

1

iCub Control Modes Specification

iCub	Control	Modes	Specifications	

Version Date Author Comments

1.0

1.1

17 Jan 2014

25 July 2014

marco.randazzo@iit.it

marco.randazzo@iit.it

First emission

Minor revision

Contents
1. Introduction ... 1

2. Control modes and interaction modes .. 2

3. Additional Control Board statuses ... 6

3.1. ‘Hardware fault’ status .. 6

3.2. ‘Calibration in progress’ status .. 7

3.3. ‘Not Configured’ status .. 7

4. APIs .. 8

5. Differences with the Old APIs .. 10

1. Introduction

This document describes the control modes made available by YARPdev motor control interfaces and it

specifies how they should be implemented. A generic robot must implement the same interfaces and

behavioral rules hereby described in order to be compliant with the iCub platform.

General considerations and cautions:

• Control modes described in this document are specific for joint-level control and should be

implemented at firmware level by motor control boards. High-level motor skills (e.g. Cartesian

interface) are available through other YARP interfaces (not discussed in this document) and rely, at low-

level, on the same joint-level controllers.

• YARP interfaces described in this document provide overloaded methods to perform set/get operations

on the control modes of:

• individual joints (e.g. joint 0 of the iCub arm)

• a sub set of joints belonging to a specific robot part (e.g. joints 0 1 2 of the iCub arm)

• all the joints belonging to a specific part (e.g. the whole iCub arm)

2

iCub Control Modes Specification

• A generic robot may be not able to implement all the control modes or interfaces which are made

available by YARP. For example, joint-level torque control may be not available on a robot which is not

equipped with torque sensors. In this case, the user should be notified by the system that a specific

interface is not supported. Because some devices are shared by all robots (for example network

proxies) even unavailable interfaces could be implemented. These type of errors can therefore be

checked only at runtime.

• A separate issue is how to handle messages when the “wrong” control mode is enabled and how to

behave when the user requires a control mode that is not supported. Because some commands are

mono-directional and do not receive data back from the boards, there is no safe way to notify the user

if commands (reference position, velocity etc.) are invoked when the invalid control mode is enabled.

Wrong commands will therefore be only ignored by the boards.

• An error will be returned if the user tries to switch to an invalid control mode (e.g. a control mode not

implemented or not available on that specific hardware). Developers are thus recommended to always

check the return value of the setControlMode/setInteractionMode methods (Section 4).

2. Control modes and interaction modes

The protocol defines the following control modes, identified by a yarp::os::Vocab code.

1. Position control with trajectory generation
1
 VOCAB_CM_POSITION

2. Direct position control VOCAB_CM_POSITION_DIRECT

3. Velocity control VOCAB_CM_VELOCITY

4. Mixed Position-Velocity control VOCAB_CM_MIXED

5. Torque Control VOCAB_CM_TORQUE

6. OpenLoop Control VOCAB_CM_OPENLOOP

7. Idle VOCAB_CM_IDLE

Table 1: Control Modes

• The selection of a control mode allows the user to select a specific control algorithm to actuate the

joint and implicitly defines the accepted commands (i.e. position commands, velocity command etc.).

• Control modes are always explicitly chosen by the user using the proper YARP interfaces: no automatic

switch are performed by the system (with the only exceptions of the special board statuses described

in Section 3)

• Only the mixed position-velocity control is allowed to accept two command types (i.e. position and

velocity commands). All other control modes accept only the command types specific of their interface.

• A warning message is generated if a non-legal command (i.e. a velocity command sent to a joint

controlled in position mode) is received by the joint, but no hardware fault condition is generated. The

interface may not return an error to the user (for the reasons described in Section 1).

1
 In the iCub trajectories are implemented following a minimum jerk profile, but this is not strictly enforced by this

specifications (other robots can implement conventional trapezoidal profile).

3

iCub Control Modes Specification

In addition to the control modes listed in Table 1, YARP provides two interaction modes, reported in table

2. The selection of the interaction mode will affect only the joint control algorithm, but contrarily to the

selection of control modes, this will not alter the type of accepted commands.

8. Stiff Interaction VOCAB_INTERACTION_STIFF

9. Compliant Interaction VOCAB_INTERACTION_COMPLIANT

Table 2: Interaction Modes

Stiff interaction is the typical interaction mode of ‘industrial’ robots, which are required to execute

accurate position/velocity trajectories in controlled environments. Using compliant interaction mode,

instead, the user can set specific joint impedance (i.e. stiffness � and damping	�) during the execution of

position or velocity commands.

Switching between different control mode and different interaction modes is subject to the following rules:

• The user should be able to switch from stiff interaction mode to compliant interaction mode (and vice-

versa), even if a position trajectory has been already commanded. However, changing the interaction

mode will stop the joint motion (and the user will have to issue a new position trajectory command).

• If a generic robot is not able to implement the compliant interaction mode (for example because it is

not equipped with force/torque sensors), only the stiff interaction mode will be available. If the control

board receives an invalid set command, the board mode will automatically switch to a fault status

(Section 3.1) and the set method will return an error.

• Idle mode is a “special” mode in which the control algorithm is off and no power is given to the motor.

Thus, the user cannot send any motor command to the joint when it is in idle mode. In order to

reactivate the controller, the user has to explicitly set a different active control mode before sending a

motor command.

The full set possible control modes/interaction modes combinations are summarized in Table 3.

Control Mode Accepted motor

commands

Interaction

mode

Additional

parameters

Position control with trajectory

generation

� Stiff mode ---

Compliant mode �, �

Direct position control � Stiff mode ---

Compliant mode �, �

Velocity control �� Stiff mode ---

Compliant mode �, �

Mixed Position-Velocity control �, �� Stiff mode ---

Compliant mode �, �

Torque Control � ---

OpenLoop Control � ---

Idle --- ---

 Table 3: Interaction Modes/ Control Mode combinations

The selection of stiff/compliant interaction mode is meaningful only when the current control mode is 1,2,3

or 4 (i.e. position or velocity control). In all other control modes, such as idle mode, torque mode etc.,

4

iCub Control Modes Specification

choosing the interaction mode has no effect on the control, but is accepted and stored in the internal

status of the board. It will thus affect the controller when the controller will be again set to control mode

which supports the interaction mode. An example of switching between different control

modes/interaction modes is shown in Figure 1. Note that the interaction mode is stored in the board also

when the controller is idle.

Figure 1: Switching between different control modes/interaction mode

The control algorithm implemented by each control/interaction mode is presented in Figure 2.

• The first row of the picture shows the four position/velocity control modes used with stiff interaction

mode. In this case a position controller is used to compute the motor command.

• The second row of the picture shows the same four position/velocity control modes used with

compliant interaction mode. In this case an impedance controller computes a torque reference

command which is tracked by an inner torque control loop. The impedance controller implements a

virtual spring whose stiffness � and damping factor � can be continuously set by the user (i.e. without

changing control mode).

• The implementation of the velocity control shown in the scheme (i.e. integration of the reference

command) corresponds to the current implementation on the iCub 4DC/BLL control boards. However,

this is not the only possible implementation: an explicit velocity control loop is also possible.

• The output of the controller � can be one of the following:

o Directly the PWM (e.g. iCub BLL/4DC board) if no internal current loop is available.

o A current reference signal (e.g. 2FOC board). In this case an additional loop is implemented to

transform the current reference into the PWM output (current feedback s required).

• Torque control must implement an additional low level check to prevent the movement of the joint

against the hardware limit. The same consideration applies also to position/velocity control modes

when interaction compliant mode is active. This protection mechanism does not change the currently

selected control mode

• In all control modes, an additional feed-forward input, �	

 is available.

• The impedance controller used in the compliant interaction mode also allows an additional feed-

forward input �	

 (which can be used, for example, to compensate gravity).

• Additional mechanisms (not discussed in this document) can be implemented in the position/torque

controllers to compensate motors back-EMF and friction.

yarp::dev::IInteractionMode::

setInteractionMode

(VOCAB_IM_COMPLIANT)

yarp::dev::IControlMode::

setControlMode

(VOCAB_CM_VELOCITY)

yarp::dev::IControlMode::

setControlMode

(VOCAB_CM_IDLE)

yarp::dev::IControlMode::

setControlMode

(VOCAB_CM_POSITION)

Position Trajectory

Control

Position Trajectory

Control

Velocity Control

Idle Control

Position Trajectory

Control

Stiff Mode Compliant Mode Compliant Mode Compliant Mode

Idle Control

---Stiff Mode Stiff Mode

yarp::dev::IInteractionMode::

setInteractionMode

(VOCAB_IM_STIFF)

5

iCub Control Modes Specification

• Default values for control/interaction modes are defined by the calibration procedure of the joint (see

section 3.2 and section 3.3).

Figure 2: Control algorithm schemes

6

iCub Control Modes Specification

3. Additional Control Board statuses

In addition to the control modes described in the previous section, there are supplementary modes (shown

in Table 4) used to represent special statuses of the board and supplementary commands (shown in Table

5) used to send special commands to the board.

10. Hardware fault VOCAB_CM_HW_FAULT

11. Calibration in progress VOCAB_CM_CALIBRATING

12. Not Configured VOCAB_CM_NOT_CONFIGURED

Table 4: Special board statuses

• These values cannot be set by the user with a call to the method yarp::dev::IControlMode::

setControlMode().

• These values are a valid answers for the method yarp::dev::IControlMode::getControlMode()

13. Hardware fault VOCAB_CM_FORCE_IDLE

Table 5: Special board commands

• This command can be sent to the board using the yarp::dev::IControlMode::setControlMode() method.

• This value is never returned by yarp::dev::IControlMode::getControlMode()

3.1. ‘Hardware fault’ status

The “hardware fault” status is used to signal both an hardware fault (e.g. broken encoder, overcurrent

ecc.), or a user fault (e.g. trying to set a control mode which is not implemented by the control board).

• When the board is in “hardware fault”, the controller is off (no PWM is given to the motor).

• If a control board is faulted, the user has to send the special command

setControlMode(VOCAB_CM_FORCE_IDLE) to reset the fault before choosing any other desired control

mode (Figure 3). Requests to switch to other modalities (including VOCAB_CM_IDLE) are ignored. The

purpose is to prevent any automatic switch (e.g. from a user software module) from the fault status to

an active control status.

• If the hardware fault is successfully cleared by the VOCAB_CM_FORCE_IDLE command,

getControlMode() will return a standard VOCAB_CM_IDLE. If the fault persists (e.g. a critical sensor is

broken) the board will remain in the fault status. Note that VOCAB_CM_FORCE_IDLE is never returned

by the method getControlMode().

• Sending the VOCAB_CM_FORCE_IDLE special command when the board is not in fault status has the

same effect of setting VOCAB_CM_IDLE control mode.

7

iCub Control Modes Specification

Figure 3: FAULT status and Idle Control Mode

3.2. ‘Calibration in progress’ status

A board which is currently performing the calibration procedure internally sets its control mode to the

special status “calibration in progress” .

• In this special status the controller is on (PWM is given to the motor). The control algorithm depends

on the specific type of calibrator (e.g. absolute encoder, movement to the hardware limit etc). This is

not discussed in this document.

• In this special status the interaction mode is always ignored.

Transition rules:

• The calibration procedure is requested during the initialization phase. See Section 3.3

• The calibration procedure is requested by the user during normal operation. In this case:

1. The joint status is set to calibration in progress.

2. The calibration algorithm is executed.

3. After the calibration, the control mode and interaction mode is set to a value decided by the

calibrator type. Default value on the iCub platform is:

� position control, stiff interaction mode

� position control, compliant interaction mode (if supported by the hardware)

• If the calibration fails, the board sets its internal status to ‘hardware fault’.

3.3. ‘Not Configured’ status

A board which has been just turned on internally sets its control mode to the special status “not

configured”.

• In this special status the controller is off (no PWM is given to the motor).

• In this special status the interaction mode is always ignored.

Generic Control

Mode
Idle Control Mode

Generic Control

Mode

Generic Control

Mode
Idle Control Mode

Generic Control

Mode
FAULT

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_IDLE)

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_XXX)

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_FORCE_IDLE)

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_XXX)
HARDWARE FAULT

8

iCub Control Modes Specification

The following configuration values must be sent to the board in order to complete the configuration phase:

• All the controller parameters (PID gains, SW joints limits, max output, max current etc.)

• All the calibration parameters (encoders zeroes, etc.) [ONLY FOR JOINTS REQUIRING CALIBRATION]

Transition rules:

• If a joint requires calibration, then the joint exists from “not configured” status when the calibration

command is received. The control mode is thus set to “calibration in progress”.

• If a joint does not require calibration, then the joint exists from “not configured status” when all the

controller parameters are received. The control mode is thus set to the default value here

recommended:

� Idle status

� position control, stiff interaction mode

� position control, compliant interaction mode (if supported by the hardware)

Figure 4: Transitions from a ‘Not configured’ status to valid control mode status

4. APIs

In this section the main motion control interfaces of yarp::dev are shown. Please note that not all the

interfaces methods are shown here, but only the ones which allow to send a motion command to the joint.

For a complete reference, please visit: http://wiki.icub.org/yarpdoc/namespaceyarp_1_1dev.html

• yarp::dev::IPositionControl
o positionMove (int j, double ref)

o setRefSpeed (int j, double sp)

o setPositionMode () = 0 [pure virtual]

Not Configured Idle Control Mode
Generic Control

Mode

yarp::dev::IControlMode::

setControlMode(VOCAB_CM_XXX)
POWER ON

COMPLETED CONFIGURATION

Calibration in

Progress

Generic Control

Mode

COMPLETED CALIBRATION

Not Configured

COMPLETED CONFIGURATION +

CALIBRATION COMMAND
POWER ON

FAULT

UNABLE TO COMPLETE CALIBRATION

9

iCub Control Modes Specification

This interface is used to send a trajectory command to a joint set in either Position Mode or Mixed

Mode. SetPositionMode() is a method which can optionally implemented as shortcut to set one or

more joints in Position trajectory mode without acquiring the yarp::dev::IControlModeInterface.

• yarp::dev::IPositionDirect
o setPosition (int j, double ref)

o setPositionDirectMode () = 0 [pure virtual]

This interface is used to send direct position (step) commands to a joint. The joint should be only in

Position direct mode. SetPositionDirectMode() is a method which can optionally implemented as

shortcut to set one or more joints in Position direct mode without acquiring the

yarp::dev::IControlModeInterface.

• yarp::dev::ITorqueControl
o setRefTorque (int j, double t)

o setTorqueMode () = 0 [pure virtual]

This interface is used to send torque commands to a joint. The joint must be in Torque mode.

SetTorqueMode() is a method which can optionally implemented as shortcut to set one or more joints

in Torque mode without acquiring the yarp::dev::IControlModeInterface.

• yarp::dev::IVelocityControl
o velocityMove (int j, double sp)

o setVelocityMode () = 0 [pure virtual]

This interface is used to send velocity commands to a joint set in either Velocity Mode or Mixed Mode.

SetVelocityMode() is a method which can optionally implemented as shortcut to set one or more joints

in Velocity mode without acquiring the yarp::dev::IControlModeInterface.

• yarp::dev::IOpenLoopControl
o setOutput (int j, double t)

o setOpenLoopMode () = 0 [pure virtual]

This interface is used to send openloop commands (e.g. PWM control) to a joint set in OpenLoop Mode.

SetOpenloopMode() is a method which can optionally implemented as shortcut to set one or more

joints in OpenLoop mode without acquiring the yarp::dev::IControlModeInterface.

• yarp::dev::IControlMode2

o bool getControlMode (int j, int* mode)

o bool getControlMode (int* modes)

o bool setControlMode (int j, const int mode)

o bool setControlMode (const int* modes)

o bool setControlMode (const int n_joint, const int *joints, int *modes)

#define VOCAB_CM_POSITION VOCAB3('p','o','s'),

#define VOCAB_CM_POSITION_DIRECT VOCAB4('p','o','s','d'),

#define VOCAB_CM_VELOCITY VOCAB4('v','e','l'),

#define VOCAB_CM_MIXED VOCAB3('m','i','x'),

#define VOCAB_CM_TORQUE VOCAB4('t','o','r','q'),

#define VOCAB_CM_OPENLOOP VOCAB4('o','p','e','n'),

#define VOCAB_CM_IDLE VOCAB3('i','d','l'),

#define VOCAB_CM_FORCE_IDLE VOCAB4('f','i','d','l'),

#define VOCAB_CM_HW_FAULT VOCAB4('h','w','f','a'),

#define VOCAB_CM_CALIBRATING VOCAB3('c','a','l'),

#define VOCAB_CM_CALIB_DONE VOCAB4('c','a','l','d'),

10

iCub Control Modes Specification

#define VOCAB_CM_NOT_CONFIGURED VOCAB4('c','f','g','n'),

#define VOCAB_CM_CONFIGURED VOCAB4('c','f','g','y')

This interface is used to set/get the control mode of one or more joints. If the requested control mode

is not implemented, setControlMode() returns false.

• yarp::dev::IInteractionModeEnum

namespace yarp {namespace dev

{

enum IInteractionModeEnum

{

VOCAB_IM_STIFF = VOCAB4('s','t','i',’f'),

VOCAB_IM_COMPLIANT = VOCAB4('c','o','m','p')

};

}

• yarp::dev:IInteractionlMode

o bool getInteractionMode (int j, yarp::dev::InteractionModeEnum* mode)

o bool getInteractionMode (yarp::dev::InteractionModeEnum* modes)

o bool getInteractionMode (int n_joints, int *joints,

yarp::dev::InteractionModeEnum* modes)

o bool setInteractionMode (int j, const yarp::dev::InteractionModeEnum mode)

o bool setInteractionMode (const yarp::dev::interactionModeEnum* modes)

o bool setInteractionMode (int n_joints, int *joints, const

yarp::dev::interactionModeEnum* modes)

This interface is used to set/get the interaction mode of one or more joints. If the requested interaction

mode is not implemented, setInteractionMode() returns false.

• yarp::dev::IImpedanceControl
o getImpedance (int j, double *stiffness, double *damping)

o setImpedance (int j, double stiffness, double damping)

This interface allows to set/get the impedance parameters that are use when the joint is set in

compliant mode. This interface does not have any method to send motor command to the joints.

5. Differences with the Old APIs

In this section the key differences between the new and old interfaces are discussed. The methods of the

OLD yarp::dev::IControlMode interface (now replaced by yarp::dev::IControlMode2) are here reported for

reference purpose.

yarp::dev::IControlMode

o getControlMode(int j, int *mode)=0

o getControlModes(int *modes)=0

o setImpedancePositionMode(int j)=0

o setImpedanceVelocityMode(int j)=0

o setOpenLoopMode(int j)=0

o setPositionMode(int j)=0

o setTorqueMode(int j)=0

o setVelocityMode(int j)=0

11

iCub Control Modes Specification

• Previous APIs use a single interface, iControlMode, to set both the control mode and the interaction

mode. For example, setImpedancePositionMode() method correspond to setControlMode() and

setInteractionMode() (using the parameters VOCAB_CM_POSITION and VOCAB_IM_COMPLIANT

respectively). This methods are currently kept for for back-compatibility (showing a “deprecated”

warning message). They will removed in the near future.

• Previous APIs allow automatic switching between Position and Velocity mode (i.e. a VelocityMove ()

command sent in positionMode automatically sets the joint in velocityMode). This is no more

supported, a velocityMove() commands are rejected, unless the MixedMode is used. Same

considerations apply to the ImpedancePositionMode and ImpedanceVelocityMode.

• Previous APIs do not allow to set IdleMode (iAmplifierControl::disableAmp() method is used), but

getControlMode() can return “idle” if a fault occurs on the board.

• Previous API do not distinguish between positionMode and positionDirectMode in terms of control

mode (both of them are considered “position mode”).

• Previous APIs do not distinguish between idle mode and hardware fault. Now the user is forced to send

a special command to reset the fault.

• The use of the following old methods should be avoided in new applications because they introduce

ambiguities and are architecture-dependent. Use yarp::dev::IControlMode instead.

o yarp::dev::IAmplifierControl::enableAmp()

o yarp::dev::IAmplifierControl::disableAmp()

o yarp::dev::IPidControl::enablePid()

o yarp::dev::IPidControl::disablePid()

o yarp::dev::iTorqueControl::enableTorquePid()

o yarp::dev::ITorqueControl::disableTorquePid()

