
iCub Courses – July 7th 2014

iCub Control Modes &

Interaction Modes

iCub Courses

iCub control modes

• YARP provide overloaded methods to

perform set/get operations on the control

modes of:
• individual joints (e.g. joint 0 of the iCub

arm)

• a sub set of joints belonging to a specific

robot part (e.g. joints 0 1 2 of the iCub arm)

• all the joints belonging to a specific part

(e.g. the whole iCub arm)

• The selection of a control mode allows the

user to select a specific control algorithm to

actuate the joint. It also implicitly defines

the accepted commands (i.e. position

commands, velocity command etc.).

iCub control modes

The old interface

Yarp::dev::IControlMode

provides a set of methods

which allow to choose only

between a predefined set of

control modes:

- position

- velocity

- torque

- openloop

With the implementation of

new control modes (e.g.

position direct), a new yarp

interface has been

implemented, providing

greater flexibility.

iCub control modes

Since yarp 2.3.63,

there exists a new interface:

Yarp::dev::IControlMode2

• It is now possible to operate on

multiple joints.

• Control mode is now identified by an

integer (yarp::os::vocab)

e.g. setControlMode (int j, int mode)

Use old interface will be

deprecated soon. Use the

new interface for your

application !

• Position control with trajectory generation[1] VOCAB_CM_POSITION

• Direct position control VOCAB_CM_POSITION_DIRECT

• Velocity control VOCAB_CM_VELOCITY

• Mixed Position-Velocity control VOCAB_CM_MIXED

• Torque Control VOCAB_CM_TORQUE

• OpenLoop Control VOCAB_CM_OPENLOOP

• Idle VOCAB_CM_IDLE

[1] In the iCub trajectories are implemented following a minimum jerk profile, but this is not strictly enforced by this specifications

(other robots can implement conventional trapezoidal profile).

iCub control modes

The protocol defines the following control modes, identified by a yarp::os::Vocab code.

• Control modes are always explicitly chosen by the user using the proper YARP interfaces: no

automatic switch are performed by the system (with the only exceptions of the special board

statuses described in Section 3)

• Only the mixed position-velocity control is allowed to accept two command types (i.e. position

and velocity commands). All other control modes accept only the command types specific of

their interface.

Control modes and interaction modes

In addition to the previously described control modes,

YARP provides two interaction modes: stiff interaction

and compliant interaction.

• Stiff Interaction VOCAB_INTERACTION_STIFF

• Compliant Interaction VOCAB_INTERACTION_COMPLIANT

• Stiff interaction is the typical interaction mode

of ‘industrial’ robots, which are required to

execute accurate position/velocity trajectories

in controlled environments.

• Using compliant interaction mode the user

can set specific joint impedance (i.e. stiffness

� and damping	�) during the execution of

position or velocity commands.

The new interface

yarp::dev::IInteractionMode

replaces the old control modes

ImpendancePositionMode /

ImpedanceVelocityMode

Control modes and interaction modes

• The selection of the interaction mode will affect only the joint control algorithm, but will not alter the type of accepted

commands.

• The full set possible control modes/interaction modes combinations are summarized in the following table:

Control Mode Accepted motor commands Interaction mode Additional parameters

Position control with

trajectory generation

																																�

Yarp::dev::IPositionControl::positionMove()

Stiff mode ---

Compliant mode �, �

Direct position control �

Yarp::dev::IPositionDirect::setPosition()

Stiff mode ---

Compliant mode �, �

Velocity control ��

Yarp::dev::IVelocityControl::velocityMove()

Stiff mode ---

Compliant mode �, �

Mixed Position-Velocity

control

�, ��

Yarp::dev::IPositionControl::positionMove()

Yarp::dev::IVelocityControl::velocityMove()

Stiff mode ---

Compliant mode �, �

Torque Control �

Yarp::dev::ITorqueControl::setRefTorque()

OpenLoop Control �

Yarp::dev::IOpenLoopControl::setRefOutput()

Idle --- ---

Transitions between control modes

yarp::dev::IInteractionMode::

setInteractionMode

(VOCAB_IM_COMPLIANT)

yarp::dev::IControlMode::

setControlMode

(VOCAB_CM_VELOCITY)

yarp::dev::IControlMode::

setControlMode

(VOCAB_CM_IDLE)

yarp::dev::IControlMode::

setControlMode

(VOCAB_CM_POSITION)

Position Trajectory

Control

Position Trajectory

Control

Velocity Control

Idle Control

Position Trajectory

Control

Stiff Mode Compliant Mode Compliant Mode Compliant Mode

Idle Control

---Stiff Mode Stiff Mode

yarp::dev::IInteractionMode::

setInteractionMode

(VOCAB_IM_STIFF)

• The selection of stiff/compliant interaction mode is meaningful only when the current control mode

is position, velocity or mixed.

• In all other control modes, such as idle mode, torque mode, openloop etc., choosing the interaction

mode has no effect on the control, but is accepted and stored in the internal status of the board.

• The current the controller when the controller will be again set to a control mode which supports

the interaction mode.

• To turn off a motor user can set a joint in idle control mode (PWM is off)

• yarp::dev::IControlMode::setControlMode()

• yarp::dev::IInteractionMode::setInteractionMode()

joint control mode and interaction mode are selected by the methods:

Board status

Generic Control

Mode
Idle Control Mode

Generic Control

Mode

Generic Control

Mode
Idle Control Mode

Generic Control

Mode
FAULT

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_IDLE)

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_XXX)

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_FORCE_IDLE)

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_XXX)
HARDWARE FAULT

• If a control board is faulted, the user has to send the special command

setControlMode(VOCAB_CM_FORCE_IDLE) to reset the fault before choosing any other desired control

mode.

• Sending the VOCAB_CM_FORCE_IDLE special command when the board is not in fault status has the

same effect of setting VOCAB_CM_IDLE control mode.

• There exists control modes which cannot be set by the user and are used to indicate a particular status of

the board (e.g. fault, calibration in progress etc.)

• Board statuses are handled like control modes and are retrieved by getControlMode()

• The transition from a particular board status to a normal control mode with setControlMode() may be

restricted, depending on the board status.

Control modes in the

robotMotorGui
Background color and box title

indicates the current control

mode

Interaction mode:

Green -> stiff

Red -> compliant

Force Idle button

turns off the joint and

clears HW fault

Run button set control

mode to position, it

does NOT change

interaction mode

Right click to

change

control mode

iCub Control Modes

Position mode vs position direct mode

The new yarp::dev::IControlMode2 interface explicitly supports direct position control (VOCAB_CM_POSITION_DIRECT).

VOCAB_CM_POSITION

Yarp::dev::IPositionControl::positionMove()

Minimum jerk trajectory Trajectory generated with position direct

VOCAB_CM_POSITION_DIRECT

Yarp::dev::IPositionDirect::setPosition()

• Only minimum jerk trajectory

• Easy to use: only one command needed

• Safe

• More powerful (arbitrary trajectory)

• You need to sample your trajectory, compute position

steps and send them continuously (like in velocity control)

• Avoid to use it for large step movement!

<= 10ms

Differences respect to old APIs

• Previous APIs allow automatic switching between Position and Velocity mode (i.e. a VelocityMove () command

sent in positionMode automatically sets the joint in velocityMode). This is no more supported, a

velocityMove() command is rejected, unless the MixedMode is used.

• ImpedancePositionMode and ImpedanceVelocityMode are now deprecated. Use setInteractionMode() to put a

joint in compliant mode.

• Previous API do not distinguish between positionMode and positionDirectMode in terms of control mode

(both of them are considered “position mode”).

• Previous APIs do not distinguish between idle mode and hardware fault. Now the user is forced to send a

special command to reset the fault.

• Previous APIs do not allow to set IdleMode (iAmplifierControl::disableAmp() method is used), but

getControlMode() can return “idle” if a fault occurs on the board.

• The following old methods are now deprecated. Use yarp::dev::IControlMode instead.

yarp::dev::IAmplifierControl::enableAmp()

yarp::dev::IAmplifierControl::disableAmp()

yarp::dev::IPidControl::enablePid()

yarp::dev::IPidControl::disablePid()

yarp::dev::iTorqueControl::enableTorquePid()

yarp::dev::ITorqueControl::disableTorquePid()

…

ictrl->setControlMode(j,VOCAB_CM_POSITION);

ipos->positionMove(j,command);

…

ictrl->setControlMode(j,VOCAB_CM_VELOCITY);

ivel->velocityMove(j,command);

…

ictrl->setControlMode(j,VOCAB_CM_POSITION);

ipos->positionMove(j,command);

…

ipos->positionMove(j,command);

…

OK

Examples

…

ipos->positionMove(j,command);

…

ivel->velocityMove(j,command);

…

ivel->velocityMove(j,command);

…

ipos->positionMove(j,command);

…

BAD

…

ictrl->setControlMode(i,VOCAB_CM_POSITION);

iint->setInteractionMode(i,VOCAB_IM_COMPLIANT);

ipos->positionMove(i,command);

…

iint->setInteractionMode(i,VOCAB_IM_STIFF);

ipos->positionMove(i,command);

…

OK

…

ictrl->setImpedancePositionMode(j);

…

ipos->positionMove(j,command);

…

ictrl->setPositionMode(j);

…

ipos->positionMove(j,command);

…

BAD

…

IPositionControl *pos;

IControlMode2 *ictrl;

IInteractionMode *iint;

…

robotDevice.view (pos);

robotDevice.view (ictrl);

robotDevice.view (iint);

…

while(true)

{

times++;

if (times%2)

{

// set the elbow joint in compliant mode

ictrl->setControlMode(3,VOCAB_CM_POSITION);

iint->setInteractionMode(3,VOCAB_IM_COMPLIANT);

// set new reference positions

command=60;

}

else

{

// set the elbow joint in stiff mode

ictrl->setControlMode(3,VOCAB_CM_POSITION);

iint->setInteractionMode(3,VOCAB_IM_STIFF);

// set new reference positions

command=30;

}

pos->positionMove(3,command);

yarp::os::Time::delay(2.0);

}

FROM: icub-tutorials\src\motorControlImpedance\main.cpp

(https://github.com/robotology/icub-tutorials.git)

Interaction Mode example

…

if (left_arm_master)

{

for (int i=0; i<5; i++)

{

robot->icmd[LEFT_ARM] ->setControlMode(i, VOCAB_CM_TORQUE);

robot->icmd[RIGHT_ARM]->setControlMode(i, VOCAB_CM_POSITION_DIRECT);

robot->iint[RIGHT_ARM]->setInteractionMode(i,VOCAB_IM_COMPLIANT);

}

}

else

{

for (int i=0; i<5; i++)

{

robot->icmd[RIGHT_ARM]->setControlMode(i, VOCAB_CM_TORQUE);

robot->icmd[LEFT_ARM] ->setControlMode(i, VOCAB_CM_POSITION_DIRECT);

robot->iint[LEFT_ARM] ->setInteractionMode(i,VOCAB_IM_COMPLIANT);

}

}

…

if (left_arm_master)

{

robot->ienc[LEFT_ARM] ->getEncoders(encoders_master);

robot->ienc[RIGHT_ARM]->getEncoders(encoders_slave);

for (int i=0; i<5; i++) {robot->iposd[RIGHT_ARM]->setPosition(i,encoders_master[i]);}

}

else

{

robot->ienc[RIGHT_ARM]->getEncoders(encoders_master);

robot->ienc[LEFT_ARM] ->getEncoders(encoders_slave);

for (int i=0; i<5; i++) {robot->iposd[LEFT_ARM]->setPosition(i,encoders_master[i]);}

}

FROM: icub-main\src\modules\demoForceImitation\main.cpp

(https://github.com/robotology/icub-main.git)

Position Direct example

