
Cerberus: A MOOSE-based application for solving the SP3 equations

Roberto E. Fairhurst Agosta, Kathryn D. Huff

University of Illinois at Urbana-Champaign, Dept. of Nuclear, Plasma, and Radiological Engineering
ref3@illinois.edu

INTRODUCTION

This work presents the implementation of the Simplified
P3 (SP3) equations [1] in the Multi-physics Object-Oriented
Simulation Environment (MOOSE)-based application Cer-
berus. MOOSE [2] is a computational framework that supports
engineering analysis applications. In a nuclear reactor, several
partial differential equations describe its physical behavior.
These equations are typically nonlinear, and they are often
coupled to each other. MOOSE is an open-source Finite Ele-
ment Method (FEM) framework that supports the development
of applications for solving such systems.

All the software built on the MOOSE framework shares
the same Application Programming Interface (API), facili-
tating relatively easy coupling between different phenomena.
While Cerberus solves the neutronics in a nuclear reactor using
the multi-group steady-state SP3 equations, other applications
may solve the thermal-fluids, and given they share the same
API; their integration is straightforward.

The PN method [3] discretizes the transport equation by
expanding the angular dependence of the neutron flux in spher-
ical harmonics, considering up to order N polynomials. If
N → ∞, the solution of the PN equations tends to the exact
transport solution. In three-dimensional(3D) geometries, the
number of PN equations is proportional to (N + 1)2, whereas,
in one-dimensional(1D) planar geometries, the number of PN
equations is (N +1). Gelbard [1] proposed the SPN approxima-
tion by replacing the second derivatives in the 1D planar PN
equations with 3D Laplacian operators. This approximation
considerably reduces the number of equations conserving a
reasonable accuracy [4].

The SPN approximation has the disadvantage that the so-
lution does not usually converge to the true transport solution
as N → ∞. Additionally, the theoretical basis of Gelbard’s for-
mulation of SPN approximation was weak. For these reasons,
the method did not gain widespread use until the 2000s, when
thanks to Brantley and Larsen’s [5] contribution, the method
gained a stronger theoretical basis.

In practice, the SPN equations are most accurate for diffu-
sive problems or for problems in which the solution behaves
nearly one-dimensionally and has weak tangential derivatives
at material interfaces. Several results show that the SPN ap-
proximation yields more accurate solutions than the diffusion
approximation [6] [7] [8] with considerably less computational
expense than the discrete ordinates (S N) method [5]. For ex-
ample, the SP3 approximation is preferable over the diffusion
approximation for modeling reactors using MOX/UO2 fuel
assemblies. MOX fuel assemblies have higher thermal absorp-
tion and fission cross-sections than UO2 fuel assemblies, and
consequently, their thermal flux is lower while their power
production higher. Modeling these characteristics using the
diffusion approximation may be challenging [5] [4].

The SP3 approximation gained usage throughout the last
couple of decades, and currently, different software uses it
to solve the neutron transport equation. Some examples are
PARCS [9] and DYN3D [7].

METHODOLOGY

This section describes the methodology followed for solv-
ing the equations. Davidson [3] defined the 1D multi-group
PN equations. In the steady-state, for N = 3 and a negligible
fixed source, the equations become
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where

φn,g = nth moment of group g neutron flux
Σt,g = group g macroscopic total cross-section
Σsn,g′→g = nth moment of the group g′ to group g
macroscopic scattering cross-section
νΣ f ,g = group g macroscopic production cross-section
χg = group g fission spectrum
ke f f = eigenvalue
G = number of energy groups.

Assuming a negligible anisotropic group-to-group scatter-
ing [5]

Σsn,g′→g = 0, g′ , g, n > 0

simplifies equations 2 and 4, allowing to express the odd
moments of the flux φ1,g and φ3,g as functions of the even
moments φ0,g and φ2,g. Replacing φ1,g and φ3,g into equations
1 and 3 reduces the system from four to two equations. Intro-
ducing the variables Φ0,g and Φ2,g, reorganizing the equations,
and replacing the second derivatives by Laplacian operators
[1] yields the SP3 equations [7]
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where

Σn,g = Σt,g − Σsn,g′→g
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The Marshak-like vacuum boundary conditions (BCs)
complete the system of equations [7]
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where

Jn,g = −Dn,g∇Φn,g.

Finally, multiplying equations 5 and 6 by a test function
and integrating over the domain yields the weak form of the
equations modularized into kernels by Cerberus. For brevity,
we will not display the derivation of the kernels here. Such
procedure is standard in weighted residual methods and can
be found in [8] or any finite elements book [10].

RESULTS

This section presents several numerical results that val-
idate Cerberus’ calculation scheme. The following sections
discuss the results of a one group exercise and describe the
results of a two-dimensional(2D) and a 3D configuration of
the C5 MOX Benchmark [11].

One group 2D problem

This section describes a one group, isotropic-scattering
eigenvalue problem introduced by Brantley and Larsen [5].
This section also presents the eigenvalue obtained with Cer-
berus and compares it against the reference value. Figure 1
shows the problem’s geometry, in which the fuel plates have a

1 cm-thickness, the distance between them being 2 cm. Due
to the problem’s symmetry, the model included only a quarter
of the core. Using the Gmsh [12] meshing tool, we created the
mesh, which had 6×103 elements. The problem cross-sections
can be found in [5]. The simulation convergence criterion was
10−8 for the neutron flux. Table I compares the eigenvalue
obtained with Cerberus and the reference value from Brantley
and Larsen [5].

Fig. 1: Geometry of the one group eigenvalue problem. Fuel
in red. Moderator in gray.

kRe f kS P3 ∆ρ [pcm]

0.79862 0.79854 12

TABLE I: Comparison between the result obtained with Cer-
berus and the reference result for the one group eigenvalue
problem.

C5G2 2D Benchmark

The open literature describes different versions and ex-
tensions of the C5 MOX benchmark, originally introduced
by Cavarec et al. in 1994 [11]. The Organisation for Eco-
nomic Co-operation and Development (OECD)/Nuclear En-
ergy Agency (NEA) developed this benchmark to validate
methods and identify their strengths, limitations, and accuracy,
and suggest needs for method development. This section de-
scribes the benchmark exercise and presents Cerberus results.

Fig. 2: C5 MOX Benchmark configuration. UO2 assembly in
gray. MOX assembly in red. Reflector in green.



Two types of fuel assembly (MOX and UO2) and a re-
flector comprise the core, shown in Figure 2. Due to the
problem’s symmetry, the model included only a quarter of
the core. Each fuel assembly consists of a 17 × 17 array of
squared pin cells, as displayed in Figure 3. The dimensions of
each pin cell are 1.26 × 1.26 cm, being 21.42 × 21.42 cm the
dimensions of each assembly. The benchmark [11] specifies
the cross-sections, which have a two-energy group structure.

Fig. 3: Structure of the UO2 and MOX assemblies. UO2 in
yellow, 8.7% MOX in red, 7% MOX in gray, 4.3% in orange,
guide tubes in black, and fission chamber in blue.

When no anisotropic component of the scattering cross-
section is available, the benchmark recommends applying the
diagonal transport correction

D0,g =
1

3Σtr,g
(10)

Σtr = Σt,g − µ̄gΣs0,g

where

Σtr,g = group g transport cross-section

µ̄g = group g average cosine deviation angle.

For the sake of comparison, we conducted the exercise
with and without the transport correction for calculating D0,g
with equations 10 and 7, respectively. The mesh had 2.4 × 104

elements. The simulation convergence criterion was 10−8 for
the neutron flux.

Table II compares the eigenvalues obtained with Cerberus
and the references. For the method without correction, we
used a reference value from Capilla et al. [4] as they conducted
the exercise without correction. For the method with transport
correction, we used the reference value from the benchmark
[11].

kRe f kS P3 ∆ρ [pcm]

No correction 0.96969 0.97106 145
Transport correction 0.93755 0.93792 43

TABLE II: Comparison between the results obtained with
Cerberus using no correction (equation 7), the transport cor-
rection (equation 10), and the reference results for the C5
MOX Benchmark.

The results obtained Cerberus solver are within 145 pcm
of the reference values. However, the difference between
the reference values of the different schemes is 3535 pcm,
suggesting that the use of the transport correction is necessary.

The next step was to calculate the pin power distribution,
and for conciseness, we only calculated it using the transport
correction. Figure 4 shows the relative difference to the refer-
ence of the pin power distribution calculated with Cerberus.
We present this result only for the MOX assembly located in
the lower right of Figure 2, as it had the largest relative errors.
The largest relative error is 1.88%.

Fig. 4: Relative difference to the reference values in [11] of
the power distribution in the lower-right MOX assembly of
the C5 MOX Benchmark.

C5G2 3D BENCHMARK

As mentioned earlier, the open literature describes dif-
ferent versions of the C5 MOX benchmark. Ryu et al. [8]
defined a 3D mini-core variation of the C5 MOX Benchmark
with spatial homogenization of the fuel assemblies. The radial
and axial layout of the core are shown in Figures 2 and 5. This
section uses the results in Ryu et al. as a reference.

Fig. 5: Axial layout of the C5G2 3D Benchmark. UO2 assem-
bly in gray. MOX assembly in red. Reflector in green.

Ryu et al. calculated and presented the two-group assem-
bly homogenized cross-sections for this exercise. Because the
data was missing the self-scattering cross-sections, we calcu-
lated it by volume averaging the cross-sections from the C5G2



2D Benchmark [11]. The mesh had 1.1 × 105 elements. The
simulation convergence criterion was 10−8 for the neutron flux.
Table III compares the eigenvalue obtained with Cerberus to
the reference value.

kRe f kS P3 ∆ρ [pcm]

0.91974 0.91979 6

TABLE III: Comparison between the result obtained with
Cerberus and the reference result for the C5G2 3D benchmark
problem in [8].

Figure 6 displays the power distribution and the relative
difference to the reference provided by Ryu et al. [8]. The
results of the power distribution are within 1% difference.

Fig. 6: Power distribution in the C5G2 3D Benchmark. Top:
power distribution. Bottom: relative difference to reference
values expressed in %.

CONCLUSIONS

MOOSE is a computational framework that solves sys-
tems of nonlinear differential equations. As part of this work,
we developed the MOOSE-based application Cerberus to solve
the steady-state multi-group SP3 equations. Additionally, we
validated Cerberus’ calculation scheme by carrying out three
exercises whose reference results were known. The first and
second exercises solved 2D eigenvalue problems with results
within 12 and 145 pcm, respectively. For the second exercise,
we calculated the pin-by-pin power distribution and its rela-
tive error was within 2% error. The third exercise solved a
3D eigenvalue problem with a result within 6 pcm from the
reference. The calculation of the power distribution yielded
results within 1% of the reference.

Cerberus is an application with great potential for further
development. While the SP3 equations solve the neutronics in
a nuclear reactor, future work may develop other applications
to solve the thermal-fluids or integrate Cerberus into existing
applications. MOOSE-based applications share the same API
making their integration straightforward.
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