Multi-Agents Systems
Warehouse Simulation

Di Via Roberto 4486648
4486648@Qstudenti.unige.it

15 June 2023

Contents

(1 _Introduction|

L1 Overviewl.

[2° Technologies Used|
2.1 AgentSpeak(L)|

. Agents| L L e e

4 Agent Design|
[4.1 Robot 1 Agent|,
[4.2 Stock Agent|o
[4.3 Robot 2 Agent| 0L
[4.4 Courier Agent|

5 Conclusion|

1 Introduction

A Multi-Agent System (MAS) is a computational system composed of multi-
ple autonomous agents that interact with each other and their environment
to achieve common or individual goals [1]. Agents are autonomous, proac-
tive, and reactive software/hardware entities that act upon an environment
using sensors and actuators to achieve their goals. They are autonomous in
that they have their own goals and objectives. They are proactive in that
they take the initiative to achieve their goals. They are reactive in that they
respond to changes in their environment. Agents can communicate, collab-
orate, and coordinate their actions to accomplish tasks, solve problems, or
perform complex behaviours that would be challenging or impossible for a
single agent alone.

MASs are widely used in various domains such as robotics, logistics, fi-
nance, traffic management, and social simulations. They offer a decentralized
approach to problem-solving, where agents can act independently and adapt
their behaviours based on their perception of the environment and their com-
munication with other agents.

1.1 Overview

In this report is described the development of a Multi-Agent System (MAS)
that simulates a warehouse environment. The purpose of this MAS is to
efficiently manage the movement and coordination of multiple agents to fill
racks with items taken from the stock, pick all the items from the last filled
racks, and deliver them to a courier upon request. The system aims to
optimize the overall operation of the warehouse by leveraging collaboration
and communication between the agents.

The next chapters will present an overview of the technologies used, a
description of the MAS architecture, and a description of the agents’ design.

2 Technologies Used

The MAS is developed using Javald] for handling the environment and the
Jason (v3.1)[3] platform, based on AgentSpeak(L)[2| language, for program-
ming the agents. Combining these two languages a robust and efficient MAS
can be created that effectively simulates warehouse operations.

2.1 AgentSpeak(L)

AgentSpeak(L) is a logic-based agent-oriented programming language that is
based on the Belief-Desire-Intention (BDI) architecture[6]. This architecture
is based on the idea that agents have beliefs about the world, desires about
what they want to achieve, and intentions about what they plan to do to
achieve their desires. The beliefs of an agent represent its knowledge about
the world. The desires of an agent represent its goals. The intentions of an
agent represent its plans for achieving its goals. So, in summary, AgentS-
peak(L) allows agents to reason about their beliefs, desires, and intentions
enabling them to make decisions and perform actions based on this reasoning.

2.2 Jason

Jason is an open-source interpreter for an extended version of AgentSpeak.
It is specifically designed for developing Multi-Agent Systems and it provides
a platform that facilitates the implementation, execution, and coordination
of agents within a MAS.

The Jason platform enables the creation of multi-agent environments and
enhances the basic AgentSpeak language by introducing additional features
and constructs, making it more suitable for real-world applications. It offers
a comprehensive range of built-in functions, communication primitives, and
execution control mechanisms, which enhance the language’s expressiveness
and flexibility.

To gain a deeper understanding of the AgentSpeak language and its ap-
plication in developing multi-agent systems using Jason, I referred to the
book ”Programming Multi-Agent Systems in AgentSpeak using Jason.” [5

2.3 Java

Java is used within the MAS to represent the system using a Graphical User
Interface (GUI), to handle environmental percepts and execution of agent
actions. While Jason primarily focuses on programming agents’ behaviours
and decision-making, Java allows for the definition of the environment’s state
and the agents’ actions through classes and methods.

2.4 Execution of the Multi-Agent System
To execute the implemented MAS follow these steps:

1. Ensure to have a Java Development Kit (JDK), higher than the 1.8
version, installed on the system.

2. Download and install the Jason platform.

3. Configure the Java development environment with the necessary li-
braries and dependencies, including the classpath to the Jason jar file.

4. Start the Jason platform and load the configuration file " progetto_mas.mas2j”.

5. Click on the execute button to run it.

3 System Architecture

In this chapter, is described the architecture of the implemented MAS, which
simulates a warehouse environment. The system consists of multiple agents,
an environment, and their interactions presented below.

3.1 Agents

The agents are the software entities that interact with each other to achieve
the goals of the MAS. The MAS comprises two mobile agents, Robot 1 and
Robot 2 and two stationary agents, Stock and Courier. Each agent has
specific roles and responsibilities within the warehouse environment.

e Robot 1: This agent is responsible for filling the racks with items. It
does this by repeatedly checking the state of the environment to see if
there are any empty racks. If there are empty racks, the Robot 1 agent
will pick items from the Stock agent and place them in the empty racks.

e Robot 2: This agent is responsible for handling the Courier agent’s
request, picking the items from the last filled racks and bringing them
to him. It does this by repeatedly checking the state of the environment
to see if there are any filled racks at full size. If there are, Robot 2 will
go to the last filled rack to pick the items and it will deliver them to the
Courier agent until the request isn’t satisfied (using a recursive plan).

e Stock: This agent is responsible for managing the availability of items
in the stock. It does this by refilling the items in the stock when
requested by the Robot 1 agent.

e Courier: This agent is responsible for handling deliveries to buyers.
It does this by requesting (every 10 seconds) items from the Robot 2
agent in order to deliver them to the customers.

https://sourceforge.net/projects/jason/files/
https://jason.sourceforge.net/mini-tutorial/getting-started/

3.2 Environment

The environment continuously updates and provides percepts to the agents,
allowing them to perceive the state of the world. In the developed MAS, both
the Courier agent and Robot agents receive percepts from the environment.
The percepts include information such as the object and agents’ locations,
the availability of items in the Stock, and the state of the Racks.

[£] Smert Warchouse Simulation - o X

Docker 2 @

o Rack (50) Rack (1) Rack (50)

Rack (1) Rack (50 Rack ()

The environment is represented as a grid of cells of dimension 15x15. Each
cell can contain a component or be empty, and the agents can move from one
cell to another by following a path. There are different approaches to path
search, in this case, a basic path search algorithm was used. It calculates the
necessary movement directions to bring the agent closer to the destination,
incrementing or decrementing the coordinates along the x-axis and y-axis
accordingly.

The warehouse consists of several components, including 6 racks (each
with its own capacity and location) for filling or emptying, a Stock location
where Robot 1 (R1) retrieves items, a Courier location where Robot 2 (R2)
delivers items, and two Docker stations where mobile agents can recharge
their batteries.

3.3 Communication

In a MAS, agents interact with each other and the environment to achieve
their respective goals efficiently. The agents can use a different number of
communication protocols to interact; they can send direct messages to each
other, they can broadcast messages to all agents in the system, they can
subscribe to events that other agents generate, and they can also observe the
state of the environment by reading data from the environment.

In this specific case, Robot 1 and Robot 2 interact with the environment
to perceive the state of the racks for filling or emptying. Robot 1 further
interacts with the Stock agent to request a refill when the stock is empty and
wait for the event. Similarly, the Courier agent periodically interacts with
Robot 2 to request the items needed for customers and Robot 2 interacts
with the Courier agent to inform about the items delivered.

These interactions allow the agents to collaborate and manage warehouse
operations effectively, ensuring that the stock is never empty, racks are always
filled, and the courier’s requests are satisfied.

3.4 System Architecture Diagram

To visualize the system architecture, a UML[7] class diagram that illustrates
the main components and their relationships is provided.

4 Agent Design

In this chapter, it’s explained the design of the agents in the implemented
MAS, providing insights into their beliefs, intentions, and plans to demon-
strate how the AgentSpeak language is utilized.

4.1 Robot 1 Agent

The Robot 1 agent has the role of filling the empty racks with items taken
from the stock. Let’s explore the beliefs, rules, and plans of the Robot 1
agent.

Beliefs:

e empty(Rack): This belief represents the list of racks that are currently
empty and need to be filled.

e picked_items(Items): This belief indicates that the agent has picked N
items. This is used as a condition to execute some plans and to update,
with some action, the size value of the racks and stock.

e empty_stock: This belief is perceived by the environment and indicates
that the stock is empty and needs to be refilled.

e stock_full: This belief is added by the Stock agent and indicates that
the stock is being refilled.

e at(robot_1, Location): This belief is perceived by the environment and
indicates that the agent is at a certain location, for example, the Stock
area or the Rack to fill.

e battery_level(Level): This belief represents the battery status of the
mobile agent. When is under a certain level the agent must go to the
corresponding Docker location to recharge itself.

Goals:

e fill rack: This is the main agent’s goal, fill the empty racks with items
from the stock.

Plans:

e move_to(Location): This plan is executed when Robot 1 has enough
battery to reach a certain location, like the stock or the rack to fill.
If the agent hasn’t enough battery, it goes to recharge at the Docker
location.

e pick_items_from stock(N): This plan is executed when the Robot 1
agent is at the Stock location and perceives that is not empty. The
stock size is then updated according to the N items picked and the
picked_items belief updated. If the stock is empty it sends a message
to the stock agent saying to refill it, waits for the event, and then
continues to pick items from the stock.

e bring_ items_to_rack(N): This plan is triggered when Robot 1 has picked
a specific number of items (N) and needs to deliver them to the rack.
It checks for an empty rack, moves to the rack’s location, and puts the
items in the rack. If Robot 1 hasn’t picked up the desired number of
items it initiates the process of filling the rack again.

e check for_empty_rack: This plan checks if there is an empty rack avail-
able. If an empty rack is not perceived it waits for a certain period and
checks again.

e put_items_to_rack(N, Rack): This plan is executed when Robot 1 is at
the location of an empty rack. It updates the rack’s size through action
and resets the picked_items belief.

4.2 Stock Agent

The Stock agent ensures that the stock is refilled when required. Let’s explore
the beliefs and plans of the Stock agent.
Beliefs:

e refill stock: This belief is added by Robot 1 when it requires the stock
to be refilled.

Goals:

e The agent has not an individual goal. He ensures that the Stock is
refilled when the refill_stock belief is added from the Robot 1 agent.

Plans:

e refill stock: This plan is triggered when Robot 1 adds the refill_stock
belief. It simulates the process of refilling the stock by waiting for a cer-
tain period of time (10 seconds in this case), performing an action, and
then notifying Robot 1 that the stock is now full sending the stock_full
belief.

4.3 Robot 2 Agent

The Robot 2 agent is responsible for handling the courier’s requests for items
picking up all the items from the last filled racks. Let’s explore the beliefs,
rules, and plans of the Robot 2 agent.

Beliefs:

e full(Rack): This belief represents the list of racks that are currently
full and so they can be empty.

e picked_items(Items): This belief indicates that the agent has picked N
items. This is used as a condition to execute some plans and to update
the size value of the racks.

e at(robot_2, Location): This belief indicates that the agent is at a certain
location, for example, the Courier area or the Rack to empty.

e battery_level(Level): This belief represents the battery status of the
mobile agent. When is under a certain level the agent must go to the
corresponding Docker location to recharge itself.

Goals:

e handle_courier_request: This is the main agent’s goal, bring items from
racks to courier when requested.

Plans:

e go_to_courier: This plan is triggered when Robot 2 receives a request
to go to the courier location.

e move_to(Location): This plan is executed when Robot 2 has enough
battery to reach a certain location, like the Courier or the rack to
empty. If the agent hasn’t enough battery, it goes to recharge at the
Docker location.

e need_ items: This plan is executed when Robot 2 receives a request
from the Courier for a specific number of items. It handles the courier’s
request using a different plan.

e handle_courier_request(N): This plan is responsible for handling the
courier’s request for items. It checks for full racks, moves to the full
rack’s location, picks a specific number of items (50 in this case) from
the rack, delivers them to the courier, and updates the picked_items
belief. It then recursively handles the remaining items requested by the
courier. When all items requested by the courier have been delivered
it moves to the docker location waiting for the next request.

e check for_full rack: This plan checks if there are any full racks available.
If a full rack is not perceived the agent waits for a certain period and
checks again.

e pick_item_from_rack: This plan is triggered when Robot 2 is at the
location of a full rack. It picks a specific number of items (N) from the
rack and updates the rack’s size and picked_items belief.

e deliver_items_to_courier: This plan is executed when Robot 2 has picked
a specific number of items (N) and needs to deliver them to the courier.
It moves to the courier’s location, delivers the items and resets the
picked_items belief.

4.4 Courier Agent

The Courier agent is responsible for requesting items from the Robot 2 agent
in order to ship them to the customers. Let’s explore the beliefs, goals, and
plans of the Courier agent.

Beliefs:

e received_items: This belief represents the number of items that the
Courier agent has received, it is reset for every new request.

Goals:

e requestDelivery: This is the main agent’s goal and consists to request
N items from the Robot 2 agent.

Plans:

e call robot: This plan asks the Robot 2 agent to reach the Courier
location and waits for it. It checks the location of Robot 2 and waits
for a certain period before checking again.

e request_items: This plan is triggered when the desired number of items
has been received. When this happens, the received_items belief is set
to 0 and new items are requested after 10 seconds. If the received_items
belief doesn’t correspond to the number of items needed it sends a
message to Robot 2 requesting them.

e delivered_items: This plan handles the case when items are delivered
by Robot 2 updating the received_items belief with the newly delivered
items.

10

5 Conclusion

In conclusion, this report has provided a comprehensive overview of devel-
oping a Multi-Agent System, with Jason, for simulating an intelligent and
autonomous warehouse. Fundamental concepts are explored, such as agent
architecture, environment modeling, perception and action handling, coordi-
nation mechanisms, and communication protocols.

The field of MAS holds immense potential for addressing complex real-
world problems and improving efficiency in various domains. As technology
continues to advance and new challenges emerge, there are numerous oppor-
tunities for future work and enhancements in MAS development to further
augment its capabilities.

5.1 Future Work and Enhancements

While this report has provided a comprehensive understanding of MAS de-
velopment for the warehouse domain, there are several promising directions
for future work and enhancements:

e Dynamic Request Quantity: Enhancing the courier agent’s capability
to request a variable quantity of items based on user demands can
significantly improve the system’s flexibility and responsiveness. Im-
plementing intelligent algorithms that adaptively adjust the requested
quantity can optimize resource allocation and improve customer satis-
faction.

e Advanced Pathfinding Algorithms: Integrating advanced pathfinding
algorithms, such as the AlphaStar algorithm, can enhance the robots’
navigation efficiency by preventing overlaps and minimizing travel dis-
tances. By intelligently planning paths, the system can optimize re-
source utilization and reduce delivery times.

e Goal Suspension and Task Reassignment: Introducing mechanisms for
goal suspension and task reassignment during recharging periods can
enhance the overall efficiency of the MAS. While one robot agent is
recharging, another robot can temporarily take over its suspended goals
to ensure continuous progress and optimize task completion.

References

[1] AT for Anyone. Multi-agent system. URL: https://www.aiforanyone.
org/glossary/multi-agent-system.

11

https://www.aiforanyone.org/glossary/multi-agent-system
https://www.aiforanyone.org/glossary/multi-agent-system

Universita di Bologna. AgentSpeak(L) and Jason. URL: https://core.
ac.uk/download/pdf/17198968.pdf.

Jason. Java-based interpreter. URL: https://jason.sourceforge.net/
wp/.

Oracle. Java Technical Details. URL: https://www.oracle.com/java/
technologies/|

Michael Wooldridge Rafael H. Bordini Jomi Fred Hiibner. Programming
Multi-Agent Systems in AgentSpeak using Jason. 2007.

Wikipedia. Belief-Desider-Intention architecture. URL: https://en.
wikipedia.org/wiki/Belief,E2780%93desire’E27%80%93intention_
software_model.

Wikipedia. Unified Modeling Language. URL: https://en.wikipedia.
org/wiki/Unified_Modeling_Language.

12

https://core.ac.uk/download/pdf/17198968.pdf
https://core.ac.uk/download/pdf/17198968.pdf
https://jason.sourceforge.net/wp/
https://jason.sourceforge.net/wp/
https://www.oracle.com/java/technologies/
https://www.oracle.com/java/technologies/
https://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
https://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
https://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language

	Introduction
	Overview

	Technologies Used
	AgentSpeak(L)
	Jason
	Java
	Execution of the Multi-Agent System

	System Architecture
	Agents
	Environment
	Communication
	System Architecture Diagram

	Agent Design
	Robot 1 Agent
	Stock Agent
	Robot 2 Agent
	Courier Agent

	Conclusion
	Future Work and Enhancements

