
#include <inttypes.h>
//#define DEBUG1
//#define DEBUG2
//#define DEBUG3
#define NO_PACK
#define PACK_LITTLE_ENDIAN

#include <aci.h>
#include "pack_lib.h"
#include "utilities.h"

#include "ancs_base.h"
#include "ancs_data_source.h"
#include "ancs_notification_list.h"
#include "ancs_notification_source.h"

extern boolean command_send_enable;
extern unsigned long last_command_send;
static ancs_parsing_env_t ancs_parsing_env;

 ancs_notification_t* ancs_data_source_parser(const uint8_t* buffer) {
 debug_println(F("Notification Attribute Details"));
 debug_println(F("[ANCS DS] ancs_data_source_hook()"));

 debug2_print(F("[ANCS DS] -> Buffer received: "));
 #ifdef DEBUG2
 for (uint8_t i=0; i<ANCS_DATA_LEN; ++i)
 serial_print_char(buffer[i]);
 debug_println();
 #endif

 uint8_t cmd;
 uint32_t nid;
 uint8_t aid;
 uint16_t len;

 ancs_notification_t* notif = NULL;

 // unpack command and uid
 if (ancs_parsing_env.ahead == 0) {
 unpack(buffer, "BIBH", &cmd, &nid, &aid, &len);
 ancs_parsing_env.nid = nid;
 ancs_parsing_env.aid = aid;
 ancs_parsing_env.len = len;
 debug2_print(F("[ANCS DS] -> COMMAND: "));
 debug2_println(cmd, HEX);

 debug2_print(F("[ANCS DS] -> NOTIFICATION: "));
 debug2_println(nid, DEC);
 debug2_print(F("[ANCS DS] -> ATTRIBUTE: "));
 debug2_println(aid, HEX);
 debug2_print(F("[ANCS DS] -> DATA LENGTH: "));
 debug2_println(len, DEC);
 if (len < ((ANCS_DATA_LEN - ANCS_HEADER_LEN) - ANCS_ATTR_REQ_LEN))
{
 debug2_println(F("[ANCS DS] -> All data is in this datagram"));
 debug2_print(F("[ANCS DS] -> DATA: "));
 ancs_parsing_env.buffer = (uint8_t*)malloc(len+1);
 buffer = buffer + ANCS_HEADER_LEN + ANCS_ATTR_REQ_LEN;
 for (uint8_t i=0; i<len; ++i) {
 #ifdef DEBUG2
 serial_print_char(buffer[i]);
 #endif
 ancs_parsing_env.buffer[i] = buffer[i];
 }
 debug2_println();
 ancs_parsing_env.buffer[len] = '\0';
 ancs_parsing_env.index = 0;
 ancs_parsing_env.ahead = 0;

 command_send_enable = true;
 debug2_println(F("[ANCS DS] Parsing is over!"));
 Serial.print(F("[ANCS DS] Data received: "));
 Serial.println((char*)ancs_parsing_env.buffer);
 notif = ancs_cache_attribute(ancs_parsing_env.nid,
 ancs_parsing_env.aid,
 (char*)ancs_parsing_env.buffer,
 ancs_parsing_env.len);
 free(ancs_parsing_env.buffer);
 } else {
 debug2_print(F("[ANCS DS] -> Data continuing in next datagram Len:"));
 debug2_print(len);
 ancs_parsing_env.buffer = (uint8_t*)malloc(len+1);
 ancs_parsing_env.ahead = len-ANCS_FIRST_DATA_LEN;
 buffer = buffer + ANCS_HEADER_LEN + ANCS_ATTR_REQ_LEN;
 debug2_print(F("[ANCS DS] -> DATA: "));
 for (uint8_t i=0; i<ANCS_FIRST_DATA_LEN; ++i) {
 #ifdef DEBUG2
 serial_print_char(buffer[i]);
 #endif
 ancs_parsing_env.buffer[i] = buffer[i];
 }
 debug2_println();
 ancs_parsing_env.index = ANCS_FIRST_DATA_LEN;

 debug2_println(F("[ANCS DS] There's more to come!"));
 }
 } else {
 if (ancs_parsing_env.ahead < ANCS_DATA_LEN) {
 debug2_println(F("[ANCS DS] -> All data left is in this datagram"));
 debug2_print(F("[ANCS DS] -> BUFFER IDX: "));
 debug2_println(ancs_parsing_env.index, DEC);
 debug2_print(F("[ANCS DS] -> DATA: "));
 for (uint8_t i=0; i<ancs_parsing_env.ahead; ++i) {
 #ifdef DEBUG2
 serial_print_char(buffer[i]);
 #endif
 ancs_parsing_env.buffer[ancs_parsing_env.index+i] = buffer[i];
 }
 debug2_println();
 ancs_parsing_env.buffer[ancs_parsing_env.index+ancs_parsing_env.ahead] =
'\0';
 ancs_parsing_env.index = 0;
 ancs_parsing_env.ahead = 0;
 command_send_enable = true;
 debug2_println(F("[ANCS DS] Parsing is over!"));
 Serial.print(F("[ANCS DS] Data received: "));
 Serial.println((char*)ancs_parsing_env.buffer);
 notif = ancs_cache_attribute(ancs_parsing_env.nid,
 ancs_parsing_env.aid,
 (char*)ancs_parsing_env.buffer,
 ancs_parsing_env.len);
 free(ancs_parsing_env.buffer);
 } else {
 debug2_println(F("[ANCS DS] -> Data continuing in next datagram"));
 debug2_print(F("[ANCS DS] -> BUFFER IDX: "));
 debug2_println(ancs_parsing_env.index, DEC);
 debug2_print(F("[ANCS DS] -> DATA: "));
 for (uint8_t i=0; i<ANCS_DATA_LEN; ++i) {
 #ifdef DEBUG3
 serial_print_char(buffer[i]);
 #endif
 ancs_parsing_env.buffer[ancs_parsing_env.index+i] = buffer[i];
 }
 debug2_println();
 ancs_parsing_env.index += ANCS_DATA_LEN;
 ancs_parsing_env.ahead = ancs_parsing_env.ahead - ANCS_DATA_LEN;
 debug2_println(F("[ANCS DS] There's more to come!"));
 }
 }
 return notif;
}

extern void ancs_notifications_use_hook(ancs_notification_t* notif);
void ancs_notification_validation() {
 ancs_notification_t* notif = ancs_notification_list_pop();
 // Serial.print(F("ancs_notification_validation: "));
 // Serial.print(F("["));
 // if ((notif->flags & ANCS_EVT_FLAG_SILENT) == ANCS_EVT_FLAG_SILENT)
 // Serial.print(F("-"));
 // else if ((notif->flags & ANCS_EVT_FLAG_IMPORTANT) ==
ANCS_EVT_FLAG_IMPORTANT)
 // Serial.print(F("!"));
 // else
 // Serial.print(F(" "));
 // Serial.print(F("]"));
 // switch (notif->category) {
 // case ANCS_CATEGORY_OTHER:
 // Serial.println(F("Other"));
 // break;
 // case ANCS_CATEGORY_INCOMING_CALL:
 // Serial.println(F("Incoming call"));
 // break;
 // case ANCS_CATEGORY_MISSED_CALL:
 // Serial.println(F("Missed call"));
 // break;
 // case ANCS_CATEGORY_VOICEMAIL:
 // Serial.println(F("Voicemail"));
 // break;
 // case ANCS_CATEGORY_SOCIAL:
 // Serial.println(F("Social"));
 // break;
 // case ANCS_CATEGORY_SCHEDULE:
 // Serial.println(F("Schedule"));
 // break;
 // case ANCS_CATEGORY_EMAIL:
 // Serial.println(F("Email"));
 // break;
 // case ANCS_CATEGORY_NEWS:
 // Serial.println(F("News"));
 // break;
 // case ANCS_CATEGORY_HEALTH_FITNESS:
 // Serial.println(F("Health & Fitness"));
 // break;
 // case ANCS_CATEGORY_BUSINESS_FINANCE:
 // Serial.println(F("Business & Finance"));
 // break;
 // case ANCS_CATEGORY_LOCATION:
 // Serial.println(F("Location"));

 // break;
 // case ANCS_CATEGORY_ENTERTAINMENT:
 // Serial.println(F("Entertainment"));
 // break;
 // }
 // Serial.print(F(": "));
 // Serial.println(notif->title);
}

ancs_notification_t* ancs_cache_attribute(uint32_t nid, uint8_t aid, const char* buffer,
uint16_t len) {
 char* datetime;
 ancs_notification_t* notif = ancs_notification_list_get(nid);
 debug3_print(F("ancs_cache_attribute("));
 debug3_print(nid, DEC);
 debug3_print(F(", 0x"));
 debug3_print(aid, HEX);
 debug3_print(F(", '"));
 debug3_print(buffer);
 debug3_println(F("')"));
 debug2_print(F(" Notif #"));
 debug2_print(nid, DEC);

 if (notif != NULL) {

 switch (aid) {
 #ifdef ANCS_USE_APP
 case ANCS_NOTIFICATION_ATTRIBUTE_APP_IDENTIFIER:
 debug2_print(F(", App: "));
 strncpy(notif->app, buffer, strlen(buffer));
 break;
#endif
 case ANCS_NOTIFICATION_ATTRIBUTE_TITLE:
 debug2_print(F(", Title: "));
 strncpy(notif->title, buffer, strlen(buffer));
 break;
 case ANCS_NOTIFICATION_ATTRIBUTE_DATE:
 debug_print(F(", Date: "));
 // YYYYMMDDTHHMM
 strncpy(datetime, buffer, 4);
 datetime[4] = '\0';
 notif->time.Y = atoi(datetime);
 buffer = buffer+4;
 strncpy(datetime, buffer, 2);
 datetime[2] = '\0';
 notif->time.M = atoi(datetime);
 buffer = buffer+2;

 strncpy(datetime, buffer, 2);
 datetime[2] = '\0';
 notif->time.D = atoi(datetime);
 buffer = buffer+3;
 strncpy(datetime, buffer, 2);
 datetime[2] = '\0';
 notif->time.h = atoi(datetime);
 buffer = buffer+2;
 strncpy(datetime, buffer, 2);
 datetime[2] = '\0';
 notif->time.m = atoi(datetime);

 buffer = buffer+2;
 strncpy(datetime, buffer, 2);
 datetime[2] = '\0';
 notif->time.s = atoi(datetime);

 free(datetime);
 break;
 case ANCS_NOTIFICATION_ATTRIBUTE_MESSAGE_SIZE:
 debug_print(F(", Msglen: "));
 notif->msg_len = atoi(buffer);
 break;
 #ifdef ANCS_USE_SUBTITLE
 case ANCS_NOTIFICATION_ATTRIBUTE_SUBTITLE:
 debug_print(F(", SubTitle: "));
 strncpy(notif->subtitle, buffer, strlen(buffer));
 break;
 #endif
 case ANCS_NOTIFICATION_ATTRIBUTE_MESSAGE:
 debug_print(F(", Message: "));
 strncpy(notif->message, buffer, strlen(buffer));
 debug_println(buffer);
 return notif;

 break;
 default:
 debug_print(F(", Attribute unknown 0x"));
 debug_print(aid, HEX);
 debug_print(F(": "));
 }
 } else {
 debug_println(F("ERROR: Notification not found in the Cache"));
 }
 debug_println(buffer);
 return NULL;
}

