#include <inttypes.h>

/l#define DEBUGH1

/l#define DEBUG2

/l#define DEBUG3

#define NO_PACK

#define PACK_LITTLE_ENDIAN

#include <aci.h>
#include "pack_lib.h"
#include "utilities.h"

#include "ancs_base.h"

#include "ancs_data_source.h"
#include "ancs_notification_list.h"
#include "ancs_notification_source.h"

extern boolean command_send_enable;
extern unsigned long last_command_send;
static ancs_parsing_env_t ancs_parsing_env;

ancs_notification_t* ancs_data_source_parser(const uint8_t* buffer) {
debug_printin(F("Notification Attribute Details"));
debug_printin(F("[ANCS DS] ancs_data_source_hook()"));

debug2_print(F("[ANCS DS] -> Buffer received:"));

#ifdef DEBUG2

for (uint8_t i=0; ixkANCS_DATA_LEN; ++i)
serial_print_char(buffer[i]);

debug_printin();

#endif

uint8_t cmd;
uint32_t nid;
uint8_t aid;

uint16_t len;

ancs_notification_t* notif = NULL;

/l unpack command and uid

if (ancs_parsing_env.ahead == 0) {
unpack(buffer, "BIBH", &cmd, &nid, &aid, &len);
ancs_parsing_env.nid = nid;
ancs_parsing_env.aid = aid;
ancs_parsing_env.len = len;
debug2_print(F("[ANCS DS] -> COMMAND: "));
debug2_printin(cmd, HEX);



debug2_print(F("[ANCS DS] -> NOTIFICATION:"));

debug2_printin(nid, DEC);

debug2_print(F("[ANCS DS] ->ATTRIBUTE: "));

debug2_printin(aid, HEX);

debug2_print(F("[ANCS DS] -> DATA LENGTH:"));

debug2_printin(len, DEC);

if (len < ((ANCS_DATA_LEN - ANCS_HEADER_LEN) - ANCS_ATTR_REQ_LEN))

debug2_printin(F("[ANCS DS] -> All data is in this datagram"));
debug2_print(F("[ANCS DS] -> DATA:"));
ancs_parsing_env.buffer = (uint8_t*)malloc(len+1);
buffer = buffer + ANCS_HEADER_LEN + ANCS_ATTR_REQ_LEN;
for (uint8_t i=0; i<len; ++i) {
#ifdef DEBUG2
serial_print_char(bufferfi]);
#endif
ancs_parsing_env.buffer[i] = bufferfi];
}
debug2_printin();
ancs_parsing_env.buffer[len] = \0";
ancs_parsing_env.index = 0;
ancs_parsing_env.ahead = 0;

command_send_enable = true;
debug?2_printin(F("[ANCS DS] Parsing is over!"));
Serial.print(F("[ANCS DS] Data received: "));
Serial.printin((char*)ancs_parsing_env.buffer);
notif = ancs_cache_attribute(ancs_parsing_env.nid,
ancs_parsing_env.aid,
(char*)ancs_parsing_env.buffer,
ancs_parsing_env.len);
free(ancs_parsing_env.buffer);
}else {
debug2_print(F("[ANCS DS] -> Data continuing in next datagram Len:"));
debug2_print(len);
ancs_parsing_env.buffer = (uint8_t*)malloc(len+1);
ancs_parsing_env.ahead = len-ANCS_FIRST_DATA_LEN;
buffer = buffer + ANCS_HEADER_LEN + ANCS_ATTR_REQ_LEN;
debug2_print(F("[ANCS DS] -> DATA:"));
for (uint8_t i=0; i<kANCS_FIRST_DATA_LEN; ++i) {
#ifdef DEBUG2
serial_print_char(bufferfi]);
#endif
ancs_parsing_env.buffer[i] = bufferfi];
}

debug2_printin();
ancs_parsing_env.index = ANCS_FIRST_DATA_LEN;



debug2_printin(F("[ANCS DS] There's more to come!"));
}
}else {
if (ancs_parsing_env.ahead < ANCS_DATA_LEN) {
debug2_printin(F("[ANCS DS] -> All data left is in this datagram"));
debug2_print(F("[ANCS DS] -> BUFFER IDX:"));
debug?2_printin(ancs_parsing_env.index, DEC);
debug2_print(F("[ANCS DS] -> DATA:"));
for (uint8_t i=0; i<ancs_parsing_env.ahead; ++i) {
#ifdef DEBUG2
serial_print_char(buffer[i]);
#endif
ancs_parsing_env.buffer[ancs_parsing_env.index+i] = bufferfi];
}
debug?2_printin();
ancs_parsing_env.buffer[ancs_parsing_env.index+ancs_parsing_env.ahead] =
\O"
ancs_parsing_env.index = 0;
ancs_parsing_env.ahead = 0;
command_send_enable = true;
debug2_printin(F("[ANCS DS] Parsing is over!"));
Serial.print(F("[ANCS DS] Data received: "));
Serial.printin((char*)ancs_parsing_env.buffer);
notif = ancs_cache_attribute(ancs_parsing_env.nid,
ancs_parsing_env.aid,
(char*)ancs_parsing_env.buffer,
ancs_parsing_env.len);
free(ancs_parsing_env.buffer);
}else {
debug2_printin(F("[ANCS DS] -> Data continuing in next datagram"));
debug2_print(F("[ANCS DS] -> BUFFER IDX: "));
debug?2_printin(ancs_parsing_env.index, DEC);
debug2_print(F("[ANCS DS] -> DATA:"));
for (uint8_t i=0; i<ANCS_DATA_LEN; ++i) {
#ifdef DEBUG3
serial_print_char(buffer[i]);
#endif
ancs_parsing_env.buffer[ancs_parsing_env.index+i] = buffer(i];
}

debug?2_printin();
ancs_parsing_env.index += ANCS_DATA_LEN;
ancs_parsing_env.ahead = ancs_parsing_env.ahead - ANCS_DATA_LEN;
debug2_printin(F("[ANCS DS] There's more to come!"));
}
}

return notif;

}



extern void ancs_notifications_use_hook(ancs_notification_t* notif);
void ancs_notification_validation() {

ancs_notification_t* notif = ancs_natification_list_pop();

/I Serial.print(F("ancs_noatification_validation: "));

/I Serial.print(F("["));

/1'if ((notif->flags & ANCS_EVT_FLAG_SILENT) == ANCS_EVT_FLAG_SILENT)

/I Serial.print(F("-"));

/I else if ((notif->flags & ANCS_EVT_FLAG_IMPORTANT) ==
ANCS_EVT_FLAG_IMPORTANT)

/I Serial.print(F("!"));

/ else

/I Serial.print(F(" "));

/I Serial.print(F("]"));

/I switch (notif->category) {

/I case ANCS_CATEGORY_OTHER:

I Serial.printin(F("Other"));

/! break;

/I case ANCS_CATEGORY_INCOMING_CALL:
I Serial.printin(F("Incoming call"));

/! break;

/I case ANCS_CATEGORY_MISSED_CALL:
I Serial.printin(F("Missed call"));

/! break;

/Il case ANCS_CATEGORY_VOICEMAIL:

I Serial.printin(F("Voicemail"));

/! break;

/I case ANCS_CATEGORY_SOCIAL:

I Serial.printin(F("Social"));

/! break;

/I case ANCS_CATEGORY_SCHEDULE:

I Serial.printin(F("Schedule"));

/! break;

/I case ANCS_CATEGORY_EMAIL:

I Serial.printin(F("Email"));

/! break;

/I case ANCS_CATEGORY_NEWS:

1 Serial.printin(F("News"));

! break;

/I case ANCS_CATEGORY_HEALTH_FITNESS:
I Serial.printin(F("Health & Fitness"));

/! break;

/I case ANCS_CATEGORY_BUSINESS_FINANCE:
I Serial.printin(F("Business & Finance"));

/! break;

/I case ANCS_CATEGORY_LOCATION:
1 Serial.printin(F("Location"));



/! break;

/I case ANCS_CATEGORY_ENTERTAINMENT:
I Serial.printin(F("Entertainment"));

! break;

I}

// Serial.print(F(": "));

/I Serial.printin(notif->title);

}

ancs_notification_t* ancs_cache_attribute(uint32_t nid, uint8_t aid, const char* buffer,
uint16_t len) {
char* datetime;
ancs_notification_t* notif = ancs_noatification_list_get(nid);
debug3_print(F("ancs_cache_attribute("));
debug3_print(nid, DEC);
debug3_print(F(", 0x"));
debug3_print(aid, HEX);
debug3_print(F(", "));
debug3_print(buffer);
debug3_printin(F("")"));
debug?2_print(F(" Notif #"));
debug?2_print(nid, DEC);

if (notif 1= NULL) {

switch (aid) {

#ifdef ANCS_USE_APP

case ANCS_NOTIFICATION_ATTRIBUTE_APP_IDENTIFIER:
debug2_print(F(", App: "));
strncpy(notif->app, buffer, strlen(buffer));
break;

#endif

case ANCS_NOTIFICATION_ATTRIBUTE_TITLE:
debug2_print(F(", Title: "));
strncpy(notif->title, buffer, strlen(buffer));
break;

case ANCS_NOTIFICATION_ATTRIBUTE_DATE:
debug_print(F(", Date: "));
I YYYYMMDDTHHMM
strncpy(datetime, buffer, 4);
datetime[4] = "\0';
notif->time.Y = atoi(datetime);
buffer = buffer+4;
strncpy(datetime, buffer, 2);
datetime[2] = \O';
notif->time.M = atoi(datetime);
buffer = buffer+2;



strncpy(datetime, buffer, 2);
datetime[2] = \O';
notif->time.D = atoi(datetime);
buffer = buffer+3;
strncpy(datetime, buffer, 2);
datetime[2] = "\0';
notif->time.h = atoi(datetime);
buffer = buffer+2;
strncpy(datetime, buffer, 2);
datetime[2] = \O';
notif->time.m = atoi(datetime);
buffer = buffer+2;
strncpy(datetime, buffer, 2);
datetime[2] = "\0';
notif->time.s = atoi(datetime);
free(datetime);
break;
case ANCS_NOTIFICATION_ATTRIBUTE_MESSAGE_SIZE:
debug_print(F(", Msglen: "));
notif->msg_len = atoi(buffer);
break;
#ifdef ANCS_USE_SUBTITLE
case ANCS_NOTIFICATION_ATTRIBUTE_SUBTITLE:
debug_print(F(", SubTitle: "));
strncpy(notif->subtitle, buffer, strlen(buffer));
break;
#endif
case ANCS_NOTIFICATION_ATTRIBUTE_MESSAGE:
debug_print(F(", Message: "));
strncpy(notif->message, buffer, strlen(buffer));
debug_printin(buffer);
return notif;

break;
default:
debug_print(F(", Attribute unknown 0x"));
debug_print(aid, HEX);
debug_print(F(": "));
}
}else {
debug_printin(F("ERROR: Notification not found in the Cache"));
}
debug_printin(buffer);
return NULL;



