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1 ABSTRACT

The Multi-physics Object-Oriented Simulation Environ-
ment is a framework that supports the development of applica-
tions for solving nonlinear systems of differential equations.
This work presents the implementation of an application in
that framework for solving the Simplified P3 equations. We
conducted two exercises with results as low as 12 pcm and
as high as 145 pcm from the reference results, successfully
validating the proposed application.

2 INTRODUCTION

This work presents the implementation of the Sim-
plified P3 (S P3) equations [1] in a Multi-physics Object-
Oriented Simulation Environment (MOOSE)-based applica-
tion. MOOSE [2] is a computational framework that supports
engineering analysis applications. In a nuclear reactor, several
partial differential equations describe its physical behavior.
These equations are typically nonlinear, and they are often
coupled to each other. MOOSE supports the development of
applications for solving such systems.

MOOSE is an open-source Finite Element Method (FEM)
framework. The framework itself relies on LibMesh [3] and
PetSc [4] for solving nonlinear equations. MOOSE-based
applications define weak forms of the governing equations
and modularize the physics expressions into "kernels." Ker-
nels are C++ classes containing methods for computing the
residual and Jacobian contributions of individual pieces of the
governing equations. MOOSE and LibMesh translate them
into residual and Jacobian functions. These functions become
inputs into PetSc solution routines.

All the software built on the MOOSE framework shares
the same Application Programming Interface (API), facili-
tating relatively easy coupling between different phenomena.
While the S P3 equations solve the neutronics in a nuclear reac-
tor, other applications may solve the thermal-fluids, and given
they share the same API; their integration is straightforward.
Additionally, the framework and its applications use Message
Passing Interface (MPI) for parallel communication allow-
ing for deployment on massively-parallel cluster-computing
platforms.

The PN method [5] discretizes the transport equation by
expanding the angular dependence of the neutron flux in spher-
ical harmonics, considering up to order N polynomials. If
N → ∞, the solution of the PN equations tends to the exact
transport solution. In three-dimensional geometries, the num-
ber of PN equations is proportional to (N + 1)2, whereas, in
one-dimensional planar geometries, the number of PN equa-
tions is (N + 1). Gelbard [1] proposed the S PN approximation
by replacing the second derivatives in the one-dimensional
planar PN equations with three-dimensional Laplacian oper-

ators. This approximation considerably reduces the number
of equations conserving a reasonable accuracy. Capilla et al.
[6] conducted an extension of the C5 Mixed-Oxide (MOX)
fuel Benchmark [7] introduced by Brantley and Larsen [8]
comparing the P3 and S P3 methods, the difference between
results being less than 40 pcm.

The S PN approximation has the disadvantage that the so-
lution does not usually converge to the true transport solution
as N → ∞. Additionally, the theoretical basis of Gelbard’s
formulation of S PN approximation was weak. For these rea-
sons, the method did not gain widespread use until the 2000s,
when thanks to Pomraning [9], Brantley, and Larsen’s [8]
contribution, the method gained a stronger theoretical basis.

In practice, the S PN equations are most accurate for dif-
fusive problems or for problems in which the solution behaves
nearly one-dimensionally and has weak tangential derivatives
at material interfaces. For problems with strong, multidimen-
sional transport effects, such as voids, streaming regions, or
geometrically complex regions, the S PN solutions are less
accurate [10]. However, several results show that the S PN
approximation yields more accurate solutions than the diffu-
sion approximation [11] [12] [13] [14] [15] with considerably
less computational expense than the discrete ordinates (S N)
method [8]. For example, the S P3 approximation is preferable
over the diffusion approximation for modeling reactors using
MOX/UO2 fuel assemblies. MOX fuel assemblies have higher
thermal absorption and fission cross-sections than UO2 fuel
assemblies, and consequently, their thermal flux is lower while
their power production higher. Modeling these characteristics
using the diffusion approximation may be challenging [8] [6].

The S P3 approximation gained popularity throughout
the last couple of decades and currently, different software
uses it to solve the neutron transport equation. Some of
those software are SCOPE2 [16], PARCS [10], DYN3D [12],
SIMULATE-5 [17], and COCAGNE [13].

3 METHODOLOGY

This section describes the methodology followed for solv-
ing the equations. Davidson [5] defined the one-dimensional
multi-group PN equations. For N = 3 and steady-state, the
equations become
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where

φn,g = nth moment of group g neutron flux

Σt,g = group g macroscopic total cross-section

Σsn,g′→g = nth moment of the group g′ to group g

macroscopic scattering cross-section

νΣ f ,g = group g macroscopic production cross-section

χg = group g fission spectrum

ke f f = multiplication factor

Qn,g = nth moment of group g external neutron source

G = number of energy groups.

Assuming an isotropic external source and a negligible
anisotropic group-to-group scattering [8]

Qn,g = 0, n > 0

Σsn,g′→g = 0, g′ , g, n > 0

simplifies equations 2 and 4, allowing to express the odd
moments of the flux φ1,g and φ3,g as functions of the even mo-
ments φ0,g and φ2,g. Introducing φ1,g and φ3,g into equations 1
and 3 reduces the system from four to two equations. Intro-
ducing the variables Φ0,g and Φ2,g, reorganizing the equations,
and replacing the second derivatives by Laplacian operators
[1] yields the SP3 equations [12]

− D0,g∆Φ0,g + Σ0,gΦ0,g − 2Σ0,gΦ2,g = S 0,g (5)
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where

Σn,g = Σt,g − Σsn,g′→g

Φ0,g = φ0,g + 2φ2,g

Φ2,g = φ2,g

D0,g =
1

3Σ1,g
(7)
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The Marshak-like vacuum boundary conditions (BCs)
complete the system of equations [12]
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where

Jn,g = −Dn,g∇Φn,g.

Finally, multiplying equations 5 and 6 by a test function
and integrating over the domain yields the weak form of the
equations modularized into kernels in the MOOSE-based ap-
plication. For brevity, we will not display the derivation of the
kernels here. Such procedure is standard in weighted residual
methods and can be found in [14] and any finite elements book
[18].

4 RESULTS

This section presents several numerical results that vali-
date the calculation scheme. Section 4.1 displays the results
of a one group exercise presented in [8]. Section 4.2 shows
the results of the C5 MOX Benchmark [7].

4.1 One group two-dimensional problem

This section describes a one group, isotropic-scattering
eigenvalue problem introduced by Brantley and Larsen [8].
This section also presents the result obtained with the S P3
solver and compares it against the reference value. Figure 1
shows the problem’s geometry, and Table I specifies its cross-
sections.

We created the mesh using the software Gmsh [19]. The
mesh had 6 × 103 elements. The simulation convergence
criterion was 10−8 for the neutron flux.

Table II compares the eigenvalue obtained with the S P3
solver and the reference value [8] using the equation

∆ρ =

∣∣∣∣∣∣kS P3 − kRe f

kS P3 kRe f

∣∣∣∣∣∣ (10)



Fig. 1: Geometry of the one group eigenvalue problem. Image
reproduced from [8].

Material Σt Σs0 νΣ f

M 1.00 0.93 0.00
F 1.50 1.35 0.24

TABLE I: Cross-sections of the one group eigenvalue problem
[8]. Values expressed in cm−1.

where

∆ρ = reactivity difference [pcm]

kS P3 = eigenvalue obtained with S P3 solver

kRe f = reference eigenvalue.

kRe f kS P3 ∆ρ

0.79862 0.79854 12

TABLE II: Comparison between the result obtained with the
S P3 solver and the reference result for the one group eigen-
value problem.

4.2 C5 MOX Benchmark

This section introduces the C5 MOX Benchmark [7] and
presents the S P3 solver results. The Organisation for Eco-
nomic Co-operation and Development (OECD)/Nuclear En-
ergy Agency (NEA) developed this benchmark to validate
methods and identify their strengths, limitations, and accuracy,
and suggest needs for method development. Two types of fuel
assembly (MOX and UO2) and a reflector comprise the core,
shown in Figure 2. Each fuel assembly consists of a 17 × 17
array of squared pin cells, as displayed in Figures 3 and 4. The
dimensions of each pin cell are 1.26 × 1.26 cm, being 21.42
× 21.42 cm the dimensions of each assembly, and 128.52 ×

128.52 cm of the whole core. The benchmark [7] specifies the
cross-sections, which have a two-energy group structure.

Fig. 2: C5 MOX benchmark configuration. R correponds to
the reflector region. Image reproduced from [6].

Fig. 3: Structure of the UO2 assembly. Image reproduced
from [6].

When no anisotropic component of the scattering cross-
section is available, the benchmark recommends applying the
diagonal transport correction

D0,g =
1

3Σtr,g
(11)

Σtr = Σt,g − µ̄gΣs0,g

where

Σtr,g = group g transport cross-section

µ̄g = group g average cosine deviation angle.

For the sake of comparison, we conducted the exercise
using the normal scheme and using the transport correction
for calculating D0,g with equations 7 and 11, respectively. Due
to the problem’s symmetry, the model included only a quarter
of the core. The mesh had 2.4 × 104 elements. The simulation
convergence criterion was 10−8 for the neutron flux.

Table III compares the eigenvalues obtained with the S P3
solver and the references. For the normal scheme, we use



Fig. 4: Structure of the MOX assembly. Image reproduced
from [6].

a reference value from Capilla et al. [6]. For the transport
correction, we use the reference value from the benchmark [7].

kRe f kS P3 ∆ρ

Normal scheme 0.96969 0.97106 145
Transport correction 0.93755 0.93792 43

TABLE III: Comparison between the results obtained with
the S P3 solver using the normal scheme (equation 7) and the
transport correction (equation 11) and the reference results for
the C5 MOX Benchmark.

The results obtained with the S P3 solver are within the
145 pcm to the reference values. However, the difference
between the reference values of the different schemes is 3535
pcm, suggesting that the use of the transport correction is
necessary.

Figure 5 presents the power distribution and the relative
difference to the reference provided by the benchmark [7].
For brevity, we only calculated the power distribution using
the transport correction. The benchmark specifies the power
distribution pin-by-pin, but to simplify displaying the results,
Figure 5 presents the power distribution in each assembly. The
results of the power distribution are within the 1% difference.

5 CONCLUSIONS

MOOSE is a computational framework that solves sys-
tems of nonlinear differential equations. As part of this work,
we implemented the kernels to solve the steady-state S P3 equa-
tions in a MOOSE-based application. Additionally, we carried
out two exercises whose reference results were known. The
first exercise solved a one-group eigenvalue problem with a
simple geometry, with a result within the 12 pcm. The second
exercise studied the C5 MOX Benchmark, solving it using
different approaches and obtaining results within the 145 pcm.
The calculated power distribution values were within the 1%
error from the reference.

While the S P3 equations solve the neutronics in a nuclear
reactor, future work may develop other applications to solve
the thermal-fluids or integrate this application to existing ap-

Fig. 5: Power distribution in the C5 MOX Benchmark. Top:
power distribution. Bottom: relative difference to reference
values expressed in %.

plications. MOOSE-based applications share the same API
making their integration straightforward.
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