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What is? How it works?
Random forest is a Supervised Machine Learning Algorithm that 
is used widely in Classification and Regression problems, which 
combines the output of multiple decision trees to reach a single result 
taking the average or majority of predictions.

The reason that the random forest model works so well is the low 
correlation between models (trees)

Indeed, it is an extension of the bagging method as it utilizes both 
bagging and feature randomness to create an uncorrelated forest 
of decision trees.



BAGGING and FEATURE RANDOMNESS
Each tree in the ensemble is comprised of a data sample drawn from a training set with replacement, called the bootstrap 

sample. Of that training sample, one-third of it is set aside as test data, known as the out-of-bag (oob) sample.

Another instance of randomness is then 
injected through feature bagging, that is a 
random selection of features to split each 
node. 

This adds more diversity to the dataset and 
reduce the correlation among decision 
trees. 

Finally, the oob sample is then used for 
cross-validation, finalizing that prediction.





SUMMARY

ADVANTAGES:

1. It can be used in classification and regression 
problems.

2. It’s more accurate than the decision tree 
algorithm.

3. It solves the problem of overfitting as output is 
based on majority voting or averaging.

4. This algorithm is very stable. Even if a new data 
point is introduced in the dataset the overall 
algorithm is not affected much since new data 
may impact one tree, but it is very hard for it to 
impact all the trees.

DISADVANTAGES:

1. Random forest is highly complex when compared 
to decision trees where decisions can be made by 
following the path of the tree.

2. Training time is more compared to other models 
due to its complexity. Whenever it has to make a 
prediction each decision tree has to generate 
output for the given input data.
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DATA GENERATION
sklearn.datasets.make_classification
● n_samples→ refers to the number of samples
● n_features → refers to the number of column/features of dataset
● flip_y→ refers to the fraction of samples whose class is assigned randomly. 

Larger values introduce noise in the labels and make the classification task 
harder. Default is 0.1

sklearn.model_selection.train_test_split
To split the dataset into a random train and test subsets. In my case 70% train set and 30% test  set.

● test_size→ If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to 
include in the test split. 



CONSTRUCTION and TRAINING of the Model
sklearn.ensemble.RandomForestClassifier
● n_estimators→ refers to the number of trees in the forest
● criterion → refers to the function to measure the quality of a split. This parameter is tree-specific, the default is “gini”.
● max_depth→ refers to the maximum depth of the tree. The default is None.
● max_features→ refers to the number of features to consider when looking for the best split. The default is sqrt(n_features)
● max_samples → It can be set to a float between 0 and 1 to control the percentage of the size of the training dataset to 

make the bootstrap sample used to train each decision tree.



FIRST ANALYSIS

Training set’s size: 210 samples
Test set’s size: 90 samples

➢ Only 4 are false positive
➢ Only 9 are false negative

➢ Accuracy achieved: 85.56%
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DIFFERENT AMOUNT OF NOISE

In this part i used different amounts of noise during the 
generation of the datasets in order to compare the predictions 
using the Random Forest Classifier and the Decision Tree 
Classifier.

From the resulting chart we can observe that the Random 
Forest Classifier perform better than the Decision Tree 
Classifier, even when the noise increase.

To build the Decision Tree i used the sklearn model: 
sklearn.tree.DecisionTreeClassifier

To compute the error i used the function defined during the 
ML course



HYPERPARAMETER 
TUNING

04



DIFFERENT HYPERPARAMETER TO TUNE
A hyperparameter is a parameter whose value is used to control the learning process.

FEATURES PER NODE

TREE’S DEPTHSAMPLE’S SIZE

NUMBER OF TREES
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1. DIFFERENT NUMBER OF TREES
Typically, the number of trees is increased until the model 
performance stabilizes.

Intuition might suggest that more trees will lead to overfitting, 
although this is not the case. Both bagging and random forest 
algorithms appear to be somewhat immune to overfitting the 
training dataset given the stochastic nature of the learning 
algorithm.

The number of trees can be set via the “n_estimators” argument.

In this case, we can see that performance is better after about 
50/100 trees.



2. DIFFERENT NUMBER OF FEATURES PER NODE
The number of features that is randomly sampled for each split 
point.

It is set via the "max_features" argument. The default is the 
square root of the number of input features. 
In this case, for our test dataset, this would be sqrt(20) or 
about four features.

Indeed, the results suggest that a value between 3 and 5 would 
be appropriate. Increasing the number of features per node 
increase also the misclassification.



3. DIFFERENT SAMPLE’S SIZE
Each decision tree in the ensemble is fit on a bootstrap 
sample drawn from the training dataset.

The “max_samples” argument can be set to a float between 
0 and 1 to control the percentage of the size of the training 
dataset to make the bootstrap sample used to train each 
decision tree.

A smaller sample size will make trees more different, and 
a larger sample size will make the trees more similar.

In this case, the results suggest that using a bootstrap sample 
size that is equal to the size of the training dataset achieves 
the best results on this dataset.
This is the default and it should probably be used in most 
cases.



4. DIFFERENT TREE DEPTH

By default, trees are constructed to an arbitrary depth and are not 
pruned. In this case we fit the forest using trees with different fixed 
depths.

The maximum tree depth can be specified via the "max_depth" 
argument and is set to None (no maximum depth) by default.

In this case, we can see that larger depth results in better model 
performance, with the default of no maximum depth we achieving the 
best performance on this dataset.



CREDITS: This presentation template was created by 
Slidesgo, including icons by Flaticon and infographics & 

images by Freepik

THANKS!
Do you have any questions?

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

