implicitly by the program trace facility.

10.1. Program Tracing. Bits 13:14 of the PSW control the program trace facility. The defined
settings of these bits are:

00 Disabled

01 Instruction Break. A break shall be generated after each instruction execution
with exception code Instruction.Break.

10 Call Break. A break shall be generated after each CALL, CALLU or RET
instruction execution with exception code Call.Break.

11 Reserved

The breaks specified by the above codes shall occur after the execution of the specified instruction
and before a check for pending interrupts. An instruction that causes bits 13:14 of the PSW to be set
shall not cause a break at the end of its execution. If bits 13:14 are nonzero, a break shall occur after
an instruction that clears these bits.

The generation of a program break shall cause invocation of the Supervisor Exception Handler as
described in section 9.5. The exception code parameter shall be set as described above.

- The semantics of the procedure call mechanism imply that the setting of the trace bits (13:14 of the
PSW) are propagated into called routines. Thus enabling trace'in a procedure will also cause tracing
of all procedures it explicitly calls. The trace setting is not propagated into SVCs, OPEXs, interrupts
or traps. Thus the tracing is confined to the task in which it is initiated. Execution of an RET (or ERET
or ERP) causes the trace bits to be restored to the value defined by the saved PSW. Return from a
procedure will therefore cause tracing to resume as specified regardless of the conditions existing in
the returning procedure.

MIL-STD-1862B
3 January 1983

11 Interrupts and Traps .

Interrupts and traps are events requiring a change in the execution environment in the processor.
Interrupts are asynchronous events generated externally or independently of the executing
instructions; traps are conditions caused by the executing instructions. In the Nebula architecture
interrupts and traps are treated as parameterized calls. The entry address for such a call is
determined by a vector in physical memory. The interrupts and traps supported in the Nebula
architecture are described below.

11.1. Interrupt Priority. Acceptance of interrupts shall be on a priority basis. The current priority
of the processor shall be specified by bits 4:8 of the PSW. Priority shall be encoded as an unsigned
integer with O being the lowest priority and 31 the highest priority. Power Fail/Restore Interrupts have
the highest priority and cannot be locked out. 1/0 and software interrupt requests may be made at
any priority between 1 and 31. The highest priority interrupt request with priority greater than the
processor's shall be accepted. Interrupts with priority less than or equal to the processor’s shall not
be accepted. In the event of an I/0 and a software interrupt request with equal priority, the 170
request shall be accepted first. The order of acceptance of 1/0 interrupt requests of equal priority is
implementation dependent. ’

11.2, 170 Interrupts. 170 interrupts are requested by a device or controller independent of the
processor. The interrupting device will specify a priority and a physical vector address. Acceptance
of an interrupt shall cause the 32-bit vector located at this address to be used as the entry address of
the procedure to be invoked. This procedure shall be invoked on the Kernel Context Stack as
described in section 8.3. Device interrupt procedures shall be invoked with a single parameter: the
physical vector address as a reference to a word in memory. The address of the physical vector may
be obtained by: MOVA 71, X (where X is a local variable). 10C interrupt procedures have a second
parameter (see section 13.7). The priority of the processor (bits 4:8 of the PSW) shall be set equal to
the priority of the inlerrupt request.

11.3, Software Interrupt Requests. An interrupt can be requested by the software using the
Software Interrupt Request Register. This 32-bit register contains one bit for each priority level.
Setting bit n shall cause a software interrupt to be requested at priority level n. Bit O is reserved.
Acceptance of a software interrupt request at a given priority level shall cause the corresponding bit
in the request register to be cleared. The 32-bit vector at physical address 100004 (Hex) shall specify
the entry address of the procedure to be invoked. This procedure shall be invoked on the Kernel
Context Stack at the requested priority level as described in section 8.3. The procedure shall have
one parameter: a constant equal to the priority level of the software interrupt.

11.4. Power Failure Interrupt. Detection of a loss of power condition shall cause the following
actions to ocour: :

1. The 32-bit word at physical address 100020 (Hex) will contain the physical address of a
two word power fail save area. The hardware shall store in this save area the current
contents of the Kernel Context Pointer, the Supervisor Map Pointer, and the Kernel bit
(bit 0) of the current PSW,

2. The context stacks in memory shall be updated to reflect the contents of any
implementation dependent context caches.

3. The procedure whose entry address is contained in the 32-blit vector at physical address
. 100018 (Hex) shall be invoked with no parameters on the Kernel context stack at priority

1‘F (Hex).

The power fail routine invoked by this mechanism may then save any other volatile information

MIL-STD-1852B
3January 1983 . .
ngeded_to resta_rt execution on power up. Note that the Kernel context was saved before the power
fail routine was invoked. Therefore, the context of the power fail routine will be lost in the power fail,

j 1.5. Power Restore Interrupt. If poweris épplied to the processor with the contents of memory
intact, the following actions shall occur as if performed in the following order:

1. The Software Interrupt Request Register and the Auxiliary Status Register shall be
“cleared. ‘ '

2. The Kernel Context Pointer and the Supervisor Map Pointer shall be restored from the
power fail save area specified above,

3. Any implementation dependent caches of the Kernel Context Stack or sdpervisor memory
map shall be made consistent with those stored in memory. -

4. The Kernel bit (bit 0 of the PSW) shall be restored from the power fail save area specified
above.. Next the procedure whose entry address is contained in the 32-bit vector at
physical address 10001C (Hex) shall be invoked. This invocation shall use the Kernel
Context Stack with no parameters at priority 1F (Hex) as a trap. Note that the Kernel bit
restored from-the power fail save area is used to set the last mode bit in this procedure's
PSW. Return from this procedure will therefore cause the appropriate context stack to be
reactivated. See Section 8.3.1 for PSW contents on procedure invocation.

The contents of all other processor registers are undefined. Restoration of these registers is the
responsibility of the power restore routine, - ' :

I power is applied to the processor and the contents of memory are not intact, the IPL sequence
shall be initiated.)

11.6. Memory System Error Traps. The Nebula architecture provides support for detection of
memory fallures such as parity errors. There are two types of memory errors defined:

Soft Errors This is an informational signal indicating that an error occurred within the memory
system that was probably corrected by the memory system. The data transfer was
assumed completed correctly. For example, an incorrect bit read from memory
might be corrected by a Hamming code mechanism.

Hard Errors An uncorrectable error was detgctéd in a memory data transfer. The information -
- transferred Is probably wrong.

The ability to detect either type of error is implementation dependent. If this ability is provided, it shall
function as specified below. '

11.6.1.Hard Memory Errors. CPU hard memory errors shall cause a trap using the Kernel
context stack. The address of the entry point for the procedure to be invoked shall be specified by the
vector at physical address 100014 (Hex). The procedure shall be invoked with a single parameter that
is a reference to the byte in memory whose attempted access caused the trap. The size of this
parameter is one byte. The address of this byte can be obtained by: MOVA 7?1, X, The execution of a
return (RET) instruction within a hard memory error trap handler shall produce unpredictable
behavior. A return should not be executed within a hard memory error trap handier, If a hard memory
error is detected during the building of a context on the Kernel Context Stack, the RESET function

described in section 11.9 shall be invoked.

- MIL-STD-1862B
3 January 1983

¢ ¢
11.6.2. Soft Memory Errors. CPU soft memory errors may be masked. This allows the p?ocessor
to be informed of such errors without being saturated by repeated reports. If bit 0 of the auxiliary
status register (figure 7-1) is clear, soft errors shall be ignored. If this bit is set, a soft memory error
shall cause it to be cleared and a trap shall occur using the Kernel context stack. The address of the
entry point for the procedure to be invoked shall be specified by the vector at physical address
100010 (Hex). The procedure shall be invoked with a single parameter that is a reference to the byte
in memory whose attempted access caused the trap. The size of this parameter is one byte. The
address of this byte can be obtained by: MOVA 71, X. The execution of a return (RET) instruction
within a soft memory error trap handier shall return control, in a transparent fashion, to the context
that was executing prior to the trap.

11.7. Privileged Instruction Trap. An attempt to execute a privileged instruction with bit 15 of the
PSW clear shall cause a trap using the Kernel Context Stack. The address of the entry point for the
procedure to be invoked shall be specified by the vector at physical address 100028 (Hex). The
procedure shall be invoked with a single parameter. The parameter shall be a byte size referenceto -
the opcode of the offending instruction. The address of this instruction can be obtained by:
MOVA 71, X. The execution of a return (RET) instruction within a privileged instruction trap handler
shall resuit in the resumption of the context that was executing prior to the trap beginning with the
instruction referenced by parameter 1.

11.8. Memory Management Traps. A memory management trap is generated by an attempt to
perform a memory access that is specified as invalid by the memory management facility (see section
12). Such an access shall cause a trap using the Kernel Context Stack. The address of the entry
point for the procedure to be invoked shall be specified by the vector at physical address 10000C
(Hex). The procedure shall be invoked with four parameters as described in section 12.4.

A memory access that could potentially result in 2 memory management trap may be made in the
following cases:)

o During Instruction execution
¢ While building or unwinding contexts on the Task Context Stack

& While building or unwinding contexts on the Kernel Context Stack,

11.8.1. Instruction Execution. An invalid memory access detected by the memory management
system during instruction execution shall suspend the instruction and cause a trap on the Kernel
Context Stack. The execution of a return (RET) instruction within the memory management trap
handler shall result in the resumption or restarting of the suspended instruction.

11.8.2. Task Context Stack. An invalid memory access detected by the .memory management
system during the building or unwinding of contexts on the Task Context Stack shall suspend the
context activity and cause a trap on the Kernel Context Stack. The execution of a return (RET)
instruction within the memory management trap handler shall result in the resumption of the
suspended context in a transparent fashion. .

11.8.3. Kernel Context Stack. An invalid memory"access detected by the memory management
system during the building or unwinding of contexts on the Kernel Context Stack shall suspend the
context activity and cause a trap on the Kernel Context Stack.

If the invalid memory access is detected during the building of a context for an interrupt invocation,
the context stack is cleared of context information relating to the interrupt. The execution of a return
(RET) instruction within the memory management trap handier invoked under these circumstances
‘shall resume execution of the context that was executing prior to the interrupt.

41

MIL-STD-1862B
3 January 1983
(] (]
It the’invalid memory access is detected during the building of a context for a trap other than a
memory management trap, the execution of a return (RET) instruction within the memory
management trap handler shall resume execution of the context that was executing prior to the trap.

If the invalid memory access is detected during the building of a context for a memory management
trap, the RESET function described in section 11.9 shall be invoked.

11.8. Reset and IPL. When the reset switch is activated or the RESET instruction is executed, the
contents of the 32-bit word at physical address 100044 (Hex) shall be interpreted as the address of a
two word block containing values for the Kernel Context Pointer and supervisor map pointer, in the
same format as the Power Fail save area. These values shall be loaded into the respective hardware
registers, The supervisor memory map shall be made consistent with the hew map specified. The
ASR and Software Interrupt Request Registers shall be cleared. The contents of the 32-bit vector at
physical location 100040 (Hex) shall be interpreted as the entry address of the procedure to be
invoked. This procedure shall be invoked on the Kernel Context Stack as an interrupt with priority 1F
(Hex) with one parameter, The size of this parameter is one byte. This parameter shall indicate the
source of the reset action. The currently defined values for this parameter are:)

Cause Code
Panel Switch 1
RESET Instruction 2
Invalid Memory Access 3
Hard Memory Error 4

5

IPL Sequence

The last mode bit (bit 1 of the PSW) shall be clear., During the reset sequence, no interrupts shall
be accepted. The IOCs shall be'placed in the state defined when power is applied.

When the IPL switch is activated, the identical sequence of operations shall take place except that
the entry address shall be specified in the data loaded by the IPL sequence. .

If, during a RESET or IPL sequence, the value contained in the relocation and protection bits of a
map pointer register is reserved, or a hard memory error is encountered then the system shall halt in
an implementation dependent manner. See section 12.2.1 for details about map pointer registers.

‘Note that. the RESET and IPL sequences are identical to the power restore sequence except that no
prior Kernel context is assumed. :

11.10. Built In Test Traps. The implementation dependent Built In Test (BIT) facilities associated
with the CPU and 10Cs wilt have the option of generating a trap on the Kernel Context Stack. The
address of the entry point for the procedure to be invoked shall be specified by the vector at either
physical address 100008 (Hex) or physical address 10002C (Hex). The circumstances under which
these traps are generated shall be implementation dependent. The execution of a return (RET)
instruction within a BIT trap handler shall produce an implementation dependent action.

11.11, Simultaneous Events. The simultaneous occurrence of the following events shall be
handied in the priority shown: Trap (1st), Exception (2nd), Break (3rd), Interrupt (4th).

42

MIL-STD-18628B
3 January 1983

12. Memory Management éystem .
The memory management system performs the following functions:
e Translation of virtual addresses to physical addresses
e Separation of areas of the virtual address space according to allowed accesses

- Separation of physical addresses into memory and 1/0 space addresses

o Maintenance of access information

Thgse functions are controlled by memory maps stored in physical memory that are pointed to by map
pointer registers in the processor. This relationship is shown in figure 12-1,

Map Size
Segment
Descriptors
Map Pointer
Registers \—/\
User
Supervisor \ Map Size
Segment
Descriptors

Figure 12-1: Map Data Structure

12.1. Virtual Address Space. The size of the virtual address space is defined as the number of
distinct byte virtual addresses that can be generated by the processor. In the Nebuia architecture two
distinct measures of the virtual address space are defined:

¢ The Architectural Virtual Address Space is the number of distinct byte virtual addresses
that can be generated by the addressing modes of the architecture. These addressing
calculations are visible to the programmer through the MOVA (move address) instruction.

The architectural virtual address space shall be 232 bytes.

¢ The Impiementation Virtual Address Space is the minimum of the number of distinct byte

MIL-STD-1862B
3January 1983 ,
virtual addresses that can be generated and mapped using an addressing mode with
memory mapping enabled. In the Nebula architecture this may be less than the
Architectural Virtual Address Space due to limitations in the parameter descriptor and
mapping mechanisms. The implementation virtual address space shall be a minimum of
224 bytes or 8 times the maximum implemented physical address space, whichever is
greater.

These restrictions are designed to allow reasonable optimization of the parameter and memory map
implementation while avoiding any software dependencies on these implementation dependencies.
The manner in which the software manipulates addresses is driven by the architectural virtual address
space, that has been specified as the full 32 bits. The implementation virtual address space impacts
the allocation of address space. This is specified to exceed the point at which other software
efficiency considerations conspire to limit allocation.

if an implementation virtual address must participate in an address calculation, it is converted into
an architectural virtual address by placing a zero bit in each bit position defined for the architectural
virtual address but not defined for the implementation virtual address. . - .

12.2. Mapping of Virtual Addresses. The virtual address space is divided into two halves, one of
which is accessible only to supervisor programs. Virtual addresses with the most significant bit (bit 0)
set are mapped through the supervisor memory map. Virtual addresses with the most significant bit
clear are mapped through the User memory map.

12.2.1. Map Pointer Registers. There shall be two map pointer registers; one for Supervisor and
one for User state. The map address register used to translate a virtual address shall depend on bit 0
of the virtual address. If bit 0 is clear, the User Map Pointer register shall be used. 1f bit 0 Is set, the
Supervisor Map Pointer register shall be used. The format of these registers is shown in figure 12.2.
These registers contain the physical address in memory of the memory maps. Bits 29:31 of these
addresses shall be assumed 0. The address in these registers shall be the address of the first map
entry in the memory map. Bits 30:31 control the translation of addresses using the selected map
pointer register. These bits shall function as follows:

00 ’ No relocation or protection. Bits 1:31 of the virtual address shall be used as a
physical address. No segment assoclation shall be performed. (/0
space accesses shall be segregated as described in section 12.5.

01 Protection enabled. Accesses shall be checked for validity as described below.
No relocation is performed. Physical addres'ses are determined as above.

10 Reserved. If this code is specified in the map pointer to be loaded by a LTASK
instruction, a Specification.Error exception shall be raised. Section
11.9 describes the action taken when this code is-encountered during a RESET or
IPL sequence. . .

1 , Relocation and Protection. Addresses shall be checked <aﬁd relocated as
described below. ; ,

12.2.2. Memory Map Structure. The memory map pointed to by a map pointer register shall be
assumed to have the following format. The mapping information for each segment is stored in a
64-bit double word with the format shown in figure 12-3. These map entries are stored in consecutive
double words, starting with the entry for segment zero, and aligned on double word boundaries, The
number of entries In the map is stored in a 32-bit word preceding the segment zero entry. The
maximum number of segments allowed is at least 16, The actual number allowed is implementation
dependent: If the number of entries indicated by the word preceding the segment zero entry is

44

MIL-STD-1862B
3 January 1983

0 28 29 30 31

Physical Address of Map) 0

Reserved ‘—?

Relocate if set
Protect if set

Figure 12-2: Memory Map Pointer Registers
greater than the number of segments implemented, entries beginning with the segment zero entry up

to the number implemented are used for segment association. The address in the map pointer
register is the address of the segment zero entry. ‘

0 1 28 29 31

Virtual Address Bound

t Protection Key 'j
" .

Privilege
60 61 63

Relocation Amount ' 000|

Reserved j

Figure 12-3: Map Entry Format

12.2.3. Segment * Association. The relocation and protection functions of the memory
management system operate by associating one of the segments specified by the map entries with a
virtual address. This association is based on the virtual address bound field (bits 1:28) of the map
entries. A virtual address is contained in a particular segment if:

1. Bits 1:28 of the virtual address are less than or equal to the virtual address bound of the
segment.

2. Bits 1:28 of the virtual address are greater than the virtual éddress bound contained in the
previous map entry. This condition shall be satisfied vacuously for map entry 0.

A virtual address for which the -above conditions are not satisfied by any map entry shall cause a
memory management trap with fauit code Invalid.Segment.

The map entries will be ordered such that the virtual address bound in each map entry is greater
than the bound in the previous map entry. Violation of this restriction by the operating system may
produce unpredictable results. .

MIL-STD-1862B
3 January 1983

f [
12.2.4. Relocation of Virtual Addresses. If bit 30 of the selected map pointer register is set,
relocation is enabled. The virtual address shall be associated with a map entry as described above.
Bits 1:28 of the virtual address shall be zero extended and then added to the signed integer relocation
field of the map entry. The result of the addition is truncated to 29 bits (modulo 2%) to form bits 0:28
of the physical address. Bits 29:31 of the physical address shall be equal to bits 29:31 of the virtual
address. This operation is shown in figure 12-4. No two distinct physical addresses generated shall
correspond to the same implemented byte of memory (or I/0 space). An attempt to access a physical
address that does not correspond to implemented memory or 170 registers shall cause a hard
memory error trap (see section 11.6.1).

Virtu‘al Address

0 1 28 29 31
T; Supervisor/User
Map Entries
Segment | ___ _ A b Relocation
Association Select Amount
o Phyanal Address ! & 281

Figure 12-4: Address Relocation

MIL-STD-18628B
3 January 1983

(] [}
12.2,5. Access Protection. |If bit 31 of the selected map pointer register is set, protection Is
enabled. The virtual address shall be associated with a map entry as described above. Bit 0 of the
map entry specifies whether access to this segment is a privileged operation. If this bit is set, and bit
15 of the PSW is clear, a memory management trap shall be generated with fault code
Privilege.Violation. Bits 29:31 of the map entry specify the access types allowed for this segment.
The encoding of this field is:

000 No Access. Any access shall cause a trap.

100 Instruction Access Only. Instruction fetchrand reading of literals in short literal of
literal operands is allowed.

001 Data Read Only. Reading of operands is allowed.

101 Instruction or Read Access. Instruction fetch, literal fetch and reading of
operands is allowed. :

010 , Data Read/Write. Reading or writing of operands is allowed.

110 Reserved. Any access shall cause a trap.
011 Context Only. Access as part of a context stack is allowed. Any other access

shall cause a trap.
111 Reserved. Any access shall cause a trap.

In all cases accesses other than those explicitly allowed shall cause an Invalid.Access trap (see
section 12.4 below). Note in particular that context stacks can only be allocated in segments with
access code 011. Such segments cannot be manipulated explicitly by any instruction. This is vital to
the security of the system and the transportability of the software.

12.2.5.1. Self-Modifying Code. lf access protection is disabled, it is possible to execute
instructions that write their operands into the instruction stream in the immediate vicinity of the
currently executing instruction. This type of code sequence is called self-modifying code. Since
modern implementation techniques usually require some type of instruction pre-fetch, the action of
such self-modifying code is unpredictable. Modifications (or data writes) to the instruction stream are
guaranteed to be interpreted as stored only if a REPENT or LTASK instruction is executed before
execution of the modified instruction stream is begun.

12.2.6. Crossing Segment Boundaries. When a 2, 4, or 8 byte primitive data object (see section
4.5) is being accessed, segment association, relocation and protection checks function as if the
object were referenced one byte at a time. When a value is being stored into such a multi-byte object,
if a transfer of any byte is blocked by the memory management system, then no bytes shall be stored.

While accessing instructions during execution or while accessing the context stack, segment
association, relocation and protection checks function as if the instruction or context stack were
being accessed one byte at a time. If the allocation of a procedure context is blocked by the memory
management system, then none of the context shall be allocated.

12.2.7. Protection of the Supervisor. A virtual address with bit 0 set shall cause an
Invalid.Supervisor trap if bit 17 of the PSW is clear.

47

MIL.STD-1862B
3 January 1983

_12.3. Implementation Considerations.

12.3.1. Cacheing of Memory Maps. In many implementations it will be desirable to cache parts of
the memory maps, such as the map size and a few recently used map entries, The properties of any
such cacheing mechanism are implementation dependent. However, the following consistency
requirements shall be met:

e Setting a Map Pointer Register using the LTASK instruction shall force the cache to be
consistent with'the specified map. '

o Alteration of a map entry using the REPENT instruction shall force the cache to be
consistent with the new entry and the map size of the altered map, as specified in
memory.

12.3.2. Aliasing of Physical Addresses. Using the relocation facility of the memory
management system, it is possible to map two distinct virtual addresses onto a single
physical address. This is known as aliasing of a physical address. In pipelined implementations, it
may be desirable to use virtual addresses for data access coordination. In this case, the order of
multiple accesses to the same physical address through different virtual addresses in the same map is
unpredictable. The practice of aliasing physical addresses within a single map should be avoided.

12.4. Memory Management Traps. A memory management trap is generated by an attempt to
perform a memory access that is specified as invalid by the memory management facility. Such an
access shall suspend the current execution context and cause a trap using the Kernel Context Stack.
The address of the entry point for the procedure to be invoked shall be specified by the vector at
physical address 10000C (Hex). The procedure shall be invoked with four parameters:

1l A réference to the byte in memory whose attempted access caused the trap. The
size of this parameter is one byte. The address of this byte can be obtained by:
MOVA 71, X,

2 A reference to the opcode of the Instruction causing the trap. The size of this
parameter is one byte. The address of the offending instruction can be obtained
by: MOVA 22, X.

73 The segment number of the segment containing the invalid virtual address as a
constant. The value of this parameter Is "undefined in the case of an
Invalid.Supervisor or Invalid.Segment fault. The size of this parameter is one

byte.

4 The memory management fault code as a constant. The size of this parameter is
one byte. : ‘)

The following memory management fault codes are defined:

Name Code ~
Invalid.Supervisor 1
Invalid.Segment
Invalid.Access
Privilege.Violation

hrON

MIL-STD-1862B
3 January 1983

12.5.1/0 Space Selection. Communication with 1/0 devices in the Nebula architectlre is
accomplished with memory access. A portion of the physical address space is reserved for 170
device registers. An access to one of these addresses transfers information to an associated device
control register. The first 2%° physical addresses (OOOOOOOO to OOOFFFFF 16) Shall be used to select
170 space.

12.6. Subseting of Memory Management. A particular implementation may subset the i
functionality of the memory management system in three ways:

1. The size of the virtual addresses translated may be reduced as specified above under
implementation virtual address space.

2. The size of the physical addresses generated may be reduced to correspond to the
physical memory accessible to the lmplementatlon However, the requnrements of section
12.5 shall be met. '

3. The segment association function may be reduced. The full architecture allows segment
bounds to be specified on any doubleword boundary. The alignment requirement may be
increased up to 256 byte boundaries. If this is done, the unused low order bits of the
virtual address bound field of the map entries shall be reserved. The relocation amount
field shall be reduced by the same number of bits; these bits shall also be reserved. The
number of low order bits of the virtual address that are not changed by the relocation
process shall be increased by the same number of bits. :

49

MIL-STD-1862B
3 January 1983

13.1/0 Controllers

Ipteraction with 170 devices in the Nebula architecture is provided by the ability to access control
registers as locations in the 170 portion of the physical address space. Some implementations will
provide I/0 through a fixed set of ports or channels. This section defines a standard 1/0 controller
architecture for handling transactions .on such a channel. The 170 controller (10C) is a processof
with a limited.instruction set (described below). This instruction set allows the 10C to perform
predefined transfer, sequencing, and control functions without processor intervention. . 170
transactions between the processor and I0C are structured as messages containing the specifics of
the transfer requested. The IOC instruction set is designed to process such messages in a general
manner and to provide additional intelligence to devices connected to its I/O channel. Most of the
IOC instruction set is general and operates with any type of interface. However, some interfaces
require that specific functions be provided for their proper operation. Channel specific information is
provided below for the following interface types:

e Serial Point-to-Point interface (compatible with RS449)
¢ 16-bit Parallel Point-to-Point interface

¢ MIL-STD-1853 Serial Multiplex Data Bus interface

13.1. Channel Configuration Registers. Associated with each channel shall be a channel
configuration register. This register shall be addressabie by the processor as a 32-bit word in the 170
address space. The bits in this register shall be used to specify channel dependent parameters (such
as parity or bit rate) for the associated interface. Bits 22:26 of this register shall specify the maximum
priority allowed for programmed interrupt requests. Bits 27:31 shall specify the interrupt priority for
I0C error interrupts from this channel. The assignment of the other bits in this register is
implementation dependent. The contents of this register are undefined when power is applied to the

10C.)

0 - 45 ' 18 17 21 22 26 27 31
R;':' Qsdg)ress Channel Dependent ?S‘gg)e &?x ol Error
, “ J
N ’ J I
|
Channel Dependent Interrupt Priorities -

Figure 13-1: Channel Configuration Register

13.2.10C Programs. The operation of each channel is controlled by one or more channel
programs. The execution of channel programs shall appear paraliel. Each parallel point to point
(PPP) and MIL-STD-1553 channel shall support a single channel program. Each serial point to point
(SPP) channel shall support 2 channel programs; one_for input and one for output. Execution of a
read operation in a SPP output program or a write operation in a SPP input program shall cause an
lilegal.Operation fauit.

Each channel program has a 82-bit channel program counter, a 32-bit message pointer register, a
16-bit accumulator, a 16-bit channel status, and a 16-bit channel program status register associated
with it. These registers are described below. The channel program may perform transfer operations
using the data in the record specified by the message pointer register as_parameters of the transter.
The channel program may interrupt the processor as required, and return information about the

requested transfer in the message. :

MIL-STD-1862B
3 January 1983

13.2.1. Program Counter. The channel progrdm counter (CHPC) is a 32-bit register that contains
the virtual address of the next instruction in the channel program. This register is visible in the
processor 1/O address space. A channel program is specified by loading an address into this
register. Channel program counters are restricted to even addresses. An odd address in a channel
program counter shall cause an |OC error interrupt to be generated with fault code
Program.Alignment. Writing of this register by the CPU while the channel program is running (bit 1
of the channel status set) shall cause an 10C error interrupt with fault code 10C.Active. In this event
the contents of the register are undefined. Recognition of this error condition may be delayed until
the I0C next examines the register. Section 13.7.1 describes the error interrupt mechanism. When
power is applied to the I0C, bit 31 of the CHPC shall be 0 and the contents of bits 0;30 are undefined.

13.2.2. Message Pointer Register. The message pointer register (MP) is a 32-bit register that
contains the virtual address of the current message being processed. This register is visible in the
processor |/0 address space. The value in this register must be even. An odd value in a message
pointer register shall cause an 10C error interrupt with fault code Message.Alignment. Writing of
this register by the CPU while the channel program is running (bit 1 of the channel status set) shall
cause an I0C error interrupt with fault code I0C.Active. In this event the contents of the register are
undefined. Recognition of -this error condition may be delayed until the IOC next examines the
register. Section 13.7.1 describes the error interrupt mechanism. When power is applied to the 10C,
bit 31 of the MP shall be 0 and the contents of bits 0:30 are undefined.

13.2.3. Accumulator. The accumulator is a 16-bit register used by IOC instructions as an implicit
operand. It is used as a computational temporary and a unit count register for transfer instructions.
When power is applied to the IOC, the contents of the accumulator are undefined.

13.2.4. Channel Status. The channel status is a 16-bit register containing control information
related to the channel. Bit 0 of this register is the run control bit. Setting the run bit shall signal the
channel to begin execution of the channel program. The IOC shall respond by setting bit 1 (run
status) and beginning execution of the instruction indicated by the channel program counter.
Clearing bit 0 shall signal the channel to halt. The IOC shall perform an orderly termination of the
operation currently in progress and then stop execution of the channel program and clear bit 1 of the
channel status. Bits 0 and 1 are also cleared by channel program initiated halts. Bit 15 of the channel
status register is reserved for reporting of Built In Test (BIT) detected problems. This bit is set to 1 by
the implementation dependent BIT facilities to indicate a BIT detected problem. Bits 2:14 of the
channel status register are implementation dependent. When power is applied to the 10C, bits 0, 1,
and 15 of the channel status register are cleared and bits 2:14 are undefined. When power is applied
to the 10C, the I0C shall be placed in the halt state. '

012 14 16

Channel Dependent

' i BIT Indicator —_—j

Run Status
Run Control

Figure 13-2: Channel Status Register

51

MIL-STD-1862B
3 January 1983

13.2.5..Channel Program Status. The channel progrém status is a 16-bit quantity that contains
iqigrma_ntlon about the last transfer operation requested by the channel program. This register is
visible in the processor 170 address space. The format of this halfword is shown in figure 13-3.

0123465 16

Reserved

i t‘ Data Check
Overrun
Timeout

Out of Sync
Device Terminate

Figure 13-3: Channel Program Status

The bits of the channel program status halfword indicate which of several exceptional conditions may
have caused termination of the transfer. Some of these error conditions are not detectable by some
channels. The assigned fields are: '

Device Terminate The device signaled transfer completion prior to exhaustion of the transfer count.

Out of Sync The transfer type or direction specified by an external device does not match the
transfer instruction executed (PPP). -

Timeout A transfer was not acknowledged within a channel dependent time.

Data Overrun Data was lost on a read due to the inabillity of the IOC to complete the transfer
prior to the arrival of the next data. .

Data Check An error was detected in the data received.

The associated bit is set to indicate the presence of the exceptional condition. A zero (all bits
cleared) in the channel program status register shall Indicate that no exceptional conditions were
detected in the preceding transfer. When power is applied to the I0C, the contents of the Channel
Program Status register are undefined.

13.3. Virtual Addressing. There shall be 3 virtual segments associated with each channel
program. All memory accesses made by a channel program shall be made through one of these
segments. There is one segment for instruction access, one for message access, and one for data
access. The physical memory associated with each of these segments can be defined by the Set1/0
Segment instruction. This instruction selects a segment from one of the CPU maps for use as one of
the channel program’s segments and verifies that the access key for the segment corresponds to the
use intended. Segments defined as instruction segments are checked for Instruction access;
message and data segments are checked tor read/write access. All instruction and literal accesses
shall be made through the instruction space. The space used for data accesses is specified in the
individual instruction descriptions. The IOC shall check that program specified addresses lie within
the bounds of the corresponding segment. Valid addresses shall be relocated as specified In the
selected segment. Invalid addresses shall cause an Addressing.Error fault. The associations for
10C virtual addressing are depicted in figure 13-4,

52

MIL-STD-1862B

3 January 1983
[¢
User Program
Virtual Space
Channel Control T — 10C
~Memory T — .
Channel ~. Mapped Non-privileged
Program 00 . Access Control
\)
Registers
Instructions ~
Transfer I Privileged
Request Message Control
Operands Operands ___ Registers
A
<>
CPU
Access
Executive Specifies
' . _ Allowed Segment
Data <_E:a__ta___J Accesses
Buffers Access

Figure 13-4: 10C Virtual Addressing

MIL-STD-1862B
3 January 1983

') €
13.3.1.Segment Specifiers. I0C virtual segments are defined by using the Set /0 Segment
(SETSEQG) instruction to define an I0C segment specifier, The segment specifier to be defined is
referenced by a memory mapped address in the IOC control registers. The control register addresses
reserved for this purpose should not be accessed using instructions other than SETSEG. The effect
of referencing these addresses with other instructions is unpredictable. The reference address for
each segment specifier, relative to the base of the I0C control registers, is defined in the table below.

Relative Address (Hex) Segment Specifier
10 ’ Channel Program
20 Message

30 Data Buffer

When power is applied to the 10C, all three segments shall be set to prohibit all accesses.

13.4. Physical Addressing. |0C program, message, and data buffer references shall address only
physical memory locations with addresses greater than or equal to 00100000 (hex). References to
addresses less than 00100000, or to addresses greater than the implemented memory shall cause an
IOC error interrupt with fault code Memory.Error. This fault shall also be generated if a hard
memory error occurs on a transfer to a valid physical address,

13.5. Instruction Execution. |OC instructions are represented as one or more halfwords aligned
on halfword boundaries. On an active channel, the channel program counter shall contain the
virtual address of the next instruction to be executed. The channel program counter shall be
incremented by the number of bytes in each instruction fetched.

13.6. Operand Accessing. Instruction operands are specified either implicitly in the accumulator
or as an explicit literal or displacement In the instruction stream. Access to a literal in the instruction
stream shall cause the channel program counter to be incremented by the number of bytes in the
operand. Operands in the message are selected by a displacement field in the instruction. Twice this
displacement added to the contents of the message pointer register shall be the virtual address of the
operand in the message.

13.7.10C Interrupts. The IOC shall have the ability to interrupt the processor. Processor
interrupts may be initiated by 10C detected errors or by execution of an IOC interrupt instruction. An
IOC interrupt shall invoke a service routine at the address specified by the contents of the IOC error or
program interrupt vector, respectively. Each channel program is assigned one error vector and one
program vector. Interrupts shall be held pending by the I0C until acknowledged by the CPU.

The service routine shall'be invoked with two parameters:

(3! The physical address of the interrupt vector used, as a reference to a word in
memory. The address of the interrupt vector can be obtained by: MOVA 71, X
(where Xis a local variable).

72 An interruption code Iidentifying the nature of the interrupt. This is an operand
specified by the IOC interrupt instruction or is implicitly determined by the nature
of the IOC error. This parameter is read-only,

The priority of a programmed interrupt request is specified by the I0C interrupt instruction. The
interrupt priority for 10C errors is defined by the channel configuration register for the interrupting
channel. 4

MIL-STD-18628
3January 1983

13.7.1.10C Error Interrupts. Detection of certain errors by the 10C shall causé an 1OC Error
Interrupt to be generated. The channel program executing at the time the error is detected shall be
halted and bits 0:1 of the channel status register shall be cleared. The interruption code shall be fixed
by the type of error: '

Fault Fault Code (Hex) Described in Section
Program.Alignment 1 13.2.1
Message.Alignment 2 13.2.2

lliegal.Opcode 3 13.8

Addressing.Error 4 13.3

10C.Active 5 13.2

lllegal.Operation 6 13.2,13.8.4
Interrupt.Priority 7 13.8.3

Memory.Error 8 13.4

13.8. [0C Instructions. [OC instructions have the general form shown below:

Opcode Index

The index field is used as a halfword displacement from the message pointer register or the channel
program counter, depending upon the instruction (parentheses indicate a “contents of" operation).
The instruction descriptions use the notation (MP + index*2) to refer to the halfword in the message
addressed by this index field. The index field and 16-bit displacements in the instruction stream shall
be interpreted as unsigned quantities unless otherwise specified. The notation CHPC is used to reter
to the channel program counter for the executing channel program.

The opcode (the value of bits 0:7 in Hex) and function of each instruction is described below.
Fetch of any instruction other than those described below shall cause an I0C error interrupt with fault
code lllegal.Opcode.

13.8.1.10C Instruction Descriptions. The IOC instruction descriptions below have two parts.
The first part after the name of the instruction is unlabeled and lists the assembler mnemonic, a short
symbolic description of the instruction's action if possible, and the opcode of the instruction in Hex.
The second part of the instruction description contains an English-language verbal description of the
action of the instruction. This second part is preceded by the label Description. The verbal
description and the symbolic description for each instruction are intended to complement each other.
Omissions in one are resolved in the other. The verbal description has priority in resolving
ambiguities.

13.8.2. Transfer Instructions. The transfer instructions read or write a block of data to or from
the channel. These instructions have the form shown below: Bit 7 of the opcode is used to.
distinguish between control transfers (command and status information) and data transfers. A zero in
this bit shall specify a data transfer; a one shall specify a control transfer. The ability to distinguish
between command and data transactions is channel dependent. On SPP channels this bit shall be
ignored.

The information to be transferred is specified in general by a buffer address and unit count. This
unit count is the number of memory data units to be transferred. The size of a memory data unit is
channel dependent. The MIL-STD-15853 and parallel channels shall transfer 16-bit halfwords while the

55

MIL-STD-1862B
3 January 1983

0 6 78 15

Opcode C Index

SPP channels shall transfer 8-bit bytes.

In general, the number of units to be transferred is specified by a unit count in the accumulator.
After a transfer, the number of units not transferred is placed in the accumulator. Transfer
instructions executed by MIL-STD-1553 channels interpret the accumulator slightly differently. Refer
to section 13.8.4.3,

In the event a transfer is terminated prior to completion of the specified number of data transfers,
the cause of the termination shall be indicated in the channel program status. Refer to section 13.2.5.

Read

READ : 02

READS 03

Description: :

A read operation is initiated on the channel. The data is read from the channel into the data buffer.
The location of the data buffer is specified by a 32-bit virtual address in the message. Bits 8:15 of the
instruction specify an unsigned displacement (in halfwords) from the message pointer contents. The
buffer virtual address is obtained from this location in the message. This address is checked to insure
that it is a valid address in the data segment. The accumulator contains the maximum number of units
to be transferred. The type of the transfer is determined by the instruction (data for READ, status for
READS). When the transfer has terminated, the accumulator shall contaln the initial unit count minus
the actual number of units transferred.

Read to Message

RDTMSG ' 04
RDTMSGS 05
Description:

A read operation is initiated on the channel. The data is read from the channel into the message.
Bits 8:15 of the instruction specify an unsigned displacement (in halfwords) from the méssage pointer
contents. The data Is stored at this location in the message. The accumulator contains the maximum
number of units to be transferred. The type of the transfer Is determined by the instruction (data for
RDTMSG, status for RDTMSGS). When the transfer has terminated, the accumulator shall contain
the initial unit count minus the actual number of units transferred.

56

MIL-STD-1862B

3 January 1983
Write ‘
WRITE 06
WRITEC 074
Description:

A write operation is initiated on the channel. The data is written from the data buffer to the channel.
The location of the data buffer is specified by a 32-bit virtual address in the message. Bits 8:15 of the
instruction specify an unsigned displacement (in halfwords) from the message pointer contents. The
buffer virtual address is obtained fram this location in the message. This address is checked to insure
- that it is a valid address in the data segment. The accumulator contains the maximum number of units
to be transferred. The type of the transfer is determined by the instruction (data for WRITE, command
for WRITEC). When the transfer has terminated, the accumulator shall contain the initial unit count
minus the actual number of units transferred.

Write from Message

WRFMSG 08
WRFMSGC 0s

Description:

A write operation is initiated on the channel. The data is written from the message to the channel.
Bits 8:15 of the instruction specify an unsigned displacement (in haliwords) from the message pointer
contents. The data stored at this location in the message is output. The accumulator contains the
maximum number of units to be transferred. The type of the transfer is determined by the instruction
(data for WRFMSG, command for WRFMSGC). When the transfer has terminated, the accumulator
shall contain the initial unit count minus the actual number of units transferred.

67

MIL-STD-18628
3 January 1983

Write Lite ral_

WRLIT 0A , 32-bit address
WRLITC 0B, 32-bit address
Description:

A write operation is.initiated on the channel. The data is written from the instruction segment to the
channel, Bits 8:15 of the instruction are reserved.
virtual address of the data to be written. This address is interpreted as being in the instruction
segment. The data stored at this location is output. The accumulator contains the maximum number
of units to be transferred. The type of the transfer is determined by the instruction (data for WRLIT,
command for WRLITC). When the transfer has terminated, the accumulator shall contain the initial
unit count minus the actual number of units transferred. The format of the WRLIT instruction Is

shown below.

0 6 7 8

The instruction is followed by a 32-bit

15

Opcode C

Reserved

Buffer
Address

MIL-STD-1862B
3 January 1983

'13.8.3. Control Instructions. The following instructions provide the general data manipulation
facilities needed for control functions.

LOAD

LOAD ACK<- (MP + index*2) oC .
LOADL AC < Literal 0D, 16-bit literal
Description:

The specified halfword in the message (for LOAD) or the 16-bit literal following the instruction (for
LOADL) is placed in the accumulator. Bits 8:15 of the LOADL instruction are reserved.

Load Status

LOADST AC <- CCR[offset] 14

Description:

- Bits 8:15 of the instruction specify one of the memory mapped channel control registers. The value
of bits 8:15 of the instruction, with bit 15 forced to G, shall be interpreted as an address offset from the
beginning of the upper half of the channel control registers. The contents of the 16-bit halfword at
this location are placed in the accumulator.

Store

STORE - (MP + Index*2) <. AC 15

Description:
The contents of the accumulator are stored at the specified location In the message.

ADD

IADD AC<- AC +(MP + index*2) OE

IADDL AC<- AC + Literal OF, 16-bit literal
Description:

The indexed halfword in the message (for IADD) or the 16-bit literal following the instruction (for
{ADDL) is added to the accumulator. Bits 8:15 of the |ADDL instruction are reserved.

59

MIL-STD-1862B
3 January 1983

Subtract ' , ‘

ISUB AC<-AC- (MP + index*2) 17

Description:
The indexed halfword In the message is subtracted from the accumulator.

Logical AND

IAND AC<- AC AND (MP + index*2) 10
IANDL AC <- AC AND Literal 11, 16-bit literal
Description:

The logical AND of the accumulator contents and the indexed halfword (for 1AND) or the 16-bit
literal following the instruction (for IANDL) is placed in the accumulator. Bits 8:15 of the JANDL
instruction are reserved.

Logical OR

IOR- AC<-ACOR (MP + index*2) 12

IORL AC<- ACOR Literal 13, 16-bit literal
Description:

The logical OR of the accumulator contents and the indexed halfword (for IOR) or the 16-bit literal
following the instruction (for IORL) is placéd in the accumulator. Bits 8:15 of the IORL instruction are
reserved. _

Add to Addresé

ADDTA (MP +index*2) <- (MP +index*2) + AC 1C

Description:
Bits 8:15 of the instruction specify the location of a 32-bit word in the message. The contents of the

accumulator are interpreted as a signed quantity and added to this word.

MIL-STD-1862B
3 January 1983

Logical Shift)

LSHFT AC <- AC t index 16

Description: .

The contents of the accumulator are shifted left or right by the amount specified by bits 8:15 of the
instruction. Bits 8:15 are interpreted as a signed shift count. A positive number causes a left shift, a
negative number causes a right shift. A shift count greater than 15 or less than -15 shall cause the
accumulator to be cleared.

Load Message Pointer

LMP MP <- (MP + Index*2) 1D

Description:
~ The current message pointer is replaced by the 32-bit word at the specified location in the
message. The new message pointer is checked to insure that it is an even address within the
message space. If the value loaded into the message pointer is zero, bits 0:1 of the channel status
register shall be cleared, and the channe! program shall halt. LMP can be used to chain messages.

Branch

BRIO CHPC - CHPC + index*2 18
BNEQIO {F AC NEQ O THEN CHPC <- CHPC + index*2 19
BLSSIO IF AC LSS 0 THEN CHPC {- CHPC + index*2 1A
Description: |

Bits 8:15 of the instruction are interpreted as a signed halfword displacement from the next
instruction address. The displacement is added to the incremented channel program counter if the
specified condition is met. BRIO always branches. BNEQIO branches if the accumulator is nonzero.
BLSSIO branches if the most significant bit of the accumulator is nonzero.

Case

CASEIO 1B, list count, {list of 16-bit displacements}

Description:

The contents of the accumulator is used as a selector for the case, Bits 8:15 of the instruction
contains the unsigned number of 16-bit displacements in the following list. The value in the AC Is
used as a zéro-based index into the array of 16-bit literals that follow the instruction. If the selector is
less than the list count then the selected signed displacement times 2 is added to the address of the
first halfword in the list to form the next instruction address. Otherwise the CHPC is loaded with the
address of the first halfword following the list (no branch is taken).

61

~

MIL-STD-18628
3 January 1983

Bit Case

BCASE ' 1E, list count, {list of 16-bit displacements}

Description:

Bits 8:15 of the instruction contains the unsigned number of 16-bit displacements in the following
list (the list count). The bit position number of the first set bit from the left in the accumulator is
determined. If this position number is less than the list count then the position number selects one of
the 16-bit displacements following the instruction. The selected signed displacement times 2 is added
to the address of the first halfword in the list to form the next instruction address. Otherwise the
CHPC is loaded with the address of the first halfword following the list (no branch is taken). If no bits
were set in the accumulator no branch is taken,

interrupt

INT o1

Description;

A processor interrupt is generated. The priority of this interrupt is specified by bits 11:15 of the
instruction. If this priority exceeds the maximum defined in the channel configuration register an
Interrupt.Priority fault shall occur. Otherwise, a processor interrupt of the specified priority shall
be requested. The contents of the accumulator shall specify the interrupt code for this request.

A sequence of INT instructions shall cause the specified processor interrupts to be requested in the
order of execution of the INT instructions. Each request shall be held pending until it is accepted by
the processor. Execution of an INT Instruction may cause the channel program to pause until the
requested interrupt can be posted.

jHal’c

HALT 00

Description;
Bits 0:1 of the channe! status register are cleared and the channel program is halted.

13.8.4. Channel Specific Instructions. The peculiarities of each interface require that some
interface specific facilities be provided by the individual I0Cs. This section describes those
instructions whose use is restricted to a particular interface type. Fetch of these opcodes by interface
types for which they are not defined shall cause an lllegal.Opcode fault.

13.8.4.1. Parallel Point to Point Interface. The paraliel point to point interface can be
configured in one of three modes: computer, peripheral or undefined. In computer mode, the
interface initiates all command and data transactions. In peripheral mode, the interface responds to
externally requested transfers, In undefined mode, all interface drivers and receivers except reset are
in the "off" state. The mode of operation of the interface Is controlled by a mode field in the channel

configuration register. :

In peripherai mode the interface shall respond to external transfer requests only during the
execution of one of the transfer instructions described above, The instruction specifies the expected

- 62

MIL-STD-18628
3 January 1983
-]

]

direction and type (command/status or data) of transfer. Actual movement of data across the
interface is controlled by the external device. If the direction and type of the external request does
not match those specified by the instruction, an Out of Sync error shall be indicated in the channel
program status word and the transfer instruction shall terminate. In the absence of transfer errors the
instruction shall terminate when the specified number of units has been transferred.

The interface provides the ability for an external device to request a processor interrupt. Bits 17:21
of the channel configuration register shall specify the priority of this request. The entry address shall
be specified by the contents of the device interrupt vector. See section 13.10. The device interrupt
request shall be acknowledged when the processor interrupt is accepted.

An interface control instruction is provided to manipulate the channel specific control functions
available. Some of these functions are restricted to a particular operating mode, as_described below.
An attempt to execute one of these functions in an improper mode shall cause an
tllegal.Operation fault.

Interface Control

CONTROL 1F

Description:
Bits 8:15 of the instruction specify the control function to be performed. The defined functions are:

0000000X Interrupt. An interrupt transaction is initiated on the interface. Bit 15 specifies the
type of interrupt: 0 specifies normal end; 1 specifies unusual end. This function is
restricted to peripheral mode.

00000010 Reset. A reset signal is generated.

TOXXXXXX Clear discrete. Bits 10:14 are reserved. Bit 15 is associated with the IPL Ready
signal. If bit 15 is set, IPL ready is cleared. If bit 15 is clear, this is a no-op. This
function is restricted to peripheral mode.

TIXXXXXX Set discrete. Bits 10:14 are reserved. Bit 15 controls IPL ready. if bit 15 is set, IPL
. Ready is set. If bit 15 is clear, this is a no-op. This function is restricted to
peripheral mode. :

Specification of any other code in bits 8:15 shall cause an lilegal.Operation fault,

MIL-\SFD\-TBS2B~,.
3 January 1983

[} [
13.8.4.2, Serial Point to Point Interface. Each SPP interface has an independent input and
output channel. An interface control instruction is provided to operate the control signals that can be
generated by the output channel. Use of this instruction on the input channel shall cause an
litegal.Operation fault. '

Interface Control

CONTROL 1F
Deséription: , .
Bits 8:15 of the instruction specify the control function to be performed. The defined functions are:
00000000 Break. A break is sent on the output channel.
FOXXXXXX Clear discrete. Bits 10:12 are ressrved. Bits 13:15 are associated with the control

1, control 2, and IPL. Ready discrete signals, respectively. A one bit in any of these
positions causes the corresponding signal to be cleared. A zero leaves the
corresponding signal unchanged.

TIXXXXXX Set discrete. Bits 10:12 are reserved, Bits 13:15 are associated with the controt 1,
control 2, and IPL Ready discrete signals, respectively. A one bit in any of these
positions causes the corresponding signal to be set. A zero leaves the
corresponding signal unchanged.

Specification of any other code in bits 8:15 shall cause an lllegal.Operation fault.

13.8.4.3. MIL-STD-1553 Serial Interface. This serial interface shall operate in accordance with
the latest release of MIL-STD-1553B. The MIL-STD-1553B interface can operate in two modes: bus
controlier (BC) or remote terminal (RT). The current mode of operation is specified by a mode field in
the channe! dependent section of the Channel Configuration Register:.

13.8.4.3.1. MIL-STD-1653 RT Mode Specific Instructions. When thé channel configuration
register specifies RT mode operation, no Instructions shall be executed. See section 13.9 for detalls.

13.8.4.3.2. MiL-STD-1553 BC Mode Specific Instructions. When the channel configuration
register specifies bus controller mode, the standard 10C instruction set, as described above, is
supported. However, the function of the transfer instructions described in section 13.8.2 is redefined
slightly for compatibility with the MIL-STD-1553B interface. At the beginning of these instructions, the
accumulator is assumed to contain a MIL-STD-1553B command word.

The standard READ, READ STATUS, WRITE, WRITE COMMAND classes of instructions perform
the following functipns:

READ The contents of the accumulator are presumed to be a transfer command (no
check for mode commands is made) with the direction specified by the T/R bit in
the accumulator.

WRITE The contents of the accumulator are presumed to be a transfer command (no
check for mode commands is made) with the T/R bit forced to zero.

WRITE COMMAND The contents of the accumulator are assumed to be a mode command with no

MIL-STD-1862B
3 January 1983

associated data word.

READ STATUS The contents of the accumulator are assumed to be a mode command with one
associated data word. The direction of data transfer is indicated by the T/R bit in
the accumulator.

For transfer commands, the command word in the accumulator contains a word count field as well
as an RT address, and transmit/receive bit. The READ and RDTMSG instructions interpret this word
to determine the function to be performed. In particular, this means that a READ instruction can in
fact cause a write operation, depending upon the command word supplied. The WRITE, WRFMSG,
and WRLIT instructions operate in the same manner, except that they force the transmit/receive bit of
the command word (bit 5 of the accumulator) to zero. The data required for the 1/0 transaction Is
obtained from the buffer specified by the instruction definition. When the instruction terminates, the
status word received on the MIL-STD-1653 bus is placed in the accumulator. The Channel Program
Status reflects the outcome of the transfer. A zero (all bits clear) in the Channel Program Status
register indicates a correct transfer. :

In multi-redundant bus systems, the bus select register is loaded by the CPU and indicates the bus
to be used for transfers while in BC mode.

In addition to the standard transfer and control instructions, two additional instructions are

provided for the MIL-STD-1553 interface. An interface control instruction and a special transfer
instruction to initiate RT to RT transfers are described below.

Interface Control

CONTROL 1F

Description: ‘
Bits 8:15 of the instruction specify the control function to be performed. The defined functions are:

00000000 Specify transmission bus. The bus on which the bus controller communicates is
specified by the contents of the accumulator. This value is placed in the bus
select register. If the contents of the accumulator specify a bus that is not
implemented, an Illegal.Operation fault shall result..

Specification of any other code in bits 8:15 shall cause an lllegal.Operation fault.

MIL-STD-18628 L
3 January 1983 ‘

‘ L]

Initiate RT to RT transfer
RT2RT . 20
) Descrlption:‘

Bits 8:15 of the instruction specify an unsigned displacement (in haliwords) from the message
pointer contents. A four, halfword operand block is located at this position in the message. The

function of each halfword is:
* A 16-bit bus receive command to be sent to the destination RT.
o A 16-bit bus transmit command to be sent to the source RT.

¢ The 16-bit status word generated by the source RT is stored in this location at the
‘completion of the transfer.

¢ The 16-bit status word generated by the destination RT is stored in this location at the
compléetion of the transfer:

0 16
ol) Bué Receivé Command
2 Bus Transmii Command
4 ' Transmittef Status
6 " Receiver Status

13.9. MIL-STD-1553B Remote Terminal Mode Operation. If the channel configuration register
of a MIL-STD-1553B channel speclfies remote terminal mode operation, execution of the channel
program shall be disabled. The RT address of the IOC-shall be specified by bits 0:4 of the channel
configuration register, Operation of the channel shall be initiated or terminated by setting or clearing
bit 0 of the channel status register, respectively. The following registers in the processor 170
space are interpreted to control the response to bus commands.

13.9.1. Message Pointer Register. The contents of the message pointer register shall be
interpreted as the virtual address of an array of 32-bit buffer pointers. The array contains an input and
an output entry for each subaddress, Accesses to this array shall be restricted as accesses to the
message segment.” An addressing error favlt may occur when RT mode operation Is Initiated if all 64
entries of the array do not lie within the message segment. .

13.9.2. Status Word. The status word is a 16-bit register that is ioaded by the CPU. The contents
of this register are used to determine the software controlled bits in the status reply to a MiL-
STD-1653 bus command.

® The contents of bits 7, 13, and 15 are OR'ed with information from the IOC to produce the
service request, subsystem flag, and terminal flag status bits, respectively.

e Bit 14 defines the dynamic bus contral acceptance bit used to respond to a dynamic bus

MIL.-STD-18628B
3 January 1983
[}

]

control mode command.

¢ Bits 0:4 and 8:10 are reserved.

The remaining bits of the status reply are determined by the channel in accordance with MIL-
STD-1553B.

13.9.3. Vector Word. The vector word is a 16-bit register whose contents are defined by the CPU.
The contents of this register are transmitted in response to a Transmit Vector Word mode command.
A non-zero value also causes the service request bit in the MIL-STD-1553 bus status word to be set.

13.9.4. Transfer Commands. When a transfer command is received on the bus in RT mode, the
following actions shall occur in the order shown:

1. Bits 5:10 of the command word (the Transmit/Receive and Subaddress fields) shall be
used as an index into the butfer address array. The base address of this array is defined
by the contents of the message pointer register. The index times 4 plus the base address
selects a 32-bit word from this array. Bit 30 of this selected word shall be set to zero.

2. Bits 30:31 of the value obtained from the selected word shall be forced to zero. The result
shall be interpreted as the virtual address of a data buffer in the data segment. The
transfer specified by the bus command shall be performed.

3. 1f the requested transfer is correctly completed, bit 30 of the buffer pointer selected in
step 1 shall be set. If an error was detected in data received, this bit shall not be altered.
If a data transmission cannot be properly performed, this bit shall not be altered.

4. Bit 31 of the selected word shall be examined. If this bit is set, and no errors were

. detected in the transfer, the IOC shall request an RT mede interrupt as described In
section 13.9.6. Note: bit 31 is a software switch that causes an interrupt when a transfer
is performed using this buffer.

13.9.5. Mode Commands. The optional RT mode commands shall perform the functions
described in MIL-STD-1553B. The mode commands defined by MIL-STD-1553B shall be separated by
the 10C into two classes. Mode commands in the first class shall be processed without notification of
the CPU. The commands in this class are: ,

» Transmit Status Word

e Transmit Vector Word

o Transmit Last Command

e Transmit BIT Word
The mode commands in the second class shall perform the function described in. MIL-STD-1553B
and then cause the I0C to request an RT mode interrupt as described in section 13.9.6. The mode
commands in this class are:

e Dynamic Bus Control .

e Synchronize Without Data

67

MIL-STD-1862B
3 January 1983

. e [nitiate Self Test
e Transmitter Shutddwn
¢ Override Transmitter Shutdown
¢ [nhibit Terminal Flag Bit
e Override Inhibit Términal Flag Bit
* Reset Remote Terminal
¢ Synchronize With Data
¢ Selected Trénsmitter Shutdown

o Override Selected 'fransm'itter Shutdown.

In addition, recelpt of one of the last three mode commands shaII cause the received 16-bit data word
to be placed in the channel program status register.

13.9.6. RT Mode Interrupts. Interrupts specified as RT mode interrupts shall be vectored through
the IOC program interrupt vector. The priority of these interrupts shall be specified by bits 22:26 of
the channel configuration register. The mechanism of these interrupts shall be the same as that
described in section 13.7.

The interrupt code for an RT 'mode interrupt shall be a 16-bit value. This value shall be the 16-bit
bus command that initiated the interrupt operation.

Interrupts shall be'reqhested in the order in which the commands that generated them are
received. If an interrupt cannot be posted due to a previously pending interrupt, the ICC shall
respond with busy to the bus request.

RT mode operation can also cause Message.Alignment, Addressing.Error, and
I0C.Active faults, These shall operate as previously defined in section 13.7.1,

13.10. Interrupt Vector Assignments. Each |IOC shall be assigned a four word block of vectors
in the device interrupt vector area (refer to section 15). The function of some of these vectors is
interface specific. The table below lists the relative position and funcuon of the vectors for each

interface type described within this document.

Interrupt Vector Assignments

Location - Parallel MIL-STD-15653 SPP

001000X0 Program Program Input Program
001000X4 Error Error Input Error
001000X8 Device Reserved Output Program
001000XC Reserved - Reserved Output Error

MIL-STD- 18628
3 January 1983

13.11.10C Control Register Assignments. Each |OC program is assigned a 512 byte block of
control registers in the 1/0 address space. This block is divided into two 256-byte halves. Control
registers located in the low half are used for functions that may impact the security of the system. The

assigned register offsets in this area are:

Address

000XXYQ0
000XXY04
COOXXY10
000XXY20
000XXY30
000XXY40

: 000XXYO03
: G0OXXYOF
: COOXXY1F
: 000OXXY2F
: COOXXY3F
: COOXXYDF
0COXXYEOQ:

000XXYFF

Function

Channel Configuration Register
Implementation Reserved

Program Segment Specifying Location
Message Segment Specifying Location
Data Segment Specifying Location
Implementation Reserved

Reserved

Where "X*" i5 any Hex digit and "Y" is an EVEN Hex digit.

The upper half of the I0C control registers is used for those control registers that are available to
an untrusted user. Implementation dependent registers in this area shall not perform any functions
that may cause memory accesses outside the defined I0C segments or that may generate interrupts
using vectors or priorities other than those defined above.

Address

00OXXYQO :
0COXXY02:
000XXY04 :
: 000XXYO0B

000XXYO08

000XXYOC :

COOXXYOE

000XXY10:
OO0XXYEO:
: OOOXXYF(_-7

000XXYE2

000XXY01
000XXY03
000XXY07

000XXYOD

: 000XXYOF

000XXYDF
O0OXXYE1

Function

Channel Status

Channel Program Status
Channel Program Counter
Message Pointer

Status Word (MIL-STD-1583)
Vector Word (MIL-STD-1553)
Implementation Reserved
Bus Select (MIL-STD-1553)
Reserved

Where "X" is any Hex digit and "Y" is an ODD Hex digit.

&9

MIL-STD-1862B
3 January 1983

14. Timer Support

The Nebula architecture provides two types of timer support: time of day timer and interval timers.
These timers are accessible as registers in the 1/0 address space. Access to these registers Is
controlled by the memory management system.

14.1. Time of Day. There shall be a 32-bit register called the time of day clock. This register shall
be a counter that is incremented every 10 ms. The contents of this register can be read or written by
the software.

14.2, Interval Timers. There shall be four 32-bit registers called interval timers. These registers
shall be counters that are decremented on the occurrence of particular events. These registers may
be read or written by the software. Associated with each interval timer is a one byte field of the 32-bit
Timer Control Register. The format of this register is shown in figure 14-1. Each byte of this register
contains two fields: a mode field and a priority field. The mode field shall determine which events
shall cause the corresponding interval timer'to be decremented. The defined values of the mode field
are:

000 Disabled. The corresponding interval timer shall not be decremented.

001 ’ Time Base. The corresponding interval timer shall be decremented every 1
‘microsecond.
010 Instruction. The corresponding interval timer shall be decremented by each

execution of an instruction while bit 0 (Kernel/Task) of the PSW is set. The timer
shall also be decremented on each check for pending interrupis on inteérruptible
instructions {such as MOVBK) while bit 0 of the PSW is set.

All other values of the mode field are reserved. Each time an interval timer is decremented to zero an
interrupt shall be requested. The timer shall continue to be decremented as specified by the mode
field. The priority of the interrupt request shall be determined by the priority field in the Timer Control
Register corresponding to the interval timer. The entry address of the procedure to be invoked shall
be determined by the contents of the interval timer's interrupt vector, See section 15. This interrupt
shall have no parameters. Timer interrupts from each interval timer will be queued one deep.

0 23 78 10 11 15 16 18 19 23 24 26 27 31

Mode Prioﬁty Mode | Priority Mode | Priority .| Mode| Priority

\ A A A J

l l []
Timer 0 Timer 1 Timer 2 " Timer3

Figure 14-1: Timer Control Register

70

MIL-STD-1862B
3 January 1983

15. Assigned Physical Addresses

Access to the assigned physical addresses should be controlled by means of the memary
management system. "

16.1. Memory Space Assignments. The first 1024 bytes of physical memory are allocated for
speplal uses by the architecture. The following table gives a list of interrupt and trap vector locations
defined by the architecture.

VECTOR NAME ADDRESS (in hex)
Reserved 00100000
Software interrupt 00100004

BiT trap (#1) 00100008

Memory management errors 0010000C

Memory system errors (Sofit) 00100010

Memory system errors (Hard) 00100014

Power failure 00100018

Power restore 0010001C

Kernel save area pointer 00100020
Supervisor Exception Handler 00100024
Privileged instruction trap 00100028 .

BiT trap (# 2) 0010002C

Timer O interrupt _ 00100030

Timer 1 interrupt 00100034

Timer 2 interrupt 00100038

Timer 3 interrupt 0010003C

Reset and IPL entry 00100040
Reset/IPL save area pointer 00100044
Reserved 00100048 to 0010005C
Reserved for Device Vectors 00100060 to 001000FC

The addresses from 00100100 to 00100400 (hex) are available for assignment to hardware specific
uses such as additional device vectors, IPL and BIT functions. Addresses within this area are
assigned by the hardware specification. Software that uses these assigned locations should be
aware of the implications of the hardware use of these locations. In particular, each type of
assignment has differing properties: :

Device Vectors These are accessed during interrupt processing.

IPL areas During the IPL process these areas may be modified in an arbitrary manner. The
IPL sequence cannot reliably initialize these areas. Once IPL is complete, these
areas shall function as ordinary memary.

BIT areas Memory assigned to the built-in test function may be modified at any time during
execution,

Other uses The properties of other assigned areas will be defined by the hardware
specification. -

4

MIL-STD-1862B
3 January 1983

' [}
Unassigned addresses within this area function as ordinary memory. However, if software is to be
transportable between implementations with differing assignments, use of this area by the software
should be avoided.

15.2.1/0 Space Assignments. The top 2K bytes in the 170 space are dedicated to processor
control registers. The following table lists the registers assigned in this area. '

REGISTE_R NAME ADDRESS (in hex)
Kernel Context Pointer . 00OFF800

Task Context Pointer . . ODOFF804
Software interrupt request 0OOFF808

OPEX limit O0OFF80C

OPEX table address 000FF810

SVC limit) : COOFF814

SVC table address O0OFF818

Auxiliary Status Register COOFF81C

User Map Pointer COOFF820
Supervisor Map Pointer COOFF824

Timer control O00FF828

Interval timer O - 00OFF82C

Interval timer1 . COO0FF830

Interval timer 2 . 0O0FF834

Interval timer3 " OOOFF838

Time of day clock A 00OFF83C
Reserved : OCOFF840 to O0OFFFFF

- Accesses to ALL registers in 1/O space are restricted. First, accesses may not cross register.
boundaries. Second, accesses within registers must be made on item boundaries. In other words,
halfword accesses must be on halfword boundaries within word or doubleword registers. Word
accesses must be on word boundaries within doubleword registers. Bit field accesses may start on
any bit as long as the field does not cross a register boundary. Accesses that do not meet these
restrictions shall produce one of two outcomes; either the access shall complete as requested or the
access shall produce a hard memory trap. The choice is implementation dependent.

The Kernel Context Pointer, the Task Context Pointer, the User map pointer, and the Supervisor
Map Pointer are special registers that determine the control flow of the computer. As such, reading
them through the 1/0 space may yield old or undefined values, Writing these registers through the
1/0 space will produce implementation dependent results. :

2

MIL-STD-18628B
3 January 1983

16. Conceptual Model of InstructionrExecution

The conceptual model of instruction execution provides information needed to coordinate the
interaction between multiple processors and IOCs. It also details the ordering of traps and exceptions
and. their interaction with the normal instruction stream. For most purposes, the serial model
described below is a sufficient description of instruction execution. The remainder of this section
describes interactions that should be considered when writing code to synchronize multiple
processors and I0Cs.

16.1. The Serial Model. Conceptually, the CPU processes instructions one at g time, with the
execution of one instruction preceding the execution of the instruction that follows in the instruction
stream, and the execution of the instruction specified by a successful jump (including exception
handler jumps) or branch follows the execution of the jump or branch instruction. Similarly, an
interruption takes place between executions of instructions (except-when the instruction is noted to
be interruptable).

The sequence of events implied by the processing just described is sometimes called the
conceptual sequence or conceptual order. Even though the actual processing may be quite different
due to variations in physical storage width, instruction pre-fetch, pipelining, and so on, the
conceptual order of execution is maintained, as observed by the CPU itself.

Figure 16-1 is a pictorial representation of the conceptual model. Each box in the figure has one or
more arrows that point to it. The action or actions listed within a box take place (conceptually) after
the action or actions of all boxes with arrows that point to the box. '

16.2. Effects of Parallelism. In very simple machines In which operations are not overiapped, the
conceptual order and the actual order are essentially the same. However, in more complex machines,
overlapped operation, buffering of operands and results, and execution times that are comparable to
the propagation delays between units can cause the actual order of execution to differ considerably
from the conceptual order. In these machines, special circuitry is employed to detect dependencies -
between operations and ensure that the results obtained are those that would have been obtained If
the operations had been performed in the conceptual order. However, as observed by I0Cs and other
CPUs, the sequence may appear to differ from the conceptual order.

When only a single CPU is involved, it can normally be assumed that the execution of each non-
interruptable instruction occurs as an indivisible event. However, in actual operation, the execution
of an instruction may consist of a series of discrete steps. Depending on the instruction, operands
may be fetched and stored in a piecemeal fashion, and some delay may occur between fetching and
storing a result. As a consequence, another CPU or I0C may be able to observe intermediate, or
partially completed, results. When the program on one CPU interacts with a program on another CPU
or 10C, the programs have to take into consideration that a single operation may consist of a series of
accesses, and that the conceptual and actual sequences of these accesses may differ. If another
CPU or IOC is to depend on the results of instruction execution up to a certain point, it is necessary to
perform a serialization function at that point.

Traps for hard memory errors and soft memory errors may occur in a completely asynchronous
fashion. The memory byte(s) in error may be completely unrelated to the instruction being executed
when the error is detected. Ideally, the implementation will be so arranged as to provide a high
probability that when an error is detected it will be related to the currently executing task. It is
intended that the handier for a hard memory error should terminate the executing task, and that the
handler for a soft memory error should resume the currently executing task in a completely
transparent manner, without trying to draw conclusions about the currently executing instruction. In
the remainder of this discussion, the word "traps" will refer to all traps except those for hard and soft
memory errors.

73

MIL-STD-1862B

3 January 1983
<D :
Privileged
M Instruction
Fetch Check
Opcode
y M y MX ‘ MX y MX M
Fetch Fetch Fetch Fetch Fetch
Inline Source Src/Dst Dest Disp
Literals OpSpecs OpSpecs OpSpecs for
: Calculate Calculate Calculate Branches
Operand Operand Operand
Addresses Addresses Addresses
y M y M 4 M
Verify Verify Verify
Read Read Write y
Access . Access Access
y y
Fetch Fetch y M.
Operands Operands Verify Calculate
, . Write Branch
_ v MX y MX v MX Access Address
| Execute | [Execute | [Execute |
' . ,' y y
vV YMX " Store Operands n
Execute R SetCC
T | Set Next Instruction Address
Truncaﬁon l All other side effects
Check T = Truncation Exception
) X = All other Exceptions
. Break M = Memory Management Trap

Check
Note: This is NOT a data tlow graph.

P = Privilege Instruction Trap
B = All "break" Exceptions

Figure 16-1: Conceptual model of instruction execution

74

MIL-STD-1862B
3 January 1983

’ {
The processing of an instruction may be divided into several stages: instruction fetch, operand
address calculation, operand fetch, instruction execution, and operand storage. The following
general rules hold for instruction execution:

e Within an instruction, all operand fetches occur before any operands are stored.
Instructions with overlapping operands work as though the source operands are all
fetched before the destination operands are stored. For instructions that store more than
one operand, the possible effects of overlapping destination operands are specified on
case-by-case basis (see the individual instruction descriptions). The consequences of
overlap of the memory areas specified by the operands of string instructions are
described in the individual string instruction descriptions.

e If an operand specifier is used to specify an operand that serves as both a source and a
destination, it is as if the operand were specified separately as a source and as a
destination; conceptualily, it must be fetched before any operand stores occur, and stored
after all operand fetches have occurred.

e When an exception or trap other than the Truncate exception causes premature
instruction termination, the operands and condition codes are unaffected.

o [f a branch instruction causes an exception that normally causes the Supervisor
Exception Handler to receive the address of the following instruction as Its third
parameter, then the instruction must make its usual determination as to whether or not to
take the branch in order to pass the correct next instruction address (that of the followmg
instruction or that of the branch target).

o If execution of an instruction could cause more than one exception or trap to occur, then
exactly one such exception or trap is chosen to occur in an implementation-dependent
manner. For example, consider a three-operand division instruction where the operand
specifier for the dividend is malformed, using a compound addressing mode within
another compound addressing mode; the divisor is specified as a literal with value zero; .
and the quotient is to be stored into a location with read-only access. This instruction has
the potential to signal an lllegal.Mode exception, an lllegal.Divisor exception, or a
memory management trap. Any one of these may be signalled in a given situation; it is
possible that the same implementation might choose to signal a different one under
different circumstances. (The justification for this ambiguity is that one exception Is as
good an another, and traps are meant to result either in task termination or transparent
task resumption.)

o A successfully completed instruction shall fetch all source operands and store ali
destination operands unless otherwise specified. Failure to complete an instruction as a
resuit of an exception or trap may result in failure to access some or all of its operands.

16.3. Instruction Fetch. Instruction fetching consists of fetching the bytes of an instruction,
‘including the opcode and all operand specifiers. The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in order of increasing byte addresses. It is permissible to
fetch an instruction byte more than once. '

As observed by another CPU or an 10C, instructions are not necessarily fetched in the order in

which they are conceptually executed and are not necessarily fetched each time they are executed.
For example, storing by another CPU or IOC does not necessarily modify the copies of pre-fetched

75

MIL-STD-1862B
" 3January 1983 .
M]
instructions. Also, the fetching of an instruction may precede the operand fetch or storage for an
instruction that is conceptually earlier. : -

However, as observed by the executing CPU, it must be as if one instruction is not fetched until the
preceding one has been completed. For éxample, if fetching the next instruction would cause a
memory-management trap, that trap may not be taken until the current instruction has successfully
completed execution, and any trap or exception encountered by the current instruction has priority.

16.4. Operand Address Calculation. Operand addresses must conceptually be calculated. as if
all previous instructions had first stored their results. Operand address calculations need not be
performed in left-to-right order; they may be performed in some other order, or in parallel,

16.5.Operand Fetch. Unless otherwise specified for an individual instrucétion, during the
execution of an instruction, all or part of the storage operands for that instruction may be fetched,
intermediate results may be maintained for subsequent modification, and final results may be
temporarily held prior to placing them in main memory. (Here "main memory" refers to memory as
seen by another CPU or IOC; it may, for example, include caches that are visible to such other CPU or
IOC.) Stores by another CPU or IOC do not necessarily affect these intermediate results,

All bits within a single byte of a fetch are accessed concurrently. When an operand consists of
more than one byte, the bytes may be fetched piecemeal and in any order (possibly concurrently)
unless ctherwise specified.

16.6. Instruction Execution. Individual instructions, such as the string instructions, may explicitly
perform operand fetches and stores during their execution. Such memory accesses may cause
memory management traps. ‘

16.7. Operand Storage. All bits within a single byte of a store are accessed concurrently. When
an operand consists of more than one byte, the bytes may be stored piecemeal and in any order
(possibly concurrently) unless otherwise specified.

Conceptually, the results of an instruction are stored after the results of all previous instructions are
stored, and before the operands of any subsequent instructions are fetched or stored. The actual
sequence of fetches and stores may differ from the conceptual sequence; however, the results of
each Instruction executed by a single CPU are guaranteed to be identical to those obtained by the
conceptually ordered execution. - ' : '

There is no defined limit on the length of time that a CPU may delay before storing a result. Storage
of all pending results may be forced by the execution of a serialization function, described below.

16.8. Memory Accesses. A processor is permitted to fetch and retain bytes from main memory
that are extraneous to the conceptual course of execution, as long as such fetching is transparent to
the executing program (for example, such extraneous fetching must not cause an _extraneous
memory management trap). However, performing a serialization function will force such pre-fetched
bytes to be discarded; they must be re-fetched from main memory if they are subsequently required.

A processor is also permitted to perform extraneous re-storage of such extraneously fetched bytes
under the following circumstances: if the conceptual course of execution requires storage of a byte,
then the processor is permitted to physically store back into main memory any or all bytes of the
doubleword-address-aligned doubleword containing the byte; the processor must of course have
previously fetched any bytes not conceptually modified, so that they may be stored back with the
same value, : ' : :

These provisions effectively imply that, as a software convention, two processors should not

attempt to access the same doubleword-address-aligned doubleword of physical memory without first
performing explicit serialization and synchronization operations. (For example, suppose that two

76

MIL-STD-18628
3 January 1983

processors A and B were to attempt to use two adjacent words, say at addresses 1000004 and
1000006. !t would be legitimate for processor A to process an incrementation of the word at address
1000004 by fetching the entire doubleword, incrementing the first word, and storing the entire
doubleword back into main memory, without any kind of memory interlock. Any maodification of the
word at address 1000008 by processor B could be lost. However, processor A would not be permitted
to store unnecessarily into address 1000008, and so that word could safely be used by processor B.)

16.9. Interruptible Instructions, Interruptible instructions follow a slightly different model.
Conceptually, interruptible instructions can be considered to contain a set of interruption points
within their execution. Interrupts may be handied either by waiting .until the instruction execution
reaches the next interruption point or by beginning interrupt execution immediately after resetting the
instruction state to the previous interruption point. Traps are expected to reset the instruction to the
previous interruption point and enter the trap mechanism. A trap that aliows a return (using the RET
instruction within the handler) to the instruction is expected to continue from the point of interruption.

16.10. Serialization. An instruction is said to perform a serialization when execution of that
instruction causes all storage of results into memory by conceptually previous instructions to be
completed, as seen by another CPU or 10C, and all modifications of memory by other CPUs and I0Cs
to be visible in fetches by subsequent instructions.

Nebula further divides serialization functions'into two classes:

Instruction An instruction serialization causes all instruction fetches that follow the
serialization to reflect memory state that existed at the time of or subsequent to
the serialization.

Data A data serialization causes all memory operand fetches to refiect memory state
that existed at the time of or subsequent to the serialization. Further, it
guarantees that all stores to memory operands of conceptually previous
instructions have been completed.

Note that the issue of consistency of the context stack hetween the CPU and memory is not
addressed by either of these serializations. The context stack abstraction does not define a
conceptual seriality of context accesses to main memory. Rather, consistency of the context stack is
guaranteed by execution of the LTASK and STASK instructions. Refer to the instruction descriptions
for details.

The following instructions perform serializations of the specified types:
o LTASK -- Instruction (task context only) |
o STASK - Data |
o REPENT -- Data, and Instruction within the replaced segment
e CMPS -- Data

¢ STOBIT -- Data

16.11. 10C Serialization. An I0C instruction serialization occurs when an 10C is started, 10C
operand and data fetches and stores occur serially.

77

MIL-STD-1862B
3 January 1983
[}

17. Instruction Descriptions

The following sections contain descriptions of the instructions for the Nebula computer
architecture. This section contains information about these descriptions.

17.1. General Information. Each instruction description has five parts. After the name of the
instruction is an unlabeled part that shows the instruction assembler mnemonic, a short symbolic
- description of the instruction's agtion if possible, and an ordered list of the items (separated by
7 commas) expected in the instruction stream. This ordered list contains the opcode (in hex), the
symbols used in the instruction description for the operands, and/or any displacements the
instruction expects. There are four other labeled parts. The operand types part describes the
characleristics of the operands. The condition codes part shows the instruction’s action on the
condition code bits. The program exceptions part lists any exceptions or traps specific to that
instruction. The description part contains an English-language verbal description of the actjon of the
instruction. The verbal description and the symbolic description for each instruction are intended to
complement each other. Omissions in one are resolved in the other. The verbal description has
priority in resolving ambiguities. The order of operations between each "next" in the symbolic
description is implementation dependent.

17.2. Operands. The operand types section lists the type and supported sizes for each symbolic
operand. There are five possible types:

e signed integer

. unsignedv integer
e logical

o floating point

¢ address operand

Additionally, a few instructions specify an infine literal as one of their operands. This literal is
located at the specified point in the instruction stream and is interpreted differently from normal
operand specifiers. An inline literal is taken immediately from the instruction stream and treated as an
unsigned integer. It typically has no effect upon the-condition code bits.

The following subsections provide details about the typical use of the operand types. Variations on
the use described below will be detailed in the description of the instruction where the variation
occurs.

17.2.1. Signed Integers. Signed integer source operands are fetched and sign extended
internally to include enough bits so that all operations can be performed without any loss of
information. The least significant portion of a signed integer's internal representation is stored in a
signed integer destination operand. If the size of the destination operand is too small to correctly
represent the internal representation of the signed integer, the truncation condition code (T) is set.
Otherwise, the T bit is cleared. If arithmetic exceptions are enabled (EAE is set) and the T bit is set a
Truncation exception is initiated at the end of the instruction. The negative condition code (N) and
the zero condition code (Z) are set to reflect the value of the destination operand except where
otherwise noted. The carry condition code (C) is set by add and subtract instructions where noted,
and signifies a carry from the most significant bit of the internal result,

78

MIL-STD-1862B
3 January 1983

17.2.2. Unsigne'd Integers. Unsigned integer source operands are fetchéd and zero extended
internally. Unsigned integer destination operands are stored from the least significant portion of the
internal representation. If the destination operand cannot correctly represent the internal
representation, the T bit is set. In particular, if the internal representation is negative, the T bit is set.
The destinaticn operand is treated as a signed integer for the purposes of setting the Z and N bits.
The C bit is set by unsigned add and subtract by a carry from the internal result.

17.2.3. Logicals. Logical source operands are treated in the same manner as unsigned integer
source operands. They are fetched and zero extended internally. Logical destination operands are
stored from the least significant portion of the internal representation. The T bit is unaffected by the
storage of logical operands. The destination operand is treated as a signed integer for the purposes
of setting the Z and N bits. The C bit is unaffected by the storage of a logical operand.

17.2.4. Floating Point. Floating point operands are fetched and converted to an internal format.
See section 30.3.

17.2.5. Address Operands. Address operands evaluate to a virtual address (see section 5.3).
Address operands typically have no effect upon the condition code bits.

17.3. Symbols and Functions. To aid in the description of the instructions certain special
symbols and functions are used. The following is a list of relational symbols and their meaning:

Symbol Meaning

Eql Equalto

Neq Not equal to

Lss Less than

Leq Less than or equal to
Gtr Greater than

Geq Greater than or equal to

. If a relational has a "u" appended to it (for example, Lssu) then the relation treats its operands as
unsigned.

The conventional logical operators AND, OR, NOT, and XOR are used with their conventional
meaning. Other mathematical symbols used in the descriptions retain their conventional meaning
also. : :

Most special functions are defined where they are used. Two that are not are size and remainder.
The function size(x) (where x is an operand) refers to the size in bytes of the operand. The function
remainder(B/A) refers to the remainder of the division of operand B by operand A. The result of
remainder is defined as k such that |k| < |Ajand kB > 0 and mA + k = B for some integer m.

The symbol NI is used'in some of the symbolic descriptions of certain instructions. In this use, NI

represents the address of the next instruction to be executed. The abbreviation "displ" is used for
"displacement" in the symbolic descriptions,

79

MIL-STD-18628B
3January 1983

18. Integer Arithmetic !

18.1, Integer Data Types. The Nebula instruction set architecture supports integer data types of
8-bit, 16-hit, 32-bit and 64-bit sizes. These are termed byte, halfword, word and doubleword integers,
respectively. Integers can be treated as either signed or unsigned. Signed integers are represented
in 2’s complement form. When n bits are used in the representation, signed integers range from -2™7
to 2™-1 and unsigned integers range from 0 to 2"-1. :

A byte is 8 contiguous bits starting on a byte boundary. The bits of decreasing significance are
numbered from O to 7. A byte is specified by its address Addr. When the byte is interpreted as a
signed integer, the most significant bit (bit 0) is the sign bit. The value of the signed integer Is in the
range -128 through 127,

0 7

S

A halfword is 2 contiguous bytes starting on a byte boundary. The bits of decreasing significance
are numbered from 0 to 15. A halfword is specified by Its address Addr, the address of the byte
containing bit 0. When the halfword is interpreted as a signed integer, the most significant bit (bit 0) is
the sign bit. The value of the signed integer is in the range -32768 through 32767.

0 18

S

A word Is 4 contiguous bytes starting on a byte boundary. The bits of decreasing significance are
numbered from 0 to 31. A word is specified by its address Addr, the address of the byte containing bit
0. When the word is interpreted as a signed integer, the most significant bit (bit 0) is the sign bit. The
value of the signed integer is in the range -2°' through 2°'-1,

o : 1
s i

A doubleword is 8 contiguous bytes starting on a byte boundary. The bits of decreasing
significance are numbered from O to 63. A doubleword is specified by its address Addr, the address
of the byte containing bit 0. When the doubleword is interpreted as a signed integer, the most
significant bit (bit 0) is the sign bit. The value of the signed integer is in the range -2%° through 283.1,
The doubleword integer data type is only partly supported by the Nebula instruction set architecture.

0 31
s)
32 &3

MIL-STD-1862B
3 January. 1983

~18.2. Integer Arithmetic Instructions. All operands involved in signed integer arithmetic

instructions shall be sign extended internally to include enough bits so that all operations can be
performed without any loss of information. If the instruction specifies a destination with fewer bits
than the internal operation, the least significant bits of the result are stored in the destination. The
truncate condition code (T) shall be set if the result cannot be correctly represented (as a signed
integer) in the specified destination operand. The negative condition code (N) and the zero condition
code (Z) are set to reflect the value of the destination operand except where otherwise noted. The
carry condition code (C) is set by add and subtract instructions, and signifies carry from most
significant (i.e. sign) bit of the internal result. If EAE is set (see section 6.14) and T is set at the
completion of an instruction, a Truncation exception shall be raised.

All operands involved in unsigned integer arithmetic instructions shall be zero extended internally
to 32 bits. If the instruction specifies a destination with fewer bits than the internal operation, the least
significant bits of the result are stored in the destination. The truncate condition code (T) shall be set
if the result cannot be correctly represented (as an unsigned integer) in the specified destination
operand. The N and Z condition codes are set by treating the destination operand as a signed
integer. The C condition code is set by a carry from the 32-bit internal result. If EAE is set and T is set
at the completion of the instruction, a truncation exception shall be raised.

81

MIL-STD-1862B
3 January 1983

Integer Addition

ADD R<-A+B 30,A,B,R
R<¢-R + A 31,A,R
Operand types:

A/B/R 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqlO
N<-RLssO
T <- Set if the result is not representable in R, otherwise cleared
C <- Carry generated during 32-bit internal addition

Program exceptions;'
Truncation

Description:

In the 3 operand format, the first operand is added to the second operand and the third operand Is
replaced by the sum. In the 2 operand format, the first operand is added to the second operand and
the second operand is replaced by the sum.

Integer Subtraction

SuB R<- B + not(A) + 1 32,A,B,R
R<-R + not(A) + 1 33, AR
Operand types:

A B R 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqiO
N<-RLssO
T <- Set if the result is not representable in R, otherwise cleared
C <- Carry generated during 32-bit internal addition

Program exceptions:

Truncation
Description:

in the 3 operand format, the first operand is subtracted from the second operand and the third
operand Is replaced by the difference. In the 2 operand format, the first operand is subtracted from
the second operand is replaced by the difference.

NOTE: Carryis NOT borrow. The condition codes are not set in the same manner as CMP,

&2

MIL-STD-1862B
3 January 1983

Integer Multiplication

MUL R<-AxB A B R

34,A,8B
R<-RxA 35,A,R

Operand types:
A B R 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REgl0
N<-RLssO . »
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description:

In the 3 operand format, the first operand is multiplied by the second operand and the third
operand is replaced by the product. In the 2 operand format, the first operand is multiplied by the
- second operand and the second operand is replaced by the product.

NOTE: If size(R) = size(A) + size(B) then T cannot be set.

MlL;STD-18628
3 January 1983

Integer Division | !

DIV R<-B/A
R<-R/A

T
oy

-&‘)w
> >

Operand types:
A/ B/R 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqlO
N<-RLlssO - ‘
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
- Truncation
lllegal.Divisor

Description: , . .
In the 3 operand format, the second operand is divided by the first operand and the third operand is
replaced by the quotient. In the 2 operand format, the second operand is divided by the first operand
and the second operand is replaced by the quotient. An lllegal.Divisor exception shall be raised if
A = 0. When this exception occurs the operands are unaffected.
The Identity:
(-B)/A = -(B/A) = B/(-A)

is satisfied.

MIL-STD-1862B
3 January 1983

Integer Negate ¢

NEG R<- not(A) + 1 3A AR
R<-not(R) + 1 3B, R

Operand types:
AR 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqlO
N<RLssO
T <- Set if the result is not representable in R, otherwise cleared
C<- Carry generated by 0-A or R

Program exceptions:
Truncation

Description:
In the 2 operand format, the second operand is replaced by the negative (2's complement) value of
the first operand. In the 1 operand format, the operand is replaced by the negative of the value.

Integer Modulus

MOD R<-B MOD A 38,A,8,R

Operand types:
A BR 8-bit,16-bit,32-bit signed integers

Condition codes:
Z<-REqlO
N<RLssO
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation
lllegal.Divisor

Description:

In MOD the third operand is replaced by B modulo A. If A neq 0, the result is that integer k between
0 (inclusive) and A (exclusive) such that mA + k = B for some integer m.If A = 0, then an
Illegal.Divisor exception shall be initiated.

MIL-STD-1862B
3 January 1983

4 . (]

Remainder

REM R <- remainder(B / A) 39,A,B,R

Operand types:
A B R 8-bit,16-bit,32-bit signed integers

Condition codes:
Z<-REqlO
N< RLssO
T <- Set if the result is not representable in R, otherwise cleared
- C Unaffected

Program exceptions:
Truncation
lllegal.Divisor

Description:

- In REM the second operand is divided by the first operand and the third operand is replaced by the
remainder. The result is defined as k such that |k] < |A| and kB > 0and mA + k = B for some integer
m. An lllegal.Divisor exception shall be raised if A = 0. When this exception occurs the operands
are unaffected.

Extended Integer Multiplication

EMUL R<AxB 4E,A,B,R

Operand types: _
AB’ 8-bit, 16-bit, 32-bit signed integer
R 16-bit, 32-bité 64-bit signed integers

Condition codes:
Z<-REql0
N<-RLssO
T<- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description:
~ The first operand is multiplied by the second operand and the third operand is replaced by the
product. Since the third operand can be specified as a 64-bit signed integer,the product of 32-bit
signed integers can be stored without any loss of information.

NOTE: it size(R) > size(A) + size(B) then T cannot be set.

MIL-STD-1862B
3 January 1983

Extended Integer Divide

EDIV R2<-B /A 4F, A, B,R1,R2
R1<- remainder(B / A)

Operand types:
B, R2 16-bit, 32-bit, 64-bit signed integers
A, R1 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-R2Eqi0
N<-R2LssO
T <- Set if either the quotient is not representable in R2 or the
remainder is not representable in R1, otherwise cleared
C Unaffected

Program exceptions:
Truncation
iilegal.Divisor

Description:

The second operand is divided by the first operand, and the third and fourth operands are replaced
by the remainder and quotient, respectively. Since the second and fourth operands can be specified
- as 64-bit signed integers, extended precision integer division can be carried out and the result stored
without any loss of information. An tllegal.Divisor exception shall be raised if A = 0. When this
exception occurs the operands are unaffected. If storage of either R1 or R2 is blocked by the memory
management system, the storage is aborted and the operands are not affected. If R1 overlaps R2 the
resulting values are undefined. .

87 .

MIL-STD-1862B
3 January 1983

Multiply Fixed Point ' ¢

MULFIX ' . 50,A,B,8,R

R <- (JA x B| right shifted S places) x sign(A) x sngn(B)
where sign(x) = 1forx >0, -1forx <0

Operand types:
A, B,R 8-bit, 16-bit, 32-bit signed integer with implied radix point
S 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REql0O
N<RLssO
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description:

The first operand is multiplied by the second operand and the absolute value of the product is first
shifted either |S]| places to the right, if S is positive, or |S] places to the left, if S is negative, and then
the fourth operand is replaced by the result.

Since A, B, and R are fixed point they can be represented as A x 2X B x 2’Y, and R x 2°¢ where

X = number of bits to'the right of the radix point in A
Y = number of bits to the right of the radix pointin B
Z = number of bits to the right of the radix point inR

Therefore R = A x B x 2ZY X meaning that in order to have R scaled properly the product must be
shifted (Z.X-Y) places. It follows that S = Z - X - Y. However, we define S = X + Y - Z (le.
-8 = Z- Y- X) so that short literal form may be used for most cases of S.

MIL-STD-1862B
3January 1983

Divide Fixed Point .

DIVFIX ’ 51,A,B,§,R

R <- ((|B] left shifted S places) / |A|) X sign(A) X sign(B)
where sign(x) = 1forx > 0,-1forx <0

Operand types: i
A BR 8-bit, 16-bit, 32-bit signed integer with implied radix point
S 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqiO
N<-RLssO
T <- Set if the resuit is not representabie in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation_
lllegal.Divisor

Description: ‘

The absolute value of the second operand is first shifted either |S) places to the left, if S is positive,
or |S| places to the right, if S is negative, and then divided by the absolute value of the first operand.
Finally, the fourth operand is replaced by the result.

Since A, B, and R are fixed point they can be represented as A x 2%, B x 2°Y, and R x 22 where

X = number of bits to the right of the radix pointin A
Y = number of bits to the right of the radix pointin B
Z = number of bits to the right of the radix point in R

Therefore R = (B x 22**Y) / A meaning that in order to have R scaled properly B must be shifted
(Z+X-Y) places. ltfollowsthatS = Z + X-Y.

An llegal.Divisor exception shall be raised if A = 0.

MIL-STD-18628

3 January 1983
Increment !
INC R<R + 1 55, R
INC2 R<R + 2 52,R
INC4 R<-R + 4 53, R
INC8 R<-R + 8 54, R
Operand types:

R 8-bit, 16-bit, 32-bit signed integer
Condition codes:

Z<-REqlO

N< RLssO

T - Set if the result is not representable in R, otherwise cleared
C <- Carry generated during 32-bit internal addition

Program exceptions:
Truncation

Description:

In INC one is added to the operand and the operand is replaced by the sum. In INC2 two is added
to the operand and the operand is replaced by the sum. In INC4 four is added to the operand and the
operand is replaced by the sum. In INC8 eight is added to the operand and the operand is replaced
by the sum.

Decrement

DEC R<R -1 60, R

Operand types:
R 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqIO
N<-RLss0
T <- Set if the result is not representable’in R, otherwise cleared
C <. Carry generated during 32-bit internal addition

Program exceptions:
Truncation

Description:
One is subtracted from the operand and the operand is replaced by the difference.

NOTE: Carry is NOT borrow.

MIL-STD-1862B
3 January 1983

Add with Carry ¢

ADDC R<A + B+ C 3E,A,B,R

Operand types:
A BR 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqlO
N<-RLssO
T <- Set if the result is not representable in R, otherwise cleared
C <- Carry generated during 32-bit internal addition

Program exceptions:
Truncation

Description:
The first and second operands and the contents of the condition code bit C are added, and the
third operand is replaced by the sum.

Subtract with Carry

sSuBC R<-B + not(A) + C 3F, A, B,R

Operand types:
A, BR 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqgiO
N< RLssO
T <- Set if the result is not representable in R, otherwise cleared
C <- Carry generated during 32-bit internal addition

Program exceptions:
Truncation

Description:

The 1's complement of the first operand, the second operand and the contents of the condltion
code bit C are added and the third operand is replaced by the sum.

91

MIL-STD-1862B
3 January 1983

Absolute Value i . ¢

ABS R<- |Al 3C, AR

Operand types:
AR B-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REql0O
N<-0
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description:
The second operand is replaced by the absolute value of the first operand.

Unsigned Addition

ADDU R<A+B 56,A,B,R

Operand types:
A B R 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<-REql0O
N<-RlssO
T <- Set if the result is not representable In R, otherwise cleared
C <- Carry generated during 32-bit internal addition

Program exceptions:
Truncation

Description:

The operands are zero extended to (pseudo) 33-bits. The first operand is added to the second
operand and the third operand is replaced by the sum.

92

MIL-STD-1862B
3 January 1983

Unsigned Subtraction ' '

suBU R<- B + not(A) + 1 57,A,B,R

Operand types:
A B R B-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<-REglO
N<-RLss0O
T <- Set if the result is not representable in R, otherwise cleared
C<- Carry generated during 32-bit internal addition

Program exceptions:
Truncation

Description:
The operands are zero extended to (pseudo) 33-bits. The 2's complement of the first operand Is
added to the second operand and the third operand is replaced by the sum. A negative resultsets T,

Unsigned Multiplication

MULU R< AxB 58,A,B,R

Operand types:
A B R 8-bit, 16-bit, 32-bit unsigned integer

Gondition codes:
Z<-REql0
N<-RLssO
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description: : :
The source operands are zero extended to 32-bits. The first operand is multiplied by the second

operand and the third operand is replaced by the product.

MIL-STD-1862B
3 January 1983

Unsigned Division « !

DIVU R<B/A 59,A,B,R

Operand types:
A B,R 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<-REqlO
N<-RlssO ' :
T<- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation
lllegal.Divisor

Description: '
The source operands are zero extended to 32-bits. The second operand is divided by the first

operand and the third operand is replaced by the quatient. An lllegal.Divisor exception shall be
raised if A = 0. When this exception occurs the operands are unaffected.

MIL-STD-1862B
3 January 1983

19. Logical Instructions

All operands involved in logical instructions shall be zero extended internally to include enough bits
so that all operations can be performed without any loss of information. If the instruction specifies a
destination with fewer bits than the internal operation, the least significant bits of the result are stored
in the destination.

In general, for logical type operands the negative (N) and zero (2) condition codes are set to reflect
the value of the result stored (which is treated as a signed integer for this setting), except where
otherwise noted. The truncate (T) condition code and the carry (C) condition code are unaffected,
unless otherwise noted.

Logical Not

NOT R <- not(A)
R <- not(R)

38
o >
ol

Operand types:
AR 8-bit, 16-bit, 32-bit logical

Condition codes:
Z< REqglO
N<-RLssO
T Unaffected
C Unaffected

Program exceptions:
None

Description:

In the 2 operand format, the second operand is replaced by the logical complement of the first
operand. In the 1 operand format, the operand is replaced by its logical complement.

85 .

‘MIL-STD-1862B
3 January 1983

Logical And

AND R<-Aand B
R<-Rand A

& &
> >
D

Operand types:
A B R 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<-REglO
N<RLssO
T Unaffected
C Unaffected

Program exceptions.
None

Description: e Lo

In the 3 operand format, the logical AND functlon Is performed on the first two operands, and the.
third operand is replaced by the result. In the 2 operand format, the logical AND function is
performed on the first two operands, and the second operand is replaced by the result.

Logical Or

OR R<- AorB , - 4A,A/B,R
R<-RorA 4B8,A,R

Operand types:

A, B,R 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<-REqiO
N<-RLssO
T Unaffected
C Unaffected

Program exceptions:
None

Descnption.

in the 3 operand format, the logical OR. functlon is performed on the first two operands, and the
third operand is replaced by the result. In the 2 operand format, the logical OR function is performed
on the first two operands, and the second operand is replaced by the resuit.

MIL-STD-1862B
3 January 1983

‘Logical Exclusive Or

XOR R<- AxorB 4C,A B,R

Operand types:
A, B,R 8-bit, 16-hit, 32-bit logical

Condition codes:
Z<-REql0
N<-RLssO
T Unaffected
C Unaffected

Program exceptions:
None

Description:
The logical Exclusive OR function is performed on the first two operands, and the third operand is
replaced by the result.

Count One Bits

CcoB - 5F,A,R
R <- Numbeér of bits setin A

Operand types:
A 8-bit, 16-bit, 32-bit logical
R 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<-REqlO
N<-0
T Unaffected
C Unaffected

Program exceptions:
None

Description:

In COB, the second operand is replaced by the value that represents the number of bits set in the
“first operand.

97

MIL-STD-18628
3 January 1983

20. Shift and Rotate Instructions

Arithmetic Scale

SCALE R ¢<- B scaled by 2° 5C, A, B,R

Operand types:
A, B,R 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqlO
N<-RLssO
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description: : : ‘

In SCALE, the second operand is arithmetically scaled by the power of 2 specified by the first
operand, and ‘he‘ third operand is replaced by the result. When the first operand is positive, B is
multiplied by 2" When the first operand is negative, B is divided by 2/ (the result being rounded
toward zero, if necessary), ;

Rotate

ROT 5D, A, B,R

R <- B left rotated A bit positions

Operand types:
A 8-bit, 16-bit, 32-bit signed integer
B,R 8-bit, 16-bit, 32-bit logical

Condition codes:
Z2<-REqiO
N<-Rlss0
T Unaffected
C Unaffected

Program exceptions:
None

Description:

MIL-STD-1862B
3 January 1983

In ROT, the second operand is logically rotated by the number of bits specified by the first cperand,'

" and the third operand is replaced by the result,

When A is positive, a left rotate |A| positions is

performed. When A is negative, a right rotate |A| positions is performed. Rotation'is performed on the

length of the second operand (B)..

"MIL-STD-1862B
8 January 1983

Logical Shift

LSH 5E, A, B,R
R <- B left shifted A bit positions

Operand types: ‘
A 8-bit, 16-bit, 32-bit signed integer
B,R 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<-REqiO
N< RLssO
T Unaffected
C Unaffected

Program exceptions:
"None

Description:

In LSH, the second operand is shifted logically by the number of bits specified by the first operand,
and the third operand is replaced by the result. ‘When A Is positive, a left shift |A] positions Is
performed and O's are inserted into the least significant bits. When A is negatlive, a right shift [A|
positions is performed and Q's are inserted into the most significant bits.

“100

21. Move and Clear Instructions

Move Arithmetic (Sign Extended)

Mov R<-A 40,A,R

Operand types:
AR 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-REqlO
N<-RlssO
T <- Setiif A is not representable in R, otherwise cleared
*C Unaffected

Program exceptions:
Truncation

Description:)
Operand A is copied (sign extended or truncated as necessary) into R.

Move Logical (Zero Extended)

MOVL R<A 41, AR

Operand types:
AR 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<-REqIO
N< RLssO
T Unaffected
C Unaffected

Program exceptions:
None

Description:

The operand A is copied (Zero extended or truncated as necessary) into R.

101

MIL-STD-1862B
3 January 1983

MIL:STD-1862B
3 January 1983

Move Address

MOVA ~ R¥< address of A 61, A,R

Operand types:
A Address Operand
R §-bit, 16-bit, 32-bit logical

Condition codes:
Z<-REqlO
N<-RLssO
T Unaffected
C Unaffected

Program exceptions:
None

Description:
The address operand A is copied into R. If R is smaller than 32-bits, the high order part of A is lost.

Clear

CLR R<-0 ' 45,R

Operand types:
R 8-8it, 16-bit, 32-bit loglcal

Condition codes:
Z<-1
N<O
T Unaffected
C Unalfected

Program exceptions:
None

Description:
The operand R is set to 0 (all bits cleared).

102

MIL-8TD-1862B

3 January 1983

Exchange
EXCH tmpt1<- A 3D, A, B

tmp2<- B next

B<- tmp1

A<-tmp2
Operand types:

A B 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<- B Eql O (after transfer)
N <- B Lss O (after transfer)
T Unaffected
C Unaffected

Program exceptions:
None

Description: S

The contents of the two operands A and B are exchanged. The condition codes are set to reflect
the final transfer into B. If either transfer is blocked by the memory management system, the transfer
is aborted and the operands are not affected. If.operands A and B overlap, the resulting values are
undefined.

Push onto SP Stack

PUSH tmp <- SP -4 next- 71, A
(tmp) <- A next
SP <- tmp

Operand types:
A 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Unaffected

Program exceptions:
llegal.Register

-Description: : '

If operand A is less than 32-bits, it is sign extended to 32-bits. The 32-bit item is copied onto the
push down stack defined by register 1 (the stack pointer SP}. An lllegal.Register exception shall be
Jinitiated if Maxreg = Q.

-103)

MIL-STD-18628B
3 January 1983

Pop from SP Stack

POP tmp <- SP next 73, A
A <. (tmp) next
SP< tmp + 4

Operand types: -)
A 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-AEglO
N<-AlssO
T <- Set if item popped is not representable in A, otherwise cleared
C Unaffected

Program exceptions:
Truncation
lllegal.Register

Description:

The top 32-bit item is removed from the stack defined by register 1 (the stack pointe'r SP) and is
placed in operand A. An lllegal.Register exception shall be initiated if Maxreg = 0.

104

22. Compare and Test Instructions

Compare (Sign Extended)

CMP 42,A,B

Operand types:
A B 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<-AEqglB
N<-AlLssB
T Unaffected
C Unalfected

Program exceptions:
None

Description:

MIL-STD-1862B
3 January 1983

Arithmetic comparison is carried out on signed integers A and B, and the condition code bits are

set accordingly.

Compare Unsigned

CMPU 43,A,B

Operand types:
A B 8-bit, 16-bit, 32-bit unsigned Integer

Condition codes:
Z2<-AEqglB
N< AlssuB
T Unaffected
C Unaffected

Program exceptions:
None

Description:

A comparison is made between unsigned integers A and B, and the condition code bits are set

accordingly.

105

MIL-STD-18628
3 January 1983

Compare and Swap-

CMPS " 4D,A,B,C
lfBeqlCthenB<-Aelse C<-B

Operand types:
A B,C 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<- B Egl C (before transfer)
N<- B Lssu C (before transfer)
T Unaffected
C Unaffected

Program exceptions:
None

Description: : : '

The second and third operands are compared. If the result of the comparison is equality, the
second operand is replaced by the first operand, otherwise the third operand is replaced by the
second operand. This is an interlocked operation. A serlalization function precedes operand B fetch.
No other memory data access to B Is permitted until completion of the store of operand B, or the
negative result of the condition (or a trap causes termination of the instruction). A fetch of operand A
is always performed. Write access rights (for operands B and C) are only checked for the operand
that is actuaily stored.

106

MIL-STD-1862B _
3 January 1983

Compare within Bounds

CMPWB 5A, A, B1,B2

Operand types:
A, B1,B2 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z<- (A Geq B1) AND (A Leq B2)
N<-(ALssB1)
T Unaffected
C Unalfected

Program exceptions:
None

Description:
A check whether the value of the first operand falls within the bounds specified by the second
(lower bound) and third {(upper bound) operands is performed.

If B1 < B2, the N and Z condition code bits specify thevresult of the check as foliows:

Z = 1; N = 0. value is within bounds;
Z = 0; N = 1- valueis less than the lower bound;
Z = 0; N = 0- value Iis greater than the upper bound;

81> B2, thé condition codes are still set as shown in the condition codes section above, but the
relations shown in the table immediately above no fonger hold.

Compare within Bounds and Take Exception (Range Check)

RANGE - BB, A,B1,B2
if (A Lss B1)OR (A Gtr B2) then Range.Error Exception

Operand types:
A,B1,B2 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Unaffected

Program exceptions:
Range.Error

Description:

A check whether the value of the first operand falls within the range specified by the second {lower
bound) and third (upper bound) operands is performed, and the Range.Error exception is raised if it
is out of range.

107

MIL-STD-1862B
‘8 January 1983

Test Integer

TEST - o ' 44, A

Operand types: .
A 8- blt 16 bit, 32. blt signed mteger

Condition codes;
Z<-AEgiO
N<-AlssO
T Unaffected
C Unaffected

Program exceptions:
None

Description:
Arithmetic comparison is carried out on the operand (signed Integer) and zero, and the condition
code bits are set accordingly.

Set Based on Condition

EQL A<-sign.extended (2) " C 24A

NEQ A <. sign.extended (not 2) 26, A
LSS A <. sign.extended (N and (not Z)) . 28, A
GTR A <- sign.extended (not (N or Z)) 2E, A
LEQ A< sign.extended (Nor2) 2C, A
GEQ A <- sign.extended (Z or (not N)) 2A,A
Operand types:

A 8-bit, 16-bit, 32-bit logical

Condition codes:
Unaffected

Program exceptions:
None

Description:

The operand is set (all 1's) if the condition is true and reset If false (all 0's). These mstructlons are
intended to follow compare instructions that set the condition code bits.

108

MIL-STD-18628B
3'January 1983

23. Control Instructions

Control instructions use displacements to change the execution control. Displacements are 8-bit
or 16-bit signed integers that follow the instruction in the code stream. The displacement is fetched,
sign extended to 32-bits and added to the address of the displacement in the code stream.
Depending on the branch condition, the result of this displacement calculation may determine the
location of the next instruction to be executed.

Jump

JUMP NI <- address of A 62, A

éperand types:
A Address Operand

Condition codes:
Unaffected

Program exceptions:
None

Description:
The address of the next instruction to be executed is determined by address operand A.

Branch
BR OE, 8-bit-displacement
OF, 16-bit-displacement
NI <. displ address + displ
Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description:

The address of the next instruction to be executed is calculated by adding the sign-extended
branch displacement to the branch displacement's address.

108

MIL-STD-18628
3 January 1983

Branch on Equal |

BEQL 14, 8-bit-displacement
. 15, 16-bit-displacement

If Z then Ni <- displ address + displ

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description: '

If the Z bit is set then the address of the next instruction to be executed is calculated by adding the
sign-extended branch displacement to the branch displacement’s address. If the branch condition is
not met then the Instruction following the displacement is the next one to be executed.

Branch on Not Equal

BNEQ 16, 8-bit-displacement
17, 16-bit-displacement

If not Z then NI <-.displ address + displ

Operand types:
None

Condition codes:
Unaffected |

Program exceptions:
None

Description: .
If the Z bit is reset then the address of the next instruction to be executed is calculated by adding

the sign-extended branch displacement to the branch displacement's address. If the branch

condition is not met then the instruction following the displacement is the next one to be executed.

110

MIL-STD-18628B
3 January 1983

Branch on Less than or Equal

BLEQ 1C, 8-bit-displacement
1D, 16-bit-displacement

If Z or N then NI <- disp! address + displ

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None ‘

Description:

If the Z bit is set or the N bit is set then the address of the next instruction to be executed is
calculated by adding the sign-extended branch displacement to the branch displacement’s address.
li the branch condition is not met then the instruction following the displacement is the next one to be
executed.

Branch on Less than

BLSS 18, 8-bit-displacement
19, 16-bit-displacement

If N and (not Z) then NI <- displ address- + displ

Operand types:
None

Condition codes:
Unatfected

Program exceptions:
None

Description: :

If the N bit is set and the Z bit is clear then the address of the next instruction to be executed is
calculated by adding the sign-extended branch displacement to the branch displacement’s address.
If the branch condition is not met then the instruction following the displacement is the next one to be
executed.

111

MIL-STD-1862B
3 January 1983

" Branch on Greater than or Equal

BGEQ 1A, 8-bit-displacement
1B, 18-bit-displacement

If Z or (not N) then NI <- displ address + displ.

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description:

If the Z bit is set or the N bit is reset then the address of the next.instruction to be executed is
calculated by adding the sign-extended branch displacement to the branch displacement’s address.
If the branch condition.is not met then the instruction following the displacement is the next one to be
executed.

Branch on Greater than

BGTR " 1E, 8-bit-displacement
1F, 16-bit-displacement

If (not N) and (not) then NI <- displ address + displ

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description:

"~ It the Z bit Is reset and the N bit is reset then the address of the next instruction to be executed is
calculated by adding the sign-extended branch displacement to the branch displacement’s address.
If the branch condition is not met then the instruction following the displacement is the next one to be
executed.

112

MIL-STD- 18628
3 January 1983

Branch on Carry Set

BCS 10, 8-bit-displacement
: 11, 16.bit-displacement

It C then NI <- displ address + displ

Ope}and types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description: :

If the C bit is set then the address of the next instruction to be executed is calculated by adding the
sign-extended branch displacement to the branch displacement’s address. If the branch condition is
not met then the instruction following the displacement is the next one to be executed.

Branch on Carry Clear

BCC 12, 8-bit-displacement
' 13, 16-bit-displacement

If not C then NI <- displ address + displ

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description:

If the C bit is reset then the address of the next instruction to be executed is calculated by adding
the sign-extended branch displacement to the branch displacement’'s address. |f the branch
condition Is not met then the instruction following the displacement is the next one to be executed.

113

MIL-STD-18628B
3 January 1983

Branch on Truncate Set

BTS A 20, 8-bit-displacement
: 21, 16-bit-displacement

If T then NI <- displ address + displ

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description: . :

If the T bit is set then the address of the next instruction to be executed is calculated by adding the
sign-extended branch displacement to the branch displacement's address. If the branch condition Is
not met then the instruction following the displacement is the next one to be executed.

Branch on Truncate Clear

BTC 22, 8-bit-displacement
’ ' 23, 16-bit-displacement

If not T then NI<- displ address + displ

Operand types: .
None

Condition codes:
Unaffected

Program exceptions:
None

Description: .

If the T bit is reset then the address of the next Instruction to be executed Is calculated by adding
the sign-extended branch displacement to the branch displacement's address. If the branch
condition is not met then the instruction following the displacement Is the next one to be executed.

114

MIL-STD-18628B
3 January 1983

Case

CASE 7C, Sel, Base, Num, 16-bit-Displ[0],
v, 16-bit-Dispi[Num-1]

If (Sel - Base) Geq 0 And (Sel - Base) Lssu Num Then NI <- displ[0] address + displ[Sel - Base]
Otherwise NI <- displ[0] address + (2 x Num)

Operand types:
Sel, Base 8-bit, 16-bit, 32-bit signed integer
Num _ 16-bitinline literal

Condition codes:
Unaffected

Program exceptions:
None

Description:

The base operand (Base) is subtracted from the selector operand (Sel). This value is used in an
unsigned comparison with the number of cases Num. [f the value is less than Num then the address
of the next instruction to be executed is calculated by adding the address of the first displacement in
the displacement list to the displacement selected by the value 2 x (Sel - Base). Otherwise the
instruction following the last displacement is the next one to be executed.

116

MIL-STD-18628
3 January 1983

Loop

LOOP 27, Ing, Ctr, Lim, 16-bit-displacement

count<- Ctr + Inc next
If (Inc Gtr 0 and count Leq Lim) or

(Inc Lss 0 and count Geq Lim)

Then NI<- displ address + displ next
Ctr <- count

Operand types:
Inc, Ctr, Lim 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z Unaffected
N Unaffected .
T<- Set if count Is not representable in Ctr, otherwise cleared
C Unaffected

Program exceptions: -
Truncation ‘
lllegal.Divisor

Description:

The signed value of Inc is added to Ctr to form count. If one of the comparisons with the limit (Lim)
is within range, the address of the next instruction to be executed is calculated by adding the sign-
extended branch displacement to the branch displacement's address. Otherwise the instruction
following the displacement is the next one to be executed. Ctr is updated with count. An

illegal.Divisor exception is initiated if Inc = 0.

NOTE: (Lim - initial value of Ctr)/Inc is the number of times through the loop.

116

MIL-STD-18628
3 January 1983.

Increment and Branch on Less than or Equal to

IBLEQ 2D, Ctr, Lim, 16-bit-displacement

count<- Ctr + 1 next
If count Leq Lim Then NI <- displ address + displ next
Ctr <: count o ‘ .

Operand types:
Ctr, Lim 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z Unaffected
N Unaffected
T<- Set If count is not representable in Ctr, otherwise cleared

C Unaffected

Program exceptions:
Truncation

Description:

Cne is added to Ctr to form count. If count is less than or equal to the limit (Lim), the address of the
next instruction to be executed is calculated by adding the sign-extended branch displacement to the
branch displacement's address. Otherwise the instruction following the displacement is the next one
to be executed. Ctris updated from count. "' s

o

117

MIL-STD- 18628
3 January 1983

Increment and Branch on Less than

IBLSS 29, Ctr, Lim, 16-bit-displacement '

count<- Ctr + 1 next
If count Lss Lim Then Ni <- displ address + displ next
Ctr <- count

Operand types:
Ctr, Lim 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z Unaffected
N Unaffected o
T <- Set if count is not representable in Ctr, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description: :

One is added to Ctr to form count. If count is less than the limit (Lim), the address of the next
instruction to be executed is calculated by adding the sign-extended branch displacement to the
branch displacement's address. Otherwise the instruction following the displacement is the next one

to be executed. Ctris updated from count. '

118

MIL-STD- 18628
3 January 1983

Decrement and Branch on Greater than or Equal to

DBGEQ ' 2B, Ctr, Lim, 16-bit-displacement

count<- Ctr - 1 next
If count Geg Lim Then NI <- displ address + disp! next
Ctr <- count

Operand types:
Ctr, Lim 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z Unaffected
N Unaffected
T <- Set if count is not representable in Ctr, otherwise cleared
C Unaffected :

Progfam exceptions:
Truncation

Description:

One is subtracted from Ctr to form count. If count is greater than or equal to the limit (Lim), the
address of the next instruction to be executed is calculated by adding the sign-extended branch
displacement to the branch displacement's address. Otherwise the instruction following the
displacement is the next one to be executed. Ctr is updated from count.

119

MIL-STD-1862B
3 January 1983

Decrement and Branch on Greater

DBGTR 2F, Ctr, Lim, 16-bit-displacement

count <- Ctr - 1 next
If count Gtr Lim Then NI <- displ address + displ next
Ctr <- count

Operand types:_
Ctr, Lim 8-bit, 16-bit, 32-bit signed integer

Condition codes:
Z Unaffected
N Unaffected _
T <- Setif count is not representable in Ctr, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description: :

One is subtracted from Ctr to form count. ‘If count is greater than the limit (Lim), the address of the
next instruction to be executed is calculated by adding the sign-extended branch displacement to the
branch displacement's address. Otherwise the instruction following the disptacement is the next one
to be executed. Ctris updated from count.

120

MIL-STD-18628
3 January 1983

24. Procedure Call and Return Instructions

Call Procedure

CALL 64, Proc, Nparms, P1, ..., Pn
64, Proc, P1, ..., Pn
Operand types:
Proc Address Operand

Nparms 8-bit inline literal
P1,..,Pn 'All operand types allowed

Condition codes:
Unaffected

Program exceptions:
Invalid.Supervisor trap

Description:

The CALL instruction invokes a procedure with a parameter list. The first operand of the CALL
instruction shall be interpreted as the address of the entry point of the procedure to be invoked. Bits
30:31 of this address shall be forced to 0 in determining the location of the procedure entry point. If
the most significant bit of this address is set (bit 0), and the current PSW has bit 17 (Supervisor) clear,
a memory management trap shall occur. The reported error shall be lnvalid.Supervisor (refer to
section 12.4). Otherwise, the specified procedure shall be invoked as described in section 8.3. The
remaining operands of the call instruction shall form the parameter list for thls invocation. The
privilege bit (blt 15) of the PSW shall remain unchanged.

MIL-STD-1862B
3 January 1983

.Call Unprivileged Procedure

CALLU 65, Proc, Nparms, P.1. wa PN
65, Proc, P1, ..., Pn
Operand types:
Proc Address Operand

Nparms 8-bit inline literal
P1,.., Pn All operand types allowed

Condition codes:
Unaffected

Program exceptions:
Invalid.Su pervi.sor trap

Description:

The CALLU instruction operates in the same way as the CALL instruction Except the privilege bit in
the PSW of the called context shall be cleared.

122

MIL-STD-1862B
3 January 1983

Return from Procedure

RET 67

Operand types:
None

Condition codes: .
Loaded depending on BASE bit of PSW

Program exceptions:
None

Description:

The RET instruction returns from a procedure. The function of this instruction shall depend upon
the BASE bit (bit 16) of the current PSW. If the base bit is clear the current procedure context has a
caller; if the base bit is set the current context is the base of the execution context. Because of this
distinction, the RET instruction shall function differently in these cases:

BASE =0 The current procedure context shall be removed from the context stack. The
caller’s context (which is now at the top of the stack) shall be restored. Bits 13:31
of the PSW shall be restored to the value specified in the caller's context. Bits
0:12 of the PSW shall be unchanged.

BASE =1 The current procedure context shall be removed from the context stack. The Last
Mode bit of the current PSW (bit 1) shall select the context stack to become the
current context stack. The procedure context at the top of this context stack shall
be restored, including the full PSW contained in this context.

123 -

MIL-STD-1862B
3 January 1983

Call Supervisor

sSvC 66, Index, Nparms, P1, ..., Pn

€6, Index, P1, ..., Pn
Operand types:
Index 8-bit, 16-bit, 32-bit unsigned integer

Nparms 8-bit inline literal
P1,..,Pn All operand types allowed

Condition codes:
Unaffected

Program exceptions:
None

Description:)

The supervisor call instruction provides a means of calling a supervisor specified procedure in a
protected manner. The first operand of this instruction shall be evaluated as an unsigned integer.
The result shall be used as an index for a vectored call operation using the SVC vector registers as
described in section 8.5. The procedure determined by the vectoring operation shall be invoked
using the current context stack. The remaining operands of the SVC shall be used as a parameter list
for the call.

Jump to Subroutine

JSR SP<-SP-4next 63, A
(SP) <- address of instruction following JSR next
NI<- address of A

Operand types:
A Address Operand

Condition codes:
Unaffected

Program exceptions:
lilegal.Register

Description: :

The address of the instruction following the JSR is stored on the push down stack defined by
register 1 (SP). The address of the next instruction to be executed is then set to A, An
" Illegal.Register exception shall be generated if Maxreg =.0.

124

MIL-STD-1862B. .

3 January 1983

Return from Subroutine o

RSR NI <- (SP) next 63
SP<{-8P + 4

Operand types:
Nones

Condition codes:
Unaffected °

Progfam exceptions:
lllegal.Register -

Description:)
The. top item on the register.1 (SP) stack is removed and provides the address of the next

Instruction to be executed. An lllegal.Register exception shall be generated if Maxreg = 0.

125

MIL-STD-18628
3 January 1983

25. Task Control Instructions

Load Task

LTASK G0, A

Operand types:
A Address Operand

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap
Context.Alignment
Task.L.oad.Error -
Specification.Error

Description:)

The Load TASK instruction prepares a new task for execution by loading its memory map pointer
and context pointer into the appropriate registers. The operand of this instruction shall specify the
address of a two word block., The first word (lowest address) will contain the value of the context
pointer. This value shall be placed in the Task Context Pointer register. The second word will contain
the physical address of the task’s memory map and the protection and relocation bits. This address
with protection and relocation bits shall be placed in the User Map Pointer register. If the value of bits
30:31 of this map pointer is reserved, a Specification.Error exception shall be raised. The Context
Pointer is required to be aligned.on a word boundary. If the value specified for the context pointer
has bits 30 or 31 set, a Context.Alignment exception shall be raised, If LTASK is executed by a
procedure executing on the Task Context stack, the instruction is aborted and a Task.Load.Error
exception shall be raised.

This instruction shall have the implementation dependent effect of forcing any context stack or
memory map caches to be consistent with the specified map and context stack in memory.

The context pointer loaded by LTASK shall not be checked for context access rights by the
memory management system. These access rights are determined when task executlon is begun.

126

MIL-STD-18628
3 January 1983

Store Task

STASK 01,A

Operand types:
A Address Operand

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap

.Description:

The Store TASK instruction is uséd to prepare a task for suspension by saving its context in
memory. The operand A shall specify the address of a two word block with the same format as that
used by LTASK. The Task Context Pointer shall be stored in the first word and the User Map Pointer
shall be stored in the second word.

This instruction shalil have the implementation dependent effect of forcing all cached Task context
into memory. This insures that the task can be restarted by a subsequent LTASK. In order to
guarantee that the memory image stored is correct, ANY alterations of the task’s memory (required by
the supervisor, for instance) must be performed before the STASK instruction that stores the task.

' 127 R

MIL-STD-18628B -

-3 January 1983
Start Task
TSTART 02, A
PSTART ’ 03, A
Operand types: .
A 8-hit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap
Specification.Error

Description:

. The TSTART and PSTART instructions cause the processor to resume execution of the topmost

procedure context on the context stack specified by the operand. If PSTART is executed, the top
execution contéxt shall be removed from the current context stack. This means that procedure
contexts are remeoved until one with the BASE bit set in its PSW is discarded. If TSTART is executed,
the current context shall simply be suspended. Next both TSTART and PSTART shall cause
execution to resume with the topmost context on the specified context stack after checking the

context pointer for proper access rights. The operand is decoded as follows:

Operand Value _ Specification

0 . Kernel Context Stack
1 ‘ Task Context Stack
Otherwise Specification.Error

A Specification.Error shall be raised if the value of the operand is not zero or one.

NOTE: Execution contexts should be built on context segment boundaries to insure that errors In

the use of PSTART are detected by the memory management system.

128

MIL.-STD-18628 -

3 January 1983

Start Task Setting Exception

TRAISE 04,A,B
PRAISE 05, A, B
Operand types:

A B 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaftected

Program exceptions:
Privileged Instruction Trap
Specification.Error

Description:

The TRAISE and PRAISE instructions cause an exception to be raised in the topmost procedure on
the context stack specified by the second operand. The exception cade shall be specified by the first
operand of the instruction. The exception code is truncated to 16 bits. PRAISE shall cause the top
execution context to be removed from the current context stack. TRAISE shalil simply suspend
execution of the current context. Next both TRAISE and PRAISE shall cause an exception to.be
raised in the topmost procedure context on the specified context stack after checking the context
pointer for proper access rights. Execution shall begin with the processing of this exception. The
second operand Iis decoded as follows:

Operand Value Specification

0 Kernel Context Stack
1 Task Context Stack
Otherwise Specification.Error

A Specification.Error shall be raised if the value of the operand is not zero or one.

NOTE: Execution contexts should be built on context segment boundarles to insure that errors in
the use of PRAISE are detected by the memory management system.

129

MIL-STD-1862B
3 January 1983

Initiate Task

TINIT 06, A, B
PINIT 07,A,B
Operand types: :

A Address Operand

B 8-bits, 16-bits, 32-bits logical

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap

Description:

The TINIT and PINIT instructions invoke a task. Specifically, they create an exegution context on
the specified context stack and begin its execution. The first operand shall specify the entry address
of the procedure to be entered as the “main program”. The second operand shall specify bits 0:15 of
the PSW for the new execution context. Operand B is zero extended to 32 bits. Bits 16:31 of the zero
extended B are used to specify bits 0:16 of the new PSW. Note that bit zero of the new PSW selects
the context stack on which the execution context will be built. PINIT shall remove the top execution
context from the current context stack. TINIT shall simply suspend execution of the current context.
Both TINIT and PINIT shall then use the specified entry address and PSW to invoke the procedure as
described in section 8.3 :

NOTE: Execution contexts should be built on context segment boundaries to insure that errors in
the use of PINIT are detected by the memory management system.

130

MIL-STD-18628B
- 3 January 1983

26. Exception Handling Instructions

Raise Exception

RAISE 69, A

Operand types:
A 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaffected

Program exceptions:
None

Description:
The RAISE instruction shall cause an exception with the specified exception code A. Exception
codes passed by RAISE are truncated to 16 bits. :

- Store Exception Code

ECODE 6A, A

Operand types:
A 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<-AEqiO
N<-AlssO
T<- Set if Exception code is not representable in A, otherwise cleared
C Unaffected

Program exceptions:
Truncation

Description:

The ECODE instruction allows an exception handler to obtain the exceptnon code corresponding to
the last exception. If the state of the procedure’s exception handier is exception code available, the
exception code shall be stored in the location specified by the operand A. Execution of the ECODE
instruction shali place the procedure’s exception handler in the disabled state. If ECODE is executed
while the exception handler is in the disabled or handler defined states, A is setto 0.

”~

131.

- MIL-STD-1862B
3 January 1983

Store Exception Handler Address

STOREH : 78, A

Operand types:
A 8-bit, 16-bit, 32-bit unsigned integer

_Condition codes:
Z<-AEql0
N<-AlssO
T<- Setif Handler address is not representable in A, otherwise cleared
C Unaffected

Program exceptions:
Truncation

~- Description: : ‘

If the exception handler is in the handler defined state, the STOREH instruction stores the handler
entry address from the context stack into A. If the exception handler is in the disabled or exception
code available states, Aissetto 0. ' .

Set Exception Handler Entry Address

EXCEPT - T GB,A_
Operand types:
A Address Operand

Condition codes:
Unaffected

Program exceptions:
None

Description:

The EXCEPT instruction allows a procedure to redefine the starting address of its exception
handler. Execution of the EXCEPT instruction shail. place the procedure's exception handler in the
handler defined state. The handler start address shall be set to the address specified by the
operand A. If A evaluates to virtual address 0, the exception handier shall be placed in the disabled
state. :

132

Exception Return

ERET 6C, A

Operand types:
A 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaffected

~

Program exceptions:
Task.Failure

Description:

"MIL-STD-18628
3 January 1983

The ERET instruction returns an exception to the caller of a procedure. The exception code shall
be specified by the operand of the instruction. The exception code is truncated to 16 bits. This
instruction functions similarly to the RET instruction, except that if there is no caller (BASE=1) an

error condition exists:

BASE=0 The current procedure context shall be removed from the context stack. The
caller's context (which is now at the top of the stack) shall be restored. Bits 13:31
of the PSW shall be restored to the value specified in the caller's context. Bits
0:12 of the PSW shall be unchanged. An exception shall be raised in the restored
procedure context with the exception code specified by the ERET instruction.

BASE=1 The current procedure context shall be removed from the context stack. The
Supervisor Exception Handler (section 9.5) shall be invoked with the exception
Task.Failure. The BASE bit in the supervisor exception handier's context shall

be set.

188

MIL-STD-1862B
3 January 1983

Exception Return and Propagate

ERP 6D, A

Operand types: :
A 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaffected

Program exceptions:
Task.Failure

Description:*

force an exception back to the

The ERP instruction allows the Supervisor Exception Handler to
handler of the procedure in which it occurs. This is done by suppressing the examination of the
UDLE bit when the exception is first raised. The ERP instruction shall function identically with the
ERET instruction except the UDLE bit shall be treated as 0 in the pracedure to which the return Is
made. Should the exception be propagated to the procedure's caller, the UDLE bit of the caller shall

function normally.

134

MIL-STD-1862B
3 January 1983

27. String Instructions

All the string instructions are required to be interruptible. If an interrupt or trap occurs during the
execution of such an instruction at a point where processing has begun but not yet completed, the
intermediate state of the instruction is preserved (in the context stack, in an implementation--
dependent form). When the interrupt or trap handler returns and the instruction is resumed, the
instruction shall be correctly completed, provided that certain operands of the mstructlon have not
been altered by means other than the interrupted string instruction.

To be more precise, the string instructions operate on ordinary operands and also regions of
memory. Such regions are variable size arrays of bytes in contiguous virtual addresses. The first byte
address in such a region is specified by an address operand. The size of the region is determined in
an instruction dependent manner.

If a string instruction is interrupted before completion, the entire contents of its destination region,
as well as any condition codes set by the instruction, are undefined unless and until the instruction is
resumed and completed. Moreover, if 'any source or destination region of a string instruction is
altered after the instruction processing has begun but has not yet completed because of an interrupt
" or trap, or is altered because of any other memory writes not performed by the CPU (such as an 1/0
transfer) after the instruction processing has begun but has not yet completed, then when the
instruction is resumed it shall complete and correctly transfer control to the next instruction, but the
contents of any destination region are undefined, and any condition codes or ordinary destmat!on
operands set by the instruction are undefined.

135

MIL-STD-18628
3January 1983

Compare Block

CMPBK o 95, Cnt, 81, 82

Operand types:
81,82 Address Operands
Cnt 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<-S1Eqls2
N <- S1(failed) Lssu S2(failed)
T Unaffected
C Unaffected

Program exceptions: .
Operand.Size .

Description: ') - _

Strings S1 and S2, each with Cnt items, are compared as unsigned integers item by item beginning
with the low addresses and proceeding to higher addresses. The size of the items compared Is
derived from the size fields of the operand specifiers for. S1 and S2. |f size(S1) is different from
size(S2) then an Operand.Size exception shall be raised. If all of the kems in S1 are identical to the
items in 82, the Z bit shall be set. Otherwise the Z bit shall be cleared. Upon encountering two
nonequal items, the instruction may terminate. The N bit shall be set based on the first nonequal
items encountered. If all items are identical, the N bit shall be cleared. If Cnt = 0, Z shall be setand N
shall be cleared. This instruction shall be interruptible. ’

NOTE: If the two blocks are not equal, the lmplémentation Is not required to check or perform
memory accesses beyond the first nonequal items.

o

136

MIL-STD-1862B
3 January 1983

Move Block

MOVBK 94, Cnt, Src, Dest

Operand types:
Src, Dest Address Operands
Cnt 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaffected

Program exceptions:
Operand.Size

Description:

Cnt items are copied from (Src) to (Dest). |f size(Src) = size(Dest) then overlapping source and
destination fields do not affect the results. If size(Src) is different from size(Dest), an
Operand.Size exception shall be raised. If Src = Dest, no move is required. This instruction shall
be interruptible.

NOTE: If Src = Dest, the implementation is not required to check or perform memory accesses.

Move Multiple (Fill)

MOVM 93, Cnt, Src, Dest

Operand types:
Cnt 8-bit, 16-bit, 32-bit unsigned integer
Sre 8-bit, 16-bit, 32-bit logital
Dest Address Operand

Condition codes:
Unaffected

Program exceptions:
None .

Description:

Replace Cnt items, beginning at Dest with Src. If size(Src) is larger than size(Dest), Src is truncated
and no indication is given (as with other logicals). If size(Src) is smaller than size{Dest), Src is zero
extended. This instruction shall be interruptible.

137

MIL-STD-18628B
3 January 1983

Move Translated

"MOVTR 96, Table, Cnt, Src, Dest

Operand types:
Table, Src, Dest Address Operands
Cnt © .- 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Unaffected

Program exceptions:
Operand.Size

Description:

Cnt bytes are copied from the source string (Src), translated, and placed in the destination string
(Dest). Table is the address of a 256 byte vector. Each byte is read from the source string, used as an
unsigned index into the table, and the corresponding entry in the table is copied into the destination
string. If the source and destination strings overlap, the destination string will contain the correct
result. If either size(Src) or size(Dest) is NOT byte, an Operand.Size exception shall be raised. If
Dest overiaps the translation table, the result is undefined. This instruction shall be interruptible,

138

MIL-STD-18628
3 January 1983

Scan and Break

SCANB 97, Btable, Src, Slen, Blen
Operand types:

Btable, Src Address Operands
- Slen, Blen 8-bit, 16-bit, 32-bit unsigned integer

Condition codes:
Z<- Blen Eqgl Slen
N <- Blen Lssu Slen
T Unaffected
C Unaffected

Program exceptions:
Operand.Size

Description:

SCANB scans a source string byte by byte in a forward direction (increasing addresses) until it
finds a break byte or until the source string is exhausted (Slen bytes have been examined). Btable is
the address of a 256-bit vector called the break table. This bit vector is similar to.the bit fields handled
by the bit field instructions. Btable is the base pointer for this bit field. Bytes taken from the source
string are used to index the break table. The byte is zero extended forming a positive integer
indicating the position of a bit in the bit vector (just as the position combines with the base to indicate
a bit in a bit field). If the bit referenced by the source string byte is reset (0), the next byte in the
source string is checked. If the bit in the vector is set (1) the number of bytes checked BEFORE the
set bit was encountered is placed in the operand Blen, and the instruction is terminated. if no break
bit is found, Blen is set to Slen. If Slen is 0, Bleni is set to 0. If size(Src) is NOT byte, an Operand.Size
exception shall be initiated. This instruction shall be interruptible.

139 :

MIL-STD-1862B
3 January 1983

28. Bit Field instructions

A bit field is defined by three parameters, the base (Base), the position (Pos) and the size (Size).
The base is a byte address, the position is the count in bits from the beginning of the byte referenced
by the base to the start of the bit field, and the size is the size of the field. A bit field is formed by
concatenating bytes with successively higher addresses. Bits within byles are numbered from left to
right. The base can be thought of as pointing to bit O of the byte it addresses. The position indicates
the starting bit of the bit field, relative to the base. The position may be positive or negative. The
beginning of the bit field is bit number {position MOD 8} in byte address {base + l(position/B) }. For
example, if position is -10, the bit field begins at .bit 6 of byte base - 2. If position is 12, the bit field
begins at bit 4 of byte base + 1. The protection check is done after the position is added to the base.
If the specified size is greater than 32 a Bit.Field.Size exception shall be raised. Instructions
SETBIT, CLRBIT, STOBIT, and TSTBIT implicitly reference bit fields of size 1.

Sto;e Bit Field

SBF 7D, Src, Pos, Size, Base
field(Pos,Size,Base) - Src

Operand types:
Src, Slze 8-bit, 16-bit, 32-bit unsigned Integer
Pos 8-bit, 16-bit, 32-bit signed integer
Base Address Operand

Condition codes:
Unaffected

Program exceptions:
Bit.Fleld.Size

Description: .

The bit field defined by Pos, Size and Base Is replaced by the operand Src. If the size of Src In bits
is smaller than Size, the high order part of the bit field is filled with zeros, If the size of Src in bits is
larger than Size, the high order bits of Src are not stored. If Size is 0, no bits are stored.

140

MIL-STD-1862B
3 January 1983

Load Bit Field (Sign Extended)

_ LBFS - 7E, Pos, Size, Base, R
R <- field(Pos,Size,Base) ; sign extended

- Operand types:

Size 8-bit, 16-bit, 32-bit unsigned integer
Pos, R 8-bit, 16-bit, 32-bit signed integer
Base Address Operand

Condition codes:
Z<-REql0
N< RLlss0
T <- Set if the field value is not representable in R, otherwise cleared
C Unaffected '

Program exceptions:
- Truncation
Bit.Field.Size

Description:

The contents of the bit field defined by Pos, Size and Base are copied into R. If the size of R in bits
is larger than Size, the field is sign extended. If the size of R in bits is smaller than Size, the field Is
truncated from the most significant part and T is set if the value contained In the field is not
representable in R. If Size is 0, Ris set to 0.

141

MIL-STD-1862B
3 January 1983

Load Bit Field (Zero Extended)

LBF 7F, Poé, Size, Base, R
R<- field(Pos,Size,Base) ; zero extended

Operand types:
Size 8-bit, 16-bit, 32-bit unsigned integer
Pos 8-bit, 16-bit, 32-bit signed integer
Base. Address Operand
R 8-bit, 16-bit, 32-bit logical

Condition codes:
Z<-REqO
N< RLss0
T Unaffected
C Unaffected

Program exceptions:
Bit.Field.Size

Description:

The contents of the bit field defined by Pos, Size and Base are copied into R. If the size of R in bits
is larger than Size, the field is zero extended. If the size of R in bits is smaller than Size, the field Is
truncated from the most significant part. If Sizeis 0, R Issetto 0.

142

Set Bit
SETBIT 74, Pos, Base
N <- Bit{Pos,Base) next
bit(Pos,Base) - 1
Operand types:
Pos . 8-bit, 16-bit, 32-bit signed integer
Base Address Operand

Condition codes:
Z <- Not original contents of Bit(Pos,Base)
N <- Original contents of Bit(Pos,Base)
T Unaffected
C Unaffected

Program exceptions:
None

Description:

The bit specified by Pos and Base is interrogated and set to One.

Clear Bit
CLRBIT ’ 75, Pos, Base
N <- Bit(Pos,Base) next
Bit(Pos,Base)<- 0
Operand types:
Pos 8-bit, 16-bit, 32-bit signed integer
Base Address Operand

Condition codes:
Z <- Not original contents of Bit(Pos,Base)
N <- Original contents of Bit(Pos,Base)
T Unaffected
C Unatffected

Program exceptions:
None

Description:

The bit selected by Pos and Base is interrogated and set to zero.

143

MIL-STD-1862B
3 January 1983

MIL-STD-1862B
3 January 1983

Test and Store Bit

STOBIT 76, Src, Pos, Base

N <- Bit(Pos,Base) next
Bit(Pos,Base) <- LSB(Src)

Operand types:
Src 8-bit, 16-bit, 32-bit unsigned integer
Pos 8-bit, 16-bit, 32-bit signed integer
Base Address Operand

Condition codes:
Z <- Not original contents of Bit(Pos,Base)
N <- Original contents of Bit{Pos,Base)
T Unaffected
C Unaffected

Program exceplions:
None

Description: .

The bit selected by Pos and Base is interrogated. Next, the least significant bit of operand Src¢ is
placed in the bit selected by Pos and Base. This is an interlocked operation. A serialization function
precedes the fetch of the bit selected by Pos and Base. No other memory access to this bit is
“permitted until completion of the store into this bit (or a trap causes termination of the Instruction).

Test Bit
TSTBIT 77, Pos, Base
Operand types:

Pos 8-blt, 16-bit, 32-bit signed integer

Base Address Operand

Condition codes:
Z <- not Bit(Pos,Base)
N <- Bit(Pos,Base)
T Unaffected
C Unaffected

Program exceptions:
None

Description: . .
The bit selected by Pos and Base is interrogated to set the condition codes.

144

MIL-STD-1862B
3 January 1983

29. Miscellaneous Instructions

No Operation

NOP 6E

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
None

Description: -

No operation is performed. The instruction following the NOP is the next instruction to be
executed.

Break

BREAK ' ' 6F

Operand types:
None

Condition codes:
Unalfected

Program exceptions:
None

Description:
The Supervisor Exception Handler is invoked with exception code Break.

145

MIL-STD-1862B
3 January 1983

Load PSW

LPSW 08, A

Operand types:
A 8-bit, 16-bit, 32-bit logical

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap
Context.Base

Description:

The LPSW instruction replaces the caller’s PSW contents by the value of its operand. This shall be
a privileged Instruction. The effect of altering the BASE (PSW<16)), Maxreg (PSW<20:23>), or
number of parameters (PSW<24:31>) fields is unpredictable. If the BASE bit of the current PSW = 1a
Context,Base exception shall be raised.

Store PSW

SPSW 09, A

Operand types: -
A 8-bit, 16-bit, 32-bit logical

Condition codes:
Unaffected

Program exceplions:
Privileged Instruction Trap
Context.Base

Description:

The SPSW instruction shall store the contents of the caller's PSW in the location specified by its
operand. If the BASE bit of the current PSW = 1 a Context.Base exception shall be raised.

146

MIL-STD-18628
3January 1983

Size
SIZE R <- Number of bytes in A 7B, A, R
Operand types:

A 8-bit, 16-bit, 32-bit, 64-bit logical

R 8-bit, 16-bit, 32-bit logical
Condition codes:

Z2<-0

N<-0

T Unaffected

C Unaffected .
Program excep nons

None
Descripuon

The size, in bytes, of the operand A is returned in R. The size of a short literal is one byte The size
of parameter 0 (70) is one byte.

Set Condition Codes

SETCC CC<-A 7AA
Operand types:
A 8-bit, 16-bit, 32-bit logical

Condition codes:
The condition codes EAE,C,T,N,Z are set based
on the low order bits of A respectively.

Program exceptions:
Truncation

Description:

The condition codes are set hased on A. The lowest order bit of A is placed in Z. The second lowest
order bit of A is placed in N. The third lowest order bit of A is placed in T. The fourth lowest order bit
of A is placed In C. The fifth lowest order bit of A is placed in EAE.

147

MIL-STD-1862B
3 January 1983

Set Priority Level

SETPRI priority <- A 08, A

Operand types:
A 8-bit, 16-bit, 32-bit logical

Condiﬁon codes:
‘Unaffected

Program exceptions:
Privileged Instruction Trap

Description:

The five least significant bits of the operand are placed inthe priority field of the current PSW. Note
that, when the PSW base bit is clear, this new priority propagates back to the caller upon execution of
a RET instruction. ' ’

Window into the Micromachine

WINDOW oD, Info
Operand types:
Info 8-bit inline literal

Condition codes:
Implementation dependent

Program exceptions:
Privileged Instruction Trap -

Description:

The byte of information (Info) following the opcode in the instruction stream s passed into the
micromachine in an implementation dependent manner. The action of this instruction is
implementation dependent,.

148

Replace Entry in Map

REPENT

Operand types:
Map, Seg 8-bit, 16-bit, 32-bit logical
A 16-bit, 32-bit, 64-bit logical

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap
Specification.Error

Description:

The replace entry in map instruction provides a gua

OA, A, Map, Seg

MIL-STD-1862B
3 January 1983

ranteed way of altering an entry in a memory .

map. Execution of this instruction shall cause the value of the operand A to be stored in the map

entry specified by the segment number (Seg) and map pointer number (Map) operands.

The

Supervisor Map Pointer shall be map number 1; the User Map Pointer shall be map number 0. If Map
specifies a value other than 0 or 1, a Specification.Error exception shall be raised.. This instruction
shall have the implementation dependent effect of forcing any translation caché to bé consistent with
this new entry and the current map length stored in memory.

149

MIL-STD-1862B
3 January 19883

Map Virtual Address

MAP 0B, A, Ptr, Phy, Seg
Operand types: '
A, Ptr, Phy, Seg 8-bit, 16-bit, 32-bit logical ‘

Condition codes:
Z<- Set if segment found, otherwise cleared
N <- Set if the map is disabled, otherwise cleared
T Unaffected
C Unalfected

Program exceptions:
Privileged Instruction Trap

Description:

The first operand (A) is zero extended to 32 bits and treated as a virtual address. The virtual
address is translated using the map specified by Ptr. Pir is zero extended to 32 bits and interpreted in
the same way that the contents of a map pointer register is interpreted (see figure 12-2). The MAP
instruction’s segment association shall be functionally equivalent to the hardware segment
association (see section 12.2.3) except that the total number of segments specified by the map size
(32-bit word immediately preceding the first segment descriptor in the map) shall be used during the
segment association. |f either of the two least significant bits of Ptr are set, segment association Is
performed by MAP. If a segment containing the virtual address A is found, the cortesponding
physical address is placed in Phy, the associated segment number is placed in Seg, the N bit Is
cleared, and the Z bit is set. If a segment containing A is not found, the Z and N bits are cleared and
Phy and Seg are set to 0. If both relocation and protection are disabled based on bits in the pointer
operand, Seg is set to 0, the most significant bit of the extended A is cleared and the resulting value is
placed in Phy, the Z bit is cleared, and the N bit is set. Access and privilege information contained in
the map specified by PTR is ignored by the MAP instruction. If storage of either Phy or Seg is blocked
by the memory management system, the storage is aborted and the operands are not affected. If
operands Phy and Seg overlap their resulting values are undefined,

MIL-STD-1862B
3 January 1983

Set1/0 Segment

SETSEG 0C, Seg, Adr

Operand types:
Seg, Adr Address Operands

Condition codes:
Z <- Set if Adr is not within virtual space, otherwise cleared
N <- Set if Access code is incorrect, otherwise cleared
T Unaffected
C Unaffected

Program exceptions:
Privileged Instruction Trap
Segment.Specifier
10C.Busy

Description:

The privileged Set I/O Segment instruction transmits CPU segment information to an IOC.
Operand Seg is interpreted as the virtual address of one of the |IOC segment specifiers in an assigned
10C control register block. See sections 13.3 and 13.3.1. This virtual address is translated to a
physical address that should be one of the following forms:

Address (Hex) Segment Specifier Access Code Required
000XXX10 o Channel Program Instruction

000XXX20 Message Read/Write

000XXX30 ' Data Buffer Read/Write

If the physical address specified by the operand Seg is not of one of these forms, a
Segment.Specifier exception shall be initiated. If the physical address (in particular, bits 12 to 27)
does not specify a segment specifier location within an implemented 10C control register block, a
Segment.Specifier exception or a hard memory error trap shall be initiated, depending upon the
implementation. If the run status bit (bit 1) In the channel status register of the I0C selected by the
operand Seg is set (indicating that the 10C is running) then an 10C.Busy exception shall be initiated.
Read/write access rights are required for the 16 bytes that are addressed by Seg.

Operand Adr is interpreted as a virtual address in the currently active supervisor or task memory
maps. No access is made to the item addressed by Adr. The segment containing this address is to be
made accessible to an I0C. If Adr is not contained in the currently active virtual memory space, the
selected segment specifier shall be set to prohibit all accesses, the Z condition code shall be set, the
N condition code shall be cleared, and the instruction shall terminate. The virtual address FFFFFFFF
(hex) shall always be interpreted as such an invalid address by this instruction.

181

MIL-STD-1862B
3 January 1983

If no errors have been detected, the segment indicated by the Adr operand shall be checked for the
proper access code, as listed in the table above. In particular, if Seg references a Channel Program
Segment specifier, the indicated segment shall be checked for an Instruction access key. If Seg
references a Message or Data Buffer Segment specifier, the indicated segment shall be checked for
data Read/Write access. If proper access is not found the selected segment specifier shall be set to
prohibit all accesses, the Z condition code shall be cleared, the N condition code shall be set, and the
instruction shall be terminated. The access code check shall be omitted if the map containing the
CPU segment has protection disabled. ' ’

If the 1/0 segment referenced is valid and the CPU segment has the proper access, the N and Z
condition codes shall be cleared, and implementation dependent mapping information shall be
transmitted to the selected IOC segment specifier. This information shall be sufficient to enable the
IOC to distinguish valid virtual addresses within the selected CPU segment and to relocate them to the
physical memory assigned to the segment, as specified by the CPU map entry. If the map containing
the CPU segment has relocation disabled, the 1/0 segment referenced is valid, and the protection
checks (if any) are satisfied, the 10C shall be given access to all of physical memory for IOC accesses
through the 170 segment specified and the N and Z bits shall be cleared. Note that three proper
SETSEG instructions must be executed before an 10C can run with separate program, message and
data areas even if mapping in the CPU is disabled.

Wait for Interrupt

WAIT 25

Operand types:
None

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap

Description: ’ ‘ o

The processor shall enter a wait state until an interrupt of higher priority than the priority of the
procedure executing the WAIT instruction is posted. Upon the receipt of such an interrupt, the
processor shall service the interrupt normally and continue with the instruction after the WAIT when

the interrupt procedure executes a RET.

152

MIL-STD-1862B
3 January 1983

Check Privilege Rights

PCHECK 70, A

Operand types:
A 8-bit, 16-bit, 32-bit, 64-bit logical

Condition codes:
Unaffected

Program exceptions:
Privileged Instruction Trap
Context.Base '

Description:

The PCHECK instruction is used to check the privilege of an operand (usually a parameter) in the
privilege context of the caller. Bit 15 of the caller's PSW is copied into bit 15 of the current PSW. A
data read access of operand A is performed. If the access is successful (no traps are taken) then bit
15 of the current PSW is set and the instruction terminates. If a trap is initiated due to the attempted
access, bit 15 of the PSW that is stored when the trap is initiated will reflect the privilege of the caller.
If the BASE bit of the PSW = 1 a Context.Base exception shall be raised.

Check Supervisor Rights

SCHECK 72,A

Operand types:
A 8-bit, 16-bit, 32-bit, 64-bit logical

Condition codes:
Unaffected

Program exceptions:
Supervisor.Check
Context.Base

Description:

The SCHECK instruction is used to check the supervisor rights of an operand (usually a parameter)
. in the context of the caller. If operand A is memory type (in other words, the operand can be used as
an address type operand, this includes memory type parameters only) then the supervisor bit of the
virtual address of each byte of the operand is examined. If bit 0 of any of these virtual addresses is set
and bit 17 (the supervisor bit) of the caller's PSW is clear then a Supervisor.Check exception shall
be raised. If bit 0 of all of the. virtual addresses is clear or if bit 17 of the caller's PSW is set or If
operand A is not memory type, then the instruction shall terminate. If the BASE bit of the PSW = 1 a
Contex1.Base exception shall be raised.

153

MIL-STD-1862B
3 January 1983

Reset

RESET . 79

Operand types:
None

Condition codes:
reset

Program exceptions:
Privileged Instruction Trap
. Context.Alignment .

Description:) :
The RESET instruction initiates the reset operation described in section 11.9.

154

MIL-STD-1862B
3 January 1983

30. Floating-Point Arithmetic

The floating-point instructions are used to perform calculations on operands with a wide range of
magnitude.

30.1. Floating-Point Data Classes. There are five floating-point data classes: normalized
numbers, denormalized numbers, normal zeroes, infinities, and NaN.

Normalized Any number whose exponent is not equal to the minimum or maximum exponent
allowed by the format. Normalized numbers have an assumed 1 at the left of the
fraction. This bit is implied in the stored number.

Denormalized Any number with a zero exponent field and a non-zero fraction is a denormalized
number.

Normal zero A normal zero has a zero exponent and a zero fraction. Both plus and minus zero
are allowed.

Infinity A number with a maximum exponent and a zero fraction Is interpreted as infinity.

Plus and minus infinity are allowed.

NaN A number with the maximum exponent and a non-zero fraction is a-NaN (Not a
Number). There are two types of NaNs, trapping and non-trapping. A trapping
NaN will create an Invalid.Operation condition when used as a source operand.
Non-trapping NaNs will propagate through arithmetic operations without raiging
exceptions. Trapping NaNs are distinguished by having their most significant
fraction bit set. If the number is a NaN and bit 12 in double precision or bit 8 in
single precision is set then the number is a trapping NaN.

30.2. Floating-Point Formats. Floating-point data shall occupy a fixed-length format which may
be either a 32-bit format (single) or a 64-bit format (double). Figure 30-1 shows the number
representation for the two formats.

In the single precision format the leftmost bit (bit 0) is the sign bit. Bits 1:8 are occupied by the
exponent. The exponent is a biased exponent with a bias of 127. The remaining 23 bits contain the

fraction.

01 89 31
s| EXP FRACTION

.

In ihe double precision format the leftmost bit (bit 0) is the sign bit. Bits 1:11 contain the exj;onent.
The exponent is a biased exponent with a bias of 1023. The remaining 52 bits contain the fraction.

01 11 12 . . 83
s EXP FRACTION

In both formats the fraction has an implicit binary point to the left Qf the most significant bit.

158

MIL-STD-1862B
3 January 1983

SINGLE = - DOUBLE
Fields and widths In bits: o ’
S = Sign T 1 . 1
E = Exponent 8 11
F = Fraction ' 23 ' 52
L = Leading bit (implicit))] ()
Total Width (1) + 32 . . (1) + 64
Sign: +/- represented.by 0/1 respectively
Exponent: biased integer
Max E - 255 2047
MinE 0 c
Biasof E 127 1023
Normalized numbers:
-Rangeof E (MinE + 1) to (MaxE-1)
Represented number i (B SV x 2EEES (1.F)
Signed zeros: . - 4
E : : MinE MinE
F 0 0
Reserved Operands:
Denormalized numbers: o
E MinE MinE
F .) nonzero nonzero
Represented number (1) AS X 2E-Blas 1 (0.F)
Signed Infinitles: '
E . _ MaxE - Max E
F : 0 0
NaN's: :
E Max E Max E
F - - nonzero ‘nonzero

Figure 30-1: Floating Point Number Representation

30.3. Floating-Point Operands. Operands to floating point Instructions may specify 32-bit or 64-
bit operands in registers or memory. Literal operands may specify 16-bit, 32-bit, or 64-bit literals
(literals include parameter literals). The format of 32-bit and 64-bit operands shall be those described
above. 16-hit literal floating point operands shall be extended with 16 least significant bits of zero and
Interpreted as a 32-bit format number. An addressing mode that specifies any. operand
representation other than these shall cause an exception as described in section 5,12,

30.4. Floating-Point Exceptions. There are five maskable floating-point exception conditions.
These conditions are Invalid.Operation, Divide.By.Zero, Floating.Underflow,
Floating.Overflow and Floating.Inexact. They are explained further below,

One non-maskable exception condition can occur during execution of the floating-point compare
(CMPF) Instruction. This exception condition, named Unordered, shall occur when the operands in

.

168

MIL-ST'D-18625
3 January 1983

the compare cannot be related using conventional relational operators (= ,{,>...). An example of this
would be a comparison between NaN and a finite number.

Associated with each maskable exception is a "sticky"” flag and a mask bit. The sticky flags are bits
27:31 (See Figure 30-2) in the Auxiliary Status Register (ASR). The mask bits are bits 19:23 in the
ASR. The action taken when an exception condition occurs depends upon the setting of the mask bit
associated with the exception and the EAE bit in the PSW. The table below describes the action to be
taken when such an exception condmon occurs,

Mask Bit EAE =~ Action Taken

0 0 Set T condition code in PSW (sticky bit unaffected)

0 1 Raise exception with corresponding code (T bit and sticky bit unaffected)
1 Oor1 Set associated sticky flag (T bit unaffected)

Sticky flags can be cleared by moving zeros into the ASR.

01 7 8 17 18 19 23 24 25 26 27 81
Implementation Reserved | QOUP RC|I QOUP

1 T
Infinity Control
Soft Memory

Masks for Floating Exceptions
Reserved
Rounding Control

Error Enable

Floating Condition Bits
Figure 30-2: Floating Point Control Bits in ASR

30.4.1. Invalid.Operation. The Invalid.Operation condition exists in floating-point arithmetic
operations on errors that are not frequent enough or important enough to merit their own fault
conditions. An Invalid.Operation exception shall be raised if arithmetic exceptions are enabled and
the mask bit (bit 19 in-the ASR) is zero. If the exception is masked then the sticky flag for this
exception (bit 27 in the ASR) shall be set and the result shall be a non-trapping NaN.

There are two cases for Invalid.Operation conditions. The first arises if an operand is illegal for the
operation to be performed. The other arises if the result is illegal for the destination.

Some examples of Invalid Operations are:’
SQRT(-5)

w'w
0xco

1687

MIL-STD-1862B
3 January 1983

30.4.2. Divide.By.Zero. The Divide.By.Zero condition exists in a division operation when the
divisor is normal zero and the dividend is a finite nonzero number. The Divide.By.Zero exception
shall be raised if arithmetic exceptions are enabled and the mask bit (bit 20 in the ASR) is zero. If the
exception is masked then the sticky flag for this condition (bit 28 in the ASR) shall be set and the
result shall be infinity with sign according to convention.

30.4.3. Floating.Overflow. If the exponent of a rounded result of an arithmetic operation
overflows the range of the destination, then the Floating.Overfiow condition exists. The
Floating.Overflow exception shall be raised if arithmetic exceptions are enabled and the mask bit
(bit 21 in the ASR) is zero. |f the exception is masked then the sticky flag for this condition (bit 29 in
the ASR) shall be set and the result depends on the rounding mode and the sign of the result. The
result is set to infinity with the sign of the result if the rounding mode is RN, Rz, (RP and the result is
positive) or (RM and the result is negative). Otherwise the result is the largest magnitude normalized
number representable in the destination.

30.4.4. Floating.Underflow. A Floating.Underflow condition exists if the exponent of a result lies
below the exponent range of the destination field. The test for underflow may be performed either
after temporarily rounding the result toward zero or after rounding based on the rounding mode at the
implementor's option. The Floating.Underflow exception shall be raised if arithmetic exceptions are
enabled and the mask bit (bit 22 in the ASR) is zero. If the exception is masked then the sticky flag for
this condition (bit 30 in the ASR) shall be set and the unrounded result shall be denormalized by
shifting the fraction right while incrementing the exponent until the exponent reaches its minimum
allowable value.

30.4.5. Floating.Inexact. In the absence of an Invalid.Operation condition, if the result cannot be
exactly specified in the destination format and no other exceptions are raised a
Floating.lnexact condition exists. [f arithmetic exceptions are enabled and the mask bit for this
exception (bit 23 in the ASR) is zero then the Floating.lnexact ‘exception shall be raised. If the
exception is masked then the sticky flag for this condition (bit 81 in the ASR) shall be set and the
result shall be the correctly rounded number.

30.5. Rounding. Four rounding modes are supported. The mode currently in effect is determined
by bits 25:26 of the ASR as described in the table below.

Bits 25:26 Rounding Mode Action

00 BN Round to Nearest

01 RZ Round toward Zero .
10 RP Round toward + infinity
11 RM Round toward - infinity

Preliminary results can be viewed as having been computed to infinite precision. From the
preliminary result (R), determine the two numbers (R1 and R2) in the desired format that most closely
bracket R.

" If R1 = R = R2, there Is no rounding error and RN(R) = RZ(R) = RP(R) = RM(R). Otherwise
Floating.Inexact is signaled and the value returned is determined from the table below, assuming that
R1<R<R2.

Rounding Mode Resuit
RN ' the nearer of R1 and R2. If equidistant then
the value whose least significant bit is Zero.
RZ the smaller of R1 and R2 in magnitude.
RP R2
RM R1

158

MIL.STD-1862B
3 January 1983

30.6. Infinity Arithmetic. The Nebula floating point system supports two modes of infinity
arithmetic. The first mode, affine, specifies -¢0 + 60, In projective mode -0 = + 0, The made for
infinity arithmetic is specified by bit 18 in the ASR. Zero specifies projective mode; One specifies
affine mode.

30.7. Floating-Point Instructions. All floating-point instructions follow the same steps during
execution. These steps are:

1. Fetch source operands - if either operand is a trapping NaN

then raise Invalid.Operation exception.

2. Compute preliminary result.

3. Round and Check Floating.Underflow (order optional).

4, Check Floating.Inexact and Floating.Overflow.

5. Return result.

The compare instruction (CMPF) is the only floating point instruction that does not return a result
so it only goes through Step 1 above.

189

MIL-STD-1862B
3 January 1983

Floating-Point Addition

ADDF R<A +B 80, A, B,R
R<R+ A 81,A R
Operand types:

A, B R 32-bit, 64-bit floating point

Condition codes:
Z<{-REqlO
N <- Signbitof R -
T <- Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Floating.Underflow
Floating.Overflow
Floating.Inexact

Description: .)

The first operand is added to the second operand. In two operand addition the result is placed In
the second operand. In three operand addition the result is placed in the third operand. If either
operand was normalized the result will be also normalized unless Floating.Underflow occurs.

An Invalid.Operation condition exists whenever either operand is a trapping NaN, when the
operation is (+) + (-0) or (-¢0) + (+ ©0) in Affine mode, or when both operands are infinity In
Projective mode. If the exception is not enabled, the result shall be a non-trapping NaN.

A Floating.Underflow condition exists when the intermediate result's exponent Is less than the
destination format's minimum. |f the exception is not enabled, then the intermediate result Is
denormalized (fraction shifted right and exponent incremented by one for each bit shift) until the
exponent is at the destination format's minimum,

A Floating.Overflow condition exists if the result's exponent value would be greater than or equal to
the maximum exponent value of the destination format and the result is not infinity or NaN, If the
exception is not enabled, then the final result depends on the rounding mode and the sign of the
Intermediate result. The final result is set to infinity with the sign of the intermediate result if the
rounding mode is RN, RZ, (RP and the intermediate result is positive) or (RM and the intermediate
result is negative). Otherwise the final result is the largest magnitude normalized number
representable in the destination. '

A Floating.l-nexact condition exists if the delivered result is not exactly equal to the Intermediate
result and no other exceptions have been raised. ' .

Operands may be either single or double floating-point numbers.

160

MIL-STD-18628
3 January 1983

Special Cases:
When a result is to be returned and either operand is a NaN then the result will be the same NaN

(converted to non-trapping if necessary). If both operands are NaNs then the result will be the first
operand.

If both' operands are zero then the result is +0 in rounding modes RN, RZ, RP, or if both operandé
are + 0. Theresultis -0in mode RM or if both operands are -0. :

If one operand is infinity then the result is the same infinity.

In Affine mode, (+©0) + (+©0) = (+©9) and (-0) + (-00) = (-09). An Invalid.Operation
condition exists if the operation is (+ ©0) + (-¢0) or (-90) + (+ 99),

In Projective mode if both operands are infinity then an Invalid.Operation condition exists.

Floating-Paint Subtraction

SUBF R<-B-A 82,A,B,R
: R<R-A 83, AR
Operand types:

A, B R 32-bit, 64-bit floating point

Condition codes:
Z<-REqgl0
. N<- Sign bit of R
T £- Set as described in section 30.4
C Unaffected

" Program exceptions:
Invalid.Operation
Floating.Underflow
‘Floating.Overflow
Floating.Inexact
Description: , :
The first operand is subtracted from the second operand. In the two operand version the result is
placed in the second operand. In the three operand version the result is placed in the third operand.

The execution of the subtract operation is identical to that of the add operation éxcept that the sign
bit of the first operand is first inverted.

Operands may be either single or double floating-point numbers.

Special Cases:
See ADDF

.161

MIL-STD-18628
3 January 1983

Floating-Point Multiplication , ‘

MULF R<BxA 84, A, B,R
R<RxA 85, AR
Operand types:

A BR . 32-bit, 64-bit floating point

Condition codes:
Z<-REql0
N <- Sign bit of R
T <- Set as described in section 30.4
~ CUnatffected

Program exceptions:
Invalid.Operation
Floating.Underflow
Floating.Overflow
Floating.Inexact

Description: :

The second operand is multiplied by the first operand. In two operand muitiplication the result is
placed in the second operand. In the three operand operation the result is placed in the third
operand. '

An Invalid.Operation condition exists whenever either operand is a trapping NaN or when one
operand is O and the other is infinity. If the exception is not enabled, then the result shall be a
non-trapping NaN.

A Floating.Underflow condition exists when the intermediate resuit's exponent is less than the
destination format's minimum. If the exception is not enabled, then the intermediate result is
denormalized (fraction shifted right and exponent incremented by one for each bit shift) until the
exponent is at the destination format’s minimum.

A Floating.Overflow condition exists if the result's exponent value would be greater than or equal to
the maximum exponent value of the destination format and the result is not infinity or NaN, If the
exception is not enabled, then the final result depends on the rounding mode and the sign of the
Intermediate result. The final result is set to infinity with the sign of the intermediate result if the
rounding mode is RN, RZ, (RP and the intermediate result is positive) or (RM and the intermediate
result is negative). Otherwise the final result is the largest magnitude normalized number
representable in the destination.

A Floating.Inexact condition exists if the delivered result is not exactly equal to the intermediate
result and no other exceptions have been raised. -

Operands may be either single or double floating-point numbers,

162

.. . MIL-STD-1862B
3 January 1983

Special Cases: . . :

When a result is to be returned and either operand is a NaN then the result will be the same NaN
(converted to non-trapping if necessary). If both operands are NaNs then the result will be the first
operand. '

If one operand is zero and the other is a finite number or if both operands are zero then the result is
zero with the proper sign.

If one operand is zero and the other is infinity then an Invalid.Operation condition exists. If the
exception is not enabled, then the result shall be a non-trapping NaN.

If either operand is infinity and the other is a finite number or both operands are infinity, then the
result is infinity with the sign bit equal to the exclusive OR of the operands' sign bits.

169

MIL-STD-1862B
3 January 1983

Floating-Point Divisign

DIVF ‘ R<-B/A 86,A,B/R
R<-R/A 87, AR
Operand types:
A B,R 32-bit, 64-bit floating point

Condition codes:
Z<-REqi0
N<- Sign bit of R
T <- Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Divide.By.Zero
Floating.Underfiow
Floating.Overflow
Fioating.Inexact

Description:

The second operand (the dividend) is divided by the first operand (the divisor). In two operand
division the result is placed in the second operand. In the three operand operation the result is
placed in the third operand.

An Invalid.Operation condition exists when either operand is a trapping NaN, when both operands
are zero, or when both operands are infinity. If the exception is not enabled, then the result shall be a
non-trapping NaN, ,

A Divide.By. Zero condition exists if the divisor is zero and the dividend Is a non-zero finlte number.
If the exception Is not enabled, then the result is infinity with the proper sign.

A Floating.Underflow condition exists when the intermediate result's exponent is less than the
destination format's minimum. If the exception is not enabled, then the intermediate result is
denormalized (fraction shifted right and exponent incremented by one for each bit shift) until the
exponent Is at the destination format's minimum.

A Floatmg Overflow condition exists if the result's exponent value would be greater than or equal to_
the maximum exponent value of the destination format and the result is not infinity or NaN. If the
exception is not enabled, then the final result depends on the roundvng mode and the sign of the
intermediate result. The final result is set to infinity with the sign of the intermediate result if the
rounding mode is RN, RZ, (RP and the intermediate result is positive) or (RM and the intermediate
result Is negative). Otherwise the final result is the largest magnitude normalized number
representable in the destination.

A Floating.Inexact condition exists if the delivered result is not exactly equal to the intermediate
result and no other exceptions have been raised.

Operahds may be either single or double floating-point numbers.

164

MIL-STD-1862B
3 January 1983
Special Cases:
When a result is to be returned and either operand is a NaN then the result will be the same NaN
(converted to non-trapping if necessary). If both operands are NaNs then the result will be the first
operand.

If both operands are zero or both operands are infinity then an Invalid.Operation condition exists
and the result is a non-trapping NaN,

If the dividend is zero and the divisor is not then the result is zero with the proper sign.

If the divisor is 0 and the dividend is a non-zero finite number then a Divide.By.Zero condition exists
and the result is infinity with the proper sign. ’

I the dividend is infinity and the divisor is not infinity or NaN then the result is infinity with the
proper sign.

If the divisor is infinity and the dividend is a non-zero finite number then the result is 0 with the
proper sign. ‘

165

MIL-STD-1862B
3 January 1983

Negate Floating :

NEGF R<- (-A) 8A, AR
R<- (-R) 8B,R
Operand types:
AR 32-bit, 64-bit floating point

Condition codes:
Z<-REqIO
N <. Sign bit of R
T <- Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Floating.Underflow
Floating.Overflow
Floating.lnexact

Description: .
In the two operand version the first operand is placed in the second operand with the sign bit
inverted. In the single operand version the sign bit of the operand Is inverted.

An Invalid.Operation condition exists whenever the source operand is a trapping NaN. If the
exception is not enabled, then the result shall be a non-trapping NaN.

A Fioating.Underflow condition exists when the number to be put in the second operand has an
exponent less than the destination format's minimum. This can only happen if the source operand is
a double floating number and the destination is single floating. If the exception is not enabled, then
the intermediate result is denormalized (fraction shifted right and exponent incremented by one for
each bit shift) untii the exponent is at the destination format's minimum.

A Floating.Overflow condition exists if the result's exponent value would be greater than or equal to
the maximum exponent value of the destination format and the result is not infinity or NaN. This can
only happen if the source operand is a double floating number and the destination is single floating, If
the exception is not enabled, then the final resuit depends on the rounding mode and the sign of the
intermediate result. The final result is set to infinity with the sign of the intermediate result if the
rounding mode is RN, RZ, (RP and the intermediate result is positive) or (RM and the intermediate
result is negative). Otherwise the final result is the largest magnitude normalized number
representable in the destination.

A Floating.Inexact condition exists if the delivered result is not exactly equal to the intermediate
result and no other exceptions have been raised. This can only happen if the source operand is a
double floating number and the destination is single floating.

Operands may be either single or double floating-point numbers.

Special Cases:
If the first operand is a NaN the sign bit will be inverted.

166

Convert Integer to Floating '

FLOAT R<-A 8C, AR
Operand types:

A 8-bit, 16-bit, 32-bit signed integer

R 32-bit, 64-bit floating point

Condition codes:
Z<-REqglO
N <- Sign bit of R
T <- Set as described in section 30.4
C Unaffected

Program exceptions:
Floating.lnexact

Description:

MIL-STD-1862B
3 January 1983

The source operand is converted from a two’s-complement integer format to a floating-point format

and placed in the destination operand.

A Floating.Inexact condition exists if the destination does not have exactly the same value as the
source. This can only happen when the source |s a 32-bit integer and the destination is a 32-bit

floating number.

The source operand is a two's-complement integer in byte, 16-bit or 32-bit size. The destination

operand must be a 32-bit or 64-bit floating-point format.

Special Cases:
None

167

MIL-STD-18628
3 January 1983

Qonve rt Floating to Integer

FiX R <: Integerized(A) 8D,A,R

Operand types:
A 32-bit, 64-bit floating point
R 8-bit, 16-bit, 32-bit signed-integer

Condition codes:
Z<-REqlO
N<- RlLssO
T <- Set if the result is not representable in R, otherwise cleared
C Unaffected

Program exceptions:
Invalid.Operation
Truncation

Description: '

The source operand is converted from a floating-point format to an integer format and placed in the
destination operand. The floating-point number is truncated to an integer value. The source operand
is not affected.

An‘lnvali‘d.Operation condition exists if the source operand is a NaN or infinity. The destination
operand is left unchanged.

The source operand can be a single or double floating-point number. The destination operand is
an 8-bit, 16-bit or 32-bit signed integer.

Special Cases:
If the source operand is a NaN or infinity an Invalid.Operation condition exists. The destination
operand is not affected.

If the result overflows the destination field, then excessive high-order bits are truncated and the T
condition code is set. 7 '

168

MIL-STD-1862B
3 January 1983

Move Floating ,

MOVF B<- A 8E,A,B
Operand types:
A B 32-bit, 64-bit floating point

Condition codes:
Z<-BEqlO
N <- Sign bit of B
T <- Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Floating.Underflow
Floating.Overflow
Floating.Inexact

Descnplion : ‘
The first operand is placed in the second operand. The ﬁrst operand is not affected. This
instruction can perform size conversion. -

An Invalid.Operation condition exists if the source operand is a trapping NaN. If the exception is
not enabled, then a non-trapping NaN is placed in the destination operand. ’

A Floating.Underflow condition exists when the number to be put in the second operand has an
exponent less than the destination format's minimum. This can only happen if the source operand is
a double floating number and the destination is single floating. If the exception is not enabled, then
the intermediate result is denormalized (fraction shifted right and exponent mcremented by ‘one For
each bit shift) until the exponent is at the destination format s minimum.,

A Floatmg Overflow condition exists if the source operand is double floating, the destination
operand is single floating and the source operand’s exponent is greater than or equal to the
destination format’s maximum and the number is not infinity or NaN. If the exception is not enabled,
then the final result depends on the rounding mode and the sign of the intermediate result. The final
result is set to infinity with the sign of the intermediate result if the rounding mode is RN, RZ, (RP and
the intermediate result is positive) or (RM and the intermediate result is negative). Otherwise the final
result is the largest magnitude normalized number representable in the destination.

A Floating.Inexact condition exists if the destination is not exactly equal to the source and no other
exceptions have been raised.

Both operands are either 32-bit or 64-bit floating-point numbers.
Special Cases:

If the source operand is a trapping NaN and no exception is raised then a non-trapping NaN is
placed in the destination operand.

If the operands are of different sizes then size conversion is implied.

/

169

MIL-STD-18628
3 January 1983

L) L]

Clear Floating

CLRF A< +0 8F, A

Operand type: -
A 32-bit, 64-bit floating point

Condition codes:
Z<-1
N<-0
T £- Set as described in section 30.4
C Unaffected

Program exceptions:
None

Description:
The operand is replaced by positive zero.

The operand can be either a 32-bit or 64-bit floating-point number.

Special Cases:
None

. Compare Floating

CMPF 80,A,B
Operand type:
AB 32-bit, 64-bit floating point

Condition codes:
T £- Set as described in section 30.4
C Unaffected
If A and B are unordered then
, the Unordered exception is raised.
Otherwise:
Z<-AEq!B
N< AlssB

Program exceptions:
Invalid.Operation
Unordered

Description:

The two operands are compared and the condition codes are set according to the comparison. If -
the operands cannot be related using conventional relational operators then the Unordered exception
is raised. Figure 30-3 specifies the compare operation,

170

MIL-STD-1862B
3 January 1983

]

-infinity . +infinity infinity
- Xvs¥ affine finite affine Projective NaN
-infinity -
affine = < < N/A a
finite > b 4 a a
+infinity
affine > > = N/A a
infinity =
Projective N/A a N/A - a
NaN a a a a =

a: The Unordered exception is raised.

b: The result is based on the resuitof X - Y.

Possible exception conditions are suppressed.

Figure 30-3: The Compare Operation

An Invalid.Operation condition exists if the source operand is a trapping NaN. If ’the
Invalid.Operation exception is not enabled, then the Unordered exception is raised.

The operands can be either 32-bit or 64-bit floating-point numbers.

Special Cases:

If either operand is a NaN and the Invalid.Operation exception is not enabled, then the
Unordered exception shall be raised.

If the mode for infinity arithmetic is projective and one operand is infinity then the Unordered
exception shall be raised. If both operands are infinity then the comparison is equal.

171

MIL-STD-1862B
3 January 1983

Floating-Point Square Root , .

SQRTF R<- SQRT(A) 89, AR
Operand types:
AR 32-bit, 64-bit floating point

Condition codes:
Z<-REqlO
N<- Sign bit of R
T <- Set as described in section 30.4
C Unaffected

Prograri exceptions:
Invalid.Operation
Floating.Inexact
Floating.Overflow
Floating.Underflow

Description:
The square-root of the first operand is placed in the second operand. The first operand iIs not
affected.

An Invalid.Operation condition exists if the source operand is a trapping NaN, if the source operand
is less than zero, ot if the source operand is + infinity and the mode is projective. If the exception is
not enabled, then the result shall be a NaN.

A Floating.Underflow condition exists when the intermediate result's exponent is less than the
destination format's minimum. If the exception is not enabled, then the intermediate result is
denormalized (fraction shifted right and exponent incremented by one for each bit shift) until the
exponent is at the destination format's minimum.

A Floating.Overflow condition exlsts if the result’'s exponent value would be greater than or equal to
the maximum exponent value of the destination format and the result Is not infinity or NaN. if the
exception is not enabled, then the result depends on the rounding mode. The result is set to positive
infinity if the rounding mode is RN, RZ, RP. Otherwise the resuit is the largest magnitude normalized
number representable in the destination.

A Floating.Inexact condition exists if the delivered result is not exactly equal to the intermediate
result and no other exceptions have been raised:

Operands'may be either single or double floating-point numbers.
Special Cases:

When a result is to be returned and the source operand is a NaN then the result will be the same
NaN (converted to non-trapping if necessary).

The square-root of + 00 in affine mode is + . The square root of o0 in projective mode creates
an Invalid.Operation condition, :

The square root of -0 is -0.

172

e : MIL.STD-1862B
3 January 1983

Absolute Value Floating

ABSF R<-|A] 91, AR
Operand types:
AR 32-bit, 64-bit floating point

Condition codes:
Z<-REqlO
N <- Sign bit of R
T <- Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Floating.Underflow
Floating.Overflow
Floating.lnexact

Description:
The first operand is placed in the second operand with the sign bit set to zero. The first operand is
not affected.

An Invalid.Operation condition exists if the source operand is a trapping NaN. If the exception is
not enabled, then a non-trapping NaN is placed in the destination operand.

A Floating.Underflow condition exists when the number to be put in the second operand has an
exponent less than the destination format's minimum. This can only happen if the source operand is
a double floating number and the destination is single floating. If the exception is not enabled, then
the intermediate result is denormalized (fraction shifted right and exponent incremented by one for
each bit shift) until the exponent is at the destination format's minimum.

A Floating.Overflow condition may occur if the source operand is double floating and the
destination operand is single floating. This condition exists when the source operand’s exponent is
greater than or equal to the destination format's maximum and the number is not infinity or NaN. [f
the exception is not enabled, then the result depends on the rounding mode. The result is set to
positive infinity if the rounding mode is RN, RZ, RP. Otherwise the result is the largest magnitude
normalized number representable in the destination.

A Floating.inexact condition exists if the delivered result is not exactly equal to the intermediate
result and no other exceptions have been raised. This can only happen if the source operand is a
double floating number and the destination is single floating.

Both operands are either 32-bit or 64-bit floating-point numbers.

Special Cases:

if the source operand is a trapping NaN and the Invalid.Operation exception is not enabled then

a non-trapping NaN, with the sign bit zero, is placed in the destination operand.

If the operands are of different sizes then size conversion is Implied.

173

MIL-STD-18628
3 January 1883

Remainder Floating ' B

REMF R<-BREMA 88,A,B,R

Operand type: -
A B R 32-bit, 64-bit floating point

Condition codes:
Z<-REqIO
N <- Sign bit of R
T<- Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Floating.Underflow
Floating.Overflow
Floating.Inexact

Description:
The result of the operation B REM A is placed in the destination operand. The remamder is defined
regardless of the rounding mode by the following relation when A NEQ O:
R = B - (A x n) where n is the integer nearest B / A.If
In -B/A] = % thenniseven.

- An Invalid.Operation condition exists if:
1. both source operands are zero.
2, the dividend is a finite number and the divisor Is zero.
3. the dividend is infinity and the divisor is zero.
4, the dividend is infinity and the divisor is a finite number,
5. both source operands are infinjty.
6. either source operand is a trapping NaN.

if the exception is not enabled, then the result shall be a non-trapping NaN.

A Floating.Underflow condition exists when the intermediate result's exponent is less than the
destination format's minimum. If the exception is not enabled, then the intermediate result is
denormalized (fraction shifted right and exponent incremented by one for each bit shift) until the
exponent s at the destination format's minimum.

A Floating.Overflow conditlon exists if the result's exponent value would be greater than or equal to
the. maximum exponent value of the destination format and the result is not infinity or NaN. If the
exception is not enabled, then the final result depends on the rounding mode and the sign of the
- intermediate result. The final result is set to infinity with the sign of the intermediate result if the
rounding mode is RN, RZ, (RP and the intermediate result is positive) or (RM and the intermediate
result is negative), Otherwnse the tinal result is the largest magnitude normalized number
representable in the destination,

. A Floating.Inexact condition exists If the dellvered result Is npt exactly equal to the Intermediate
result and no other exoeptions have been raised.

Operands may be elther single or double floating-point numbers.

174

MIL-STD-1862B
3 January 1983

Special Cases: '
If the divisor is zero and the dividend is NaN, or the dividend is infinity and the divisor is a NaN, then
an Invalid.Operation condition exists. :

If the dividend is zero and the divisor is not zero or NaN the result is zero.
If the divisor is infinity and the dividend is a finite number then the result is the dividend.

If either operand is a NaN and the Invalid.Operation exception is not enabled the result is the
same NaN (converted to non-trapping if necessary). If both operands are NaN's then the result is the
second operand.

NOTE: The precision required from the REMF instruction can lead to very long execution times for
many implementations in those cases where B is extremely large and A is extremely small. Since this
potentially long execution time may preclude the locking out of interrupts during REMF execution,
and since REMF is NOT required to resume from the point of interruption, continued restarting of
REMF in some programming environments coulid effectively block further execution of a task that
encounters REMF with large B and small A.

175

MIL-STD-1862B
3 January 1983

Round to Integer v , '

RNDI R<- A ' 92,A,R
Operand types:
AR 32-bit, 64-bit floating point

Condition codes:
Z<-REql0
N<- Sign bit of R
T <. Set as described in section 30.4
C Unaffected

Program exceptions:
Invalid.Operation
Floating.Overflow
Floating.Inexact

Description:

The first operand is rounded to an mteger value and then placed in the second operand. The first
operand is not affected. If the source’s exponents is so large that there are no (zero or non-zero)
significant fractions bits, the result will be set to the source. .

An Invalid.Operation condition exists if the source operand is a trapping NaN. If the exception is
not enabled, then a non-trapping NaN is placed in the destination operand.

- A Floating.Overflow condition exists if the source operand is double floating, the destination
operand is single floating and the source operand's exponent is greater than or equal to the
destination formats maximum and the number is not infinity or NaN. If the exception is not enabled,
then the final result depends on the rounding mode and the sign of the intermediate result. The final
result Is set to Infinity with the sign of the intermediate result if the rounding mode is RN, RZ, (RP and
the intermediate result is positive) or (RM and the intermediate result is negative). Otherwise the final
result isthe Iargest magnitude normalized number representable in the destination.

A Floating. !nexact condition exists if the delivered result is not exactly equal to the intermediate
result and no other exceptions have been raised. This can only happen if the source operand is a
double floating number and the destination is single floating.

Both operands are either 32-bit or 64-bit floating-point numbers,
Special Cases:

If the source is zero, inflmty, or NaN the destination will be set to the same value (trapping NaNs are
converted to non-trapping). .

176

MIL-STD-1862B

3 January 1983
31.0Opcode Allocation
Nebula Opcode Allocation
0X 1X 2X 3X 4X 6X 6X 7X 8X 9X

X0 LTASK BCS BTS ADD Mov MULFIX DEC PCHECK ADDF CMPF
X1 STASK BCS BTS ADD MOVL DIVFIX MOVA PUSH ADDF ABSF
X2 TSTART BCC BTC SuB CMP INC2Z JUMP SCHECK SUBF RNDI
X3 PSTART BCC BTC Sus CMPU INC4 JSR POP SUBF MOVM
X4 TRAISE BEQL EQL MUL TEST INC8 CALL SETBIT MULF MOVBK
X6 PRAISE BEQL WAIT MUL CLR INC CALLU CLRBIT MULF CMPBK
X6 TINIT BNEQ NEQ DIV NOT- ADDU SVC STOBIT DIVF MOVTR
X7 PINIT BNEQ LOOP DIV NOT SUBU RET TSTBIT DIVF SCANB
X8 LPSW BLSS LSS MOD AND MULU RSR STOREH REMF SETPRI
X9- SPSW BLSS IBLSS REM AND DIVU RAISE RESET SQRTF

XA REPENT BGEQ GEQ NEG OR CMPWB ECODE SETCC NEGF

XB MAP BGEQ DBGEQ- NEG OR RANGE EXCEPT SIZE NEGF

XC SETSEG BLEQ LEQ ABS XOR SCALE ERET CASE FLOAT

XD WINDOW BLEQ IBLEQ EXCH CMPS ROT ERP SBF FIX

XE BR BGTR GTR ADDC EMUL LSH NoOP LBFS MOVF

XF BR BGTR DBGTR SUBC EDIV (OB BREAK LBF CLRF
Reserved For: Opcodes Number Reserved
Nebula Control Board 99:CF,FO:F9 65
Applications Use DO:DF 16
Compiler Runtime EO:EF 16
Hardware Implementor FA:FE 5
Extension to 2-byte opcodes FF 1

Opcodes reserved for applications and Compiler runtiine use shall initiate a vectored OPEX call (as
described in section 8.5) in all future 1862 implementations. In other words, these opcodes shall be
reserved for software systems use.

Opcodés reserved for hardware implementors shall produce implementatnon dependent
unpredictable results.

Opcodes reserved to the Nebula Control Board shall be assigned by the- control board at their
discretion. The codes may be assigned for software and/or hardware use. Such assignments shall
become part of the standard.

The opcode FF shall be reserved by the control board for possible future use in establlshing
two-byte opcodes.

31.1. Unimplemented Opcodes. Unimplemented opcodes (OPcdde EXceptions or OPEXs) shall

cause a vector call using the opcode as an index through the OPEX vector registers. Refer to section
8 5- h

177

MIL-STD-1862B
3 January 1983

32. Notes .

32.1. Prime Item Specification considerations. Several items have been identified that should
be considered while preparing a prime item specification for a Nebula computer,

¢ Number of memory map segments - the standard specifies a minimum for the number of
segments that must be supported by the hardware for a Nebula computer. However,
depending on the use intended for a particular implementation and the package
constraints, a larger number of segments may be desirable.

¢ IPL format - The standard specifies how an IPL mechanism will interact with the
architecture, but no definition of the IPL format is given.

e Remotely signaled halt - for some multiprocessor and distributed processing
applications, it may be desirable to have the ability for one processor to halt another.
This provision must be made at the interface level.

. Use of WINDOW - the window instruction is designed to allow diagnostic access to
implementation mechanisms that lie below the architecture level. It may be desirable to
specify some specific functionality that is required for specific systems.

¢ Implementor’s opcodes - a set of opcodes are reserved for the implementor. It may be
desirable to specify specific functions required for a given implementation.

¢ 1/0 register blocks and vectors - space for IOC register blocks and 10C interrupt vectors
has been reserved. It may be desirable to specify specific locations within that reserved
area, especlally if the new implementation must match an already existing
implementation. '

e Initial 1K of memory address space - the first 1k of physical memory space has been
allocated for special uses. Part of that space is specified for the architecture's use. The
rest is intended for additional device vectors and for implementation scratch areas. It
may be desirable to specify the uses for that space.

o MIL-STD-1553 decisions - there are a number of decisions involved in the use of MIL-
STD-1553.

oThe RT mode commands are optional. Implementation’ of these commands
depends on the features supported in the particular MIL-STD-156563 bus
configuration.

o The number of redundant busses is implementation dependent,

o Optional features include broadcast mode, dynamic bus control, and service
request among others. .

178

MIL-STD-1862B
3'January 1983

32.2. In;plementation dependencies. The following table is a li‘st of items that are allowed to
differ from one implementation to another.

Implementation Dependencies in the Standard

Description Section Page
Use of PSW bits 2:3 6.3 19
Use of ASR bits 1:7 ' 7.2 21
Representation of context stacks 8.1.3 24
Exact location referenced by context pointer 8.1.5 24
Setting of PSW bits 2:3 for new PSW 8.3.1 25
Size and format of parameter descriptors 8.4.4 31
Exception handler state encoding .1 34
Order of acceptance of I/0 interrupts of equal priority 11.1 39
Ability to detect hard or soft memory errors 11.6 40
Halt required by Reset function 11.9 42
Definition of BIT traps 11.10 42
Implementation virtual address space 121 44
Number of hardware supported map segments 12.2.2 44
Effect of self-modifying code 12.2.5.1 47
Memory map cacheing méchanisms 12.3.1 48
Effect of aliasing of physical addresses 12.3.2 48
Subseting of memory management) - 12,6 49
Channel configuration register definition 13.1 80
Recognition of access to Program counter 13.2.1 51
Recognition of access to message pointer 13.2.2 81
Channel status register bits 2:14 : ©13.2.4 51
Optional RT mode commands : 13.9.5 67
Base address of IOC register blocks ' 13.11 - 68
Implementation reserved IOC registers 13.11 69
Device vector assignments and use of low memory space 15.1 71
Result of iilegal access to 1/0 space registers 18.2 72
Result of writing context and map pointers in 1/0 space 186.2 72
Trap or exception chosen within instruction 186.2 75
Order of emulation between "next"s in instructions 17.1 78
LTASK method of forcing consistency . 25 . 126
STASK method of forcing context cache to memory 25 127
Information stored for interruptible instruction 27 135
Access by MOVBK when Src = Dest 27 137
Definition of action by WINDOW instruction 29 148
REPENT method of forcing consistency 28 149
SETSEG action on illegal segment specifier address 29 - 161
SETSEG information transmitted to 10C for Virtual addressing 29 182
Exact time of floating point underflow check 30.4.4 158

Use of opcodés FA:FE . 31 177

178

MIL-STD-1862B
3 January 1983

CUSTODIAN: ARMY-CR, AIR FORCE-10
PREPARING ACTIVITY: ARMY-CR

PROJECT: IPSC-01 53-01

180

Index

ABS 92

ABSF 173

Absolute Value 92

Absolute Value Floating 173

Active conlext stack 24

ADD 59, 82)

Add to Address 60

Add with Carry 91

ADDC 91

ADDF 160

Address operands 8
Addressing.Error 52, 55, 68

ADDTA 60

ADDU 92

AND 98

Architectural virtual address space 43
Arithmetic Scale 98

Assembler notation 4

Auxlliary Status Register {ASR) 21, 42, 157, 158, 159

BCASE 62

BCC 113

BCS 113

BEQL 110

BGEQ 112

BGTR 112

Bit Case 62

Bit.Field.Size 35, 140

BLEQ 111

BLSS 111

BLSSIO 61

BNEQ 110

BNEQIO 61

BR 109

Branch 61, 109

Branch on Carry Clear 113
Branch on Carry Set 113
Branch on Equal 110

Branch on Greater than 112
Branch on Greater than or Equal 112
Branch on Less than 111
Branch on Less than or Equal 111
Branch on Not Equal 110
Branch on Truncate Clear 114
Branch on Truncate Set 114
Break 35,37, 145

BRIO 61

BTC 114

BTS 114

Cacheing 3, 24
CALL 121

181

MIL-STD-18628
3 January 1983

MIL-STD-1862B
3 January 1983

Call Procedure 121 '
Call Supervisor 124

Call Unprivileged Procedure 122
Call.Break 35, 37,38

CALLU 122

Case 61,115

CASEIO 61

Channel control register §, 50, 151
Check Privilege Rights 153

Check Supervisor Rights 153
Clear 102

Clear Bit 143

Clear Floating 170

CLR 102

CLRBIT 143

CLRF 170

CMP 105

CMPBK 136

CMPF 170

CMPS 77,108

CMPU 105

CMPWB 107

coB 97

Compare (Sign Exlended) 105
Compare and Swap 108
Compare Block 136

Compare Floating 170

Compare Unsigned 105
Compare within Bounds 107
Compare within Bounds and Take Exception (Range Check) 107
Compound modes 7

Conceptual order 73

Context pointer 22, 24, 39, 40, 42, 72, 127
Context stack 22
Context.Alignment 35, 128
Context.Base 35, 146, 153
CONTROL 63, 64,85

Convert Floating to Integer 168
Convert Integer to Floating 167
Count One Bits 97

DBGEQ 119

DBGTR 120

DEC 90

Decrement 90

Decrement and Branch on Greater 120
Decrement and Branch on Greater than or Equal to 119
DIV 84

DIVF 164

DIVFIX 89

Dlvide Fixed Polnt 89

Divide.By.Zero 21, 35, 158, 158, 164
DIVU 94

EAE 20, 78,81
ECODE 131

182

EDIV 87

EMUL 86

EQL 108

ERET 33, 34, 38, 133, 134

ERP 33, 34, 37, 38, 134

EXCEPT 34, 132

Exception 18, 20, 21, 22, 25, 34
Exception Return 133

Exception Return and Propagate 134
EXCH 103

Exchange 103

Extended Integer Divide 87
Extended Integer Multiplication 86

FIX 168

FLOAT 167

Floating-Point Addition 160
Floating-Point Division 164
Floating-Point Multiplication 162
Floating-Point Square Root 172
Floating-Point Subtraction 161

Floating.Inexact 21, 35, 156, 158, 159, 160, 161, 162, 164, 166, 167, 169, 172, 173, 174, 176
Floating.Overflow 21, 35, 156, 158, 1589, 160, 161, 162, 164, 166, 169, 172, 173, 174, 176
Floating.Underflow 21, 35, 156, 158, 159, 160, 161, 162, 164, 166, 169, 172, 173, 174

GEQ 108
GTR 108

Halt 62

170 80

170 space 3, 5, 21, 22, 43, 44, 46, 49, 50, 51, 52, 66, 69, 70, 72

IADD 59

IADDL §9

JAND 60

|ANDL €0

IBLEQ 117

IBLSS 118
{llegal.Address 8, 35

llegal.Divisor 35, 84, 85, 86, 87, 89; 94, 116

fllegal.Mode 7, 18, 35
iflegal.Opcode 55
lilegal.Operation 50, 55, 63, 64, 65
lllegal.Parameter 14, 20, 27, 35

llegal.Register 7, 20, 35, 103, 104, 124, 125

lilegal.Write 9, 10, 27, 31,35
Implementation dependent 3

Implementation virtual address space 43

INC 90
INC2 90
INC4 90
INC8 €0
Increment 80

Increment and Branch on Less than 118
Increment and Branch on Less than or Equal to 117
Intinity 21, 155, 158, 159, 160, 162, 164, 166, 168, 169, 170, 172, 173, 174, 176

MIL-STD-18628
3 January 1983

MIL-STD-1862B
3 January 1983

Inheritance of registers 26)
Initiate RT to RT transter 66

Initiate Task 130

Inline literal 78

Instruction.Break 35, 37, 38

INT 62

Integer Addition 82

Integer Division 84

Integer Modulus 85

Integer Multiplication 83

Integer Negate 85

Integer Subtraction 82

Interface Control 63, 64, 65

Interrupt 5, 19, 20, 22, 25, 26, 33, 35, 38, 39, 50, 51, 54, 55, 62, 63, 67,68, 70, 71, 77, 135, 152, 174
Interrupt.Priority 55, 62

Interruptible 3

Invalld.Access 47, 48 -
Invalid.Operation 21, 35, 155, 158, 157, 158, 159, 160, 161, 162, 164, 166, 168, 169, 170, 172, 173, 174, 176
Invalid.Segment 45, 48

invalid.Supervisor 47, 48, 121

ICC.Active 51, 55, 68

[OC.Busy 35, 151 -

ICR 60

ICRL 60

IPL 40, 42, 44,63,64, 71

ISUB 60

JSR 124
Jump 109A
Jump to Subroutine 124

Kernel 19, 26, 39
Kernel Context Pointer 22, 24, 39, 40, 42, 72
Kernel Context Stack 19, 22, 39, 40, 41, 42, 48, 128, 129

LBF 142

LBFS 141

LEQ 108

LMP 61

LOAD 59

Load Bit Field (Sign Extended) 141
Load Bit Fleld (Zero Extended) 142
Load Message Pointer 61
Load PSW 146

Load Status 59

Load Task 128

LOADL 59

LOADST 58

Logical AND 60, 88
Logical Exclusive Or 97
Logical Not 95

Logical OR 60, 88
Loglcal Shift 61, 160
Loop 116

LPSW 146

LSH 100

184

~ MIL-STD- 18628
3 January 1983

LSHFT 61
LSS 108
LTASK 22, 24, 44, 47,48, 77, 126, 127

Main memory 5,76, 77

MAP 150

Map Pointer 39, 40, 44, 72, 126, 127, 149
Map Virtual Address 150

Maxreg 7,9, 11,12, 20
Memory.Error 54, 55
Message.Alignment 51, 55, €8
MOD 85

MOV 101

MOVA 102

MOVBK 137

Move Address 102

© Move Arithmetic (Sign Extended) 101
Move Block 137

Move Floating 169

Move Logical (Zero Extended) 101
Move Multiple (Fill) 137

Move Translated 138

MOVF 169

MOVL 101

MOVM 137

MOVTR 138

MUL 83

MULF 162

‘MULFIX 88

Multiply Fixed Point 88

MULU @93

NaN (Not a Number) 155, 157, 158, 160, 162, 164, 166, 168, 169, 170, 172, 173, 174, 178
NEG 85

Negate Floating 166

NEGF 166

NEQ 108

NI 79

No Cperation 145

NOP 145

NOT 85

Operand specifier 5,7, 27, 29, 75, 136
Operand.Size 16, 17, 18, 85, 136, 137, 138, 139
OPEX 25, 26, 31,38

OR 86 ’

PCHECK 153

Physical address 87, 39, 40, 41, 42, 43, 44, 46, 48, 49, 54, 71, 126, 150, 151
Physical address space 5, 44, 49, 50

PINIT 20, 25, 26, 130

FOP 104

Pop from SP Stack 104

PRAISE 34, 128

Priority 19, 39

Privilege 20, 22, 26, 31, 33, 41, 47, 153

185

MIL-STD-1862B
3 January 1983

Privilege.Violation 47, 48

Procedures 22

Processor Status Word (PSW) 19, 20, 22, 23, 24, 25, 27, 33, 35, 38, 39, 41, 42, 47, 70, 121,122, 123, 128, 130, 133,
146, 148, 153, 167

Program.Alignment 51, 55

PSTART 128

PUSH 103

Push onto SP Stack 103

RAISE 34,131

Raise Exception 131
RANGE 107

Range.Error 85, 107
RDTMSG 56

RDTMSGS 66

Read 56

Read to Message 56
READS &8

Register set 26

REM 88

Remainder 86

Remainder Floating 174
_REMF 174

REPENT 47,48, 77, 149
Replace Entry in Map 149
Reserved 3

Reset 154

RET 19, 20, 33, 37, 38, 40, 41, 42, 77, 123, 133, 148, 152
Return from Procedure 123
Return from Subroutine 125
RNDI 176

ROT 69

Rotate 99

Round to Integer 176

RSR 125

RT2RT 66

SBF 140

SCALE @8

Scan and Break 139

SCANB 139

SCHECK 153

Segment.Specliier 35, 151

Set Based on Condition 108

Set Bit 143

Set Condition Codes 147

Set Exception Handler Entry Address 132
Set I/0 Segment 151

Set Priority Level “ 148

SETBIT 143

SETCC 147

SETPRI 148

SETSEG 151

Size 147 :
Specitication.Error 3, 44, 126, 128, 129, 149
SPSW 146

186

MIL-STD-1862B
3 January 1983

SQRTF 172

Start Task 128

Start Task Setting Exception 129
STASK 22, 24,77, 127

STOBIT 77, 144

Store 59

Store Bit Fleld 140

Store Exception Code 131

Store Exception Handler Address 132
Store PSW 146

Store Task 127

STOREH 132

SuB 82

SUBC g1

SUBF 161

Subtract 60

Subtract with Carry 91

susyu 93

Supervisor 20, 25, 31, 42, 153
Supervisor Exception Handler 20, 25, 286, 33, 35, 37, 38, 71, 75, 133, 134, 145
Supervisor Map Pointer 39, 40, 44, 72, 149
Supervisor.Check 35, 153

8SVC 25, 26, 31, 38, 124

Task Context Pointer 22, 24, 72, 127
Task Context Stack 22, 41, 128, 129
Task.Failure 25, 28, 35, 37, 133
Task.Load.Error 35, 126

TEST 108

Test and Store Bit 144

Test Bit 144

Test Integer 108

Timers 70

TINIT 20, 25, 26,130

TRAISE 34, 129

Truncation 20, 35, 37, 78, 81
TSTART 128

TSTBIT 144

UDLE 20, 35, 37

Undefined 3

Unordered 35, 156, 170
Unpredictable 3

Unsigned Addition 82

Unsigned Division 94

Unsigned Multiplication 83

Unsigned Subtraction 93

User Map Pointer 44,72, 126, 127, 149

Virtual address 22, 31, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 58, 66, 67, 79, 132, 135, 150, 151, 153
Virtual address space 5, 23, 43, 44, 151

WAIT 152

Wait for Interrupt 152

WINDOW 148

Window into the Micromachine 148

187

MIL-STD-18628
3 January 1983

WRFMSG 57
WRFMSGC 57
Write 57
Write from Message 57
Write Literal 58
WRITEC 57

WRLIT 58

WRLITC &8

XOR 97

188

