
RANDOM FOREST
ALGORITHM

Roberto Di Via S4486648 - DIBRIS

TABLE OF CONTENTS

ABOUT THE ALGORITHM
What is, how does it works,
advantages and disadvantages

CONSTRUCTION OF THE MODEL
Data generation, Construction and
Training of the Random Forest’s Model

COMPARISON DT and RF
Decision Tree algorithm
VS
Random Forest algorithm

HYPERPARAMETER TUNING
Hyperparameter optimization
through the cross validation

01

03

02

04

ABOUT THE ALGORITHM
01

What is? How it works?
Random forest is a Supervised Machine Learning Algorithm that
is used widely in Classification and Regression problems, which
combines the output of multiple decision trees to reach a single result
taking the average or majority of predictions.

The reason that the random forest model works so well is the low
correlation between models (trees)

Indeed, it is an extension of the bagging method as it utilizes both
bagging and feature randomness to create an uncorrelated forest
of decision trees.

BAGGING and FEATURE RANDOMNESS
Each tree in the ensemble is comprised of a data sample drawn from a training set with replacement, called the bootstrap

sample. Of that training sample, one-third of it is set aside as test data, known as the out-of-bag (oob) sample.

Another instance of randomness is then
injected through feature bagging, that is a
random selection of features to split each
node.

This adds more diversity to the dataset and
reduce the correlation among decision
trees.

Finally, the oob sample is then used for
cross-validation, finalizing that prediction.

SUMMARY

ADVANTAGES:

1. It can be used in classification and regression
problems.

2. It’s more accurate than the decision tree
algorithm.

3. It solves the problem of overfitting as output is
based on majority voting or averaging.

4. This algorithm is very stable. Even if a new data
point is introduced in the dataset the overall
algorithm is not affected much since new data
may impact one tree, but it is very hard for it to
impact all the trees.

DISADVANTAGES:

1. Random forest is highly complex when compared
to decision trees where decisions can be made by
following the path of the tree.

2. Training time is more compared to other models
due to its complexity. Whenever it has to make a
prediction each decision tree has to generate
output for the given input data.

CONSTRUCTION OF
THE MODEL

02

DATA GENERATION
sklearn.datasets.make_classification
● n_samples→ refers to the number of samples
● n_features → refers to the number of column/features of dataset
● flip_y→ refers to the fraction of samples whose class is assigned randomly.

Larger values introduce noise in the labels and make the classification task
harder. Default is 0.1

sklearn.model_selection.train_test_split
To split the dataset into a random train and test subsets. In my case 70% train set and 30% test set.

● test_size→ If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split.

CONSTRUCTION and TRAINING of the Model
sklearn.ensemble.RandomForestClassifier
● n_estimators→ refers to the number of trees in the forest
● criterion → refers to the function to measure the quality of a split. This parameter is tree-specific, the default is “gini”.
● max_depth→ refers to the maximum depth of the tree. The default is None.
● max_features→ refers to the number of features to consider when looking for the best split. The default is sqrt(n_features)
● max_samples → It can be set to a float between 0 and 1 to control the percentage of the size of the training dataset to

make the bootstrap sample used to train each decision tree.

FIRST ANALYSIS

Training set’s size: 210 samples
Test set’s size: 90 samples

➢ Only 4 are false positive
➢ Only 9 are false negative

➢ Accuracy achieved: 85.56%

Comparison between
DECISION TREE

and
RANDOM FOREST

03

DIFFERENT AMOUNT OF NOISE

In this part i used different amounts of noise during the
generation of the datasets in order to compare the predictions
using the Random Forest Classifier and the Decision Tree
Classifier.

From the resulting chart we can observe that the Random
Forest Classifier perform better than the Decision Tree
Classifier, even when the noise increase.

To build the Decision Tree i used the sklearn model:
sklearn.tree.DecisionTreeClassifier

To compute the error i used the function defined during the
ML course

HYPERPARAMETER
TUNING

04

DIFFERENT HYPERPARAMETER TO TUNE
A hyperparameter is a parameter whose value is used to control the learning process.

FEATURES PER NODE

TREE’S DEPTHSAMPLE’S SIZE

NUMBER OF TREES
02

0403

01

1. DIFFERENT NUMBER OF TREES
Typically, the number of trees is increased until the model
performance stabilizes.

Intuition might suggest that more trees will lead to overfitting,
although this is not the case. Both bagging and random forest
algorithms appear to be somewhat immune to overfitting the
training dataset given the stochastic nature of the learning
algorithm.

The number of trees can be set via the “n_estimators” argument.

In this case, we can see that performance is better after about
50/100 trees.

2. DIFFERENT NUMBER OF FEATURES PER NODE
The number of features that is randomly sampled for each split
point.

It is set via the "max_features" argument. The default is the
square root of the number of input features.
In this case, for our test dataset, this would be sqrt(20) or
about four features.

Indeed, the results suggest that a value between 3 and 5 would
be appropriate. Increasing the number of features per node
increase also the misclassification.

3. DIFFERENT SAMPLE’S SIZE
Each decision tree in the ensemble is fit on a bootstrap
sample drawn from the training dataset.

The “max_samples” argument can be set to a float between
0 and 1 to control the percentage of the size of the training
dataset to make the bootstrap sample used to train each
decision tree.

A smaller sample size will make trees more different, and
a larger sample size will make the trees more similar.

In this case, the results suggest that using a bootstrap sample
size that is equal to the size of the training dataset achieves
the best results on this dataset.
This is the default and it should probably be used in most
cases.

4. DIFFERENT TREE DEPTH

By default, trees are constructed to an arbitrary depth and are not
pruned. In this case we fit the forest using trees with different fixed
depths.

The maximum tree depth can be specified via the "max_depth"
argument and is set to None (no maximum depth) by default.

In this case, we can see that larger depth results in better model
performance, with the default of no maximum depth we achieving the
best performance on this dataset.

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon and infographics &

images by Freepik

THANKS!
Do you have any questions?

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

