
FP7-600716

Whole-Body Compliant Dynamical Contacts in Cognitive Humanoids

D1.1
Enhanced iCub simulator for whole-body

contact simulation

Editor(s) Vincent Padois1,2

Responsible Partner UPMC
Affiliations 1 Sorbonne Universités, UPMC Paris 06, UMR 7222,

Institut des Systèmes Intelligents et de Robotique
(ISIR), F-75005, Paris, France.
2 CNRS, UMR 7222, Institut des Systèmes Intelli-
gents et de Robotique (ISIR), F-75005, Paris, France.

Status-Version: Final-1.0
Date: Feb. 28, 2014
EC Distribution: Consortium
Project Number: 600716
Project Title: Whole-Body Compliant Dynamical Contacts in Cog-

nitive Humanoids

Title of Deliverable: Enhanced iCub simulator for whole-body contact sim-
ulation

Date of delivery to the
EC:

28/2/2014

Version 1.0, Feb. 28, 2014

Workpackage responsible
for the Deliverable

WP1

Editor(s): Vincent Padois
Contributor(s): Sovannara Hak, Serena Ivaldi, Mingxing Liu, Vincent

Padois (UPMC) / Andrea Del Prete, Francesco Nori,
Daniele Pucci, Francesco Romano, Silvio Traversao
(IIT) / Jan Babič, Leon Žlajpah (JSI)

Reviewer(s):
Approved by: All Partners

Abstract The work described in this deliverable is part of WP1
and aims at providing the CoDyCo consortium with
a shared framework for the simulation of humanoid
robots and/or digital humans involved in whole-body
and multi-contact activities. In order to reach this
goal, several activities have been led in parallel. They
are described in this deliverable.

Keyword List: dynamics simulators, humanoid robots, digital hu-
man, URDF

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

1/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

Document Revision History

Version Date Description Author
v. 0.1 Feb. 20, 2014 Initial draft Vincent Padois
v. 0.5 Feb. 25, 2014 Intermediate version Vincent Padois
v. 0.9 Feb. 27, 2014 Final version Vincent Padois
v. 1.0 Feb. 28, 2014 Proofread version Francesco Nori

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

2/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

Table of Contents

1 Introduction 5

2 Requirements for enhanced iCub simulator for whole-body contact simulation
5

2.1 Motivations . 5
2.2 Critical features . 6
2.3 Conclusions . 6

3 Survey of existing robotics simulators 7

4 Proposed technical solutions 8
4.1 Historical solution: the ODE iCub simulator 8
4.2 iCubsim with Gazebo . 8
4.3 iCub in XDE . 9
4.4 Digital human URDF file generator . 11

5 Assessment of the proposed simulation solutions 11
5.1 Methodology . 12
5.2 Results . 13

References 17

A Robotics simulators survey paper 18

B Technical paper on the digital human URDF file generator 35

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

3/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

Index of Figures

1 Software architecture and view of the ODE iCub simulator. 9
2 Software architecture and view of the Gazebo iCub simulator. 10
3 A view of the XDE iCub simulator. 10
4 iCub and four instances of the same parametrized mannequin with different

heights and weights in XDE. 11
5 iCub Free-falling right leg experiment: initial posture. 12
6 Evolution of the hip angle. 14
7 Evolution of the knee angle. 15

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

4/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

1 Introduction

The work described in this deliverable is part of WP1 and aims at providing the CoDyCo
consortium with a shared framework for the simulation of humanoid robots and/or digital
humans involved in whole-body and multi-contact activities. In order to reach this goal,
several activities have been led in parallel. They are described in this deliverable as follows.
In Section 2, the definition of the requirements for the simulation framework is provided. In
Section 3, the objectives of a survey of the existing simulators for robotics are presented.
In Section 4, iCubsim, the historical iCub simulator developed at IIT, is described and two
alternative solutions, better suited for the simulation of whole-body motions in contact, are
introduced. The results of the comparison between these two simulators and a real iCub
performing a free-falling task are provided in Section 5. The work achieved for this deliverable
is summarized in the Conclusion and some perspectives are given. Appendix A contains
the survey paper on simulators submitted to the IEEE Robotics and Automation Magazine.
Appendix B contains the manual of the digital human URDF model generator developed at
JSI.

2 Requirements for enhanced iCub simulator for whole-
body contact simulation

In this section, the definition of the requirements for the simulation framework is provided.

2.1 Motivations

With the progress of powerful computers enabling fast computations, dynamics simulation
in robotics is no longer expected to be an offline computational tool. It is used to rapidly
prototype controllers, evaluate robots design, simulate virtual sensors, provide reduced mod-
els for model predictive controllers, supply with an architecture for real robot control, and so on.

This is especially true in the framework of the CoDyCo project where each technical work
package can benefit from an efficient, modular dynamics simulator. Such a simulator is for
example useful:

• in WP2 to evaluate the validity of dimensionally reduced models of human whole-body
motion in contact using simulated digital humans;

• in WP3 to rapidly prototype and evaluate the whole-body reactive controllers and po-
tentially provide computationally efficient models for model predictive controllers;

• in WP4 to bootstrap the learning algorithms without requiring the use of real robots in
the first stage of the learning process;

• in WP5 to extensively test the various validation scenarii before running them on the
real robots.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

5/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

2.2 Critical features

Dynamics simulators for robotics have more strict requirements than the ones used for animat-
ing virtual characters, where time, computational burden and physical reality can be less con
straining. In entertainment (e.g. video-games), infeasible forces may not be a problem since
the laws of physics can be violated. In bio/mechanical studies, simulators can be used offline
to analyse or synthesize behaviours. Although the field of dynamics modelling and simulation
has matured over the last decades [1, 2, 3], the growing need to control whole-body move-
ments of complex structures, such as humanoids, raises additional challenges to simulators for
robotics:

1. numerical stability, which strongly restricts the use of simulations in real-time control
settings [4, 5];

2. the capability to be used as predictive engines in real-time control loops [6], which
requires the ability to be extremely fast in computing the dynamics and the guarantee
for the solvers to converge to physically feasible solutions upon a certain time [7];

3. the simulation of rigid and soft bodies in contact with rigid and compliant environ-
ments [8, 9]: the inaccurate computation of contact forces between bodies may result in
unrealistic contacts or physically infeasible contact forces (this issue has been particularly
evident in the virtual phase of the Darpa Robotics Challenge - DRC);

4. the capability to model and simulate new types of actuation systems, such as variable
impedance or soft actuators [10], and different types of contacts, for example with
deformable materials, compliant and soft surfaces [11].

Modularity is also a critical feature. Indeed, depending on the use made of the
simulator all components such as the 3D graphics display, the graphical user interface,
the interfaces with input devices (keyboard, space mouse,...), the physics core, the con-
troller, etc. may not be required: a modular, component-based, software architecture
can reduce the non-required computational load. It can also permit the use of different
solutions for a given component such as the physics core, the 3D graphics display or the
controller. Finally, if components are glued together using a middle-ware such as YARP
[12], ROS [13] or OROCOS [14], the integration of a controller prototyped in simulation on
the real robot can be largely simplified as the way to access (basically set control modes,
send control inputs and get sensors feedback) to the simulated and real robot can be the same.

Finally, the robotics community urges for standardized software tools and particularly open
source software. The benefit of open-source does not only lie in the community that can grow
around the software, developing new tools, improving its quality and avoiding to “re-invent
the wheel” at each time, but also in checking its efficiency and robustness on real platforms
(which is expensive).

2.3 Conclusions

Within the framework of the CoDyCo project, a modular, component-based dynamics simula-
tion software providing numerically stable, computationally efficient and physically consistent

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

6/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

simulations of whole-body virtual human(oid) systems in contact with rigid or soft environ-
ments is required.

3 Survey of existing robotics simulators

There is a growing number of tools for dynamics simulation, ranging from dynamics solver
libraries to systems simulation software, provided through either open or closed source code
solutions, each more or less tailored to their expected domains of application.

The spectrum of robotics applications being large and expanding, it is necessary for the
developers to get feedback about the users’ needs, and for the researchers to be aware of
the available tools and have the elements to ponder which of the available tools is the best
for their research. Most middle-ware for robotics (ROS, YARP, OROCOS, Player, etc.) are
already open-source, some also cross-platform. This makes it possible to produce interesting
performance comparisons that can help the roboticists to pick the best middle-ware for their
needs [15]. Similar ideas (open-source and cross-platform compatibility) should be used
to compare dynamics models and simulators. For example, an interesting evaluation and
performance comparison of contact modelling algorithms was presented in [4, 5].

As a complement to quantitative comparisons, a useful element of evaluation (often
neglected) is user feedback. What do users really think of the software they use for simulation?
Would they suggest it? What is their experience in their particular use case? It is believed
that user feedback may be useful to avoid time-consuming tuning and inappropriate choices
of software to end-users. It could point a researcher to a community that is actively using the
tool and that is sharing the same concern: for example, it is likely that people simulating flying
robots have different needs than those simulating wheeled robots or those controlling bipeds.
Furthermore, user feedback can provide useful suggestions to the developers community
about the things that matter the most to users in simulation.

With this goal in mind, an online survey about the use of dynamical simulation in robotics
has been created1. The survey is divided into four parts: general information about the user,
user experience with dynamics simulation in general, user experience with one tool of his
choice, technical questions and subjective evaluation about the selected tool. The survey has
been advertised on the main robotics mailing lists (e.g., euron-dist, robotics-worldwide) as
well as in other mailing lists of correlated disciplines (e.g. comp-neuro), and kept open for
approximately one month.

The paper in Appendix A, submitted to the IEEE Robotics and Automation Magazine,
summarizes the analysis of the users’ answers. A descriptive sheet for the most relevant
software tools, for the reader’s interest, is also provided. For the complete analysis of the
simulators survey, the reader is referred to the extended version of the report2.

1Online survey: http://goo.gl/Tmyf5A
2http://arxiv.org/abs/1402.7050

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

7/48 Contract No. FP7-600716
www.codyco.eu

http://goo.gl/Tmyf5A
http://arxiv.org/abs/1402.7050

Version 1.0, Feb. 28, 2014

4 Proposed technical solutions

In this section, the historical dynamics simulator dedicated to iCub is briefly presented (the
proposed description is based on [16]. Given its limitations, two partners (IIT and UPMC)
have proposed alternatives solutions: one based on Gazebo and the other one based on XDE.
The main features of these two solutions are described. The section ends with the description
of the URDF digital human generator developed by JSI.

4.1 Historical solution: the ODE iCub simulator

The first iCub simulator has been initially designed by Vadim Tikhanoff to reproduce, as
accurately as possible, the physics and the dynamics of the iCub robot and its environment.
The simulated iCub robot is composed of multiple rigid bodies connected via joint structures.
It has been constructed collecting data directly from the robot design specifications in order
to achieve an exact replication (e.g. height, mass, Degrees of Freedom) of the first iCub
prototype developed at the IIT within the framework of the RobotCub EU project [17]. The
environment parameters on gravity, objects mass, friction and joints are based on estimated
environment conditions.

This simulator has been created using open source libraries in order to make it possible to
distribute the simulator freely to any researcher without requesting the purchase of restricted
or expensive proprietary licenses. Although the proposed iCub simulator is not the only open
source robotics platform, it is one of the few that attempts to create a 3D dynamics robot
environment capable of recreating complex worlds and fully based on non-proprietary open
source libraries.

The physics core uses ODE (Open Dynamics Engine) [18] for simulating rigid bodies and
detecting collisions algorithms to compute the physical interaction with objects. Rendering is
performed using OpenGL combined to SDL (Simple Directmedia Layer) [19], an open source
cross-platform multimedia library. As the aim was to create an exact replica of the physical
iCub robot, the software infrastructure and inter-process communication which have been used
are similar to those used to control the physical robot. iCub uses YARP (Yet Another Robot
Platform) [12] as its software architecture / middle-ware. YARP is an open-source software
tool for applications that are real-time, computationally intensive, and involve interfacing with
diverse and changing hardware. The simulator and the actual robot have the same interface
either when viewed via the device API or across network and are interchangeable from a user
perspective. A global view of the ODE iCub simulator software architecture is provided in
Fig. 1a. A view of the simulator is given in Fig. 1b.

4.2 iCubsim with Gazebo

One of the shortcomings of the ODE iCub simulator is the way ODE represents rigid-body
structures: it represents joints as constraints between bodies. A second class of physics core
libraries, such as the ones used in XDE [20] and OpenHRP [21], makes use of parametrized
rigid-body dynamics representations, where joints are simply part of the robotics structure.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

8/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

(a) Global view of the software architecture [16]. (b) A view of the ODE iCubSim simulator.

Figure 1: Software architecture and view of the ODE iCub simulator.

These two classes determine not only the way forward/inverse dynamics are computed (the
second class benefits from the straightforward computation of quantities useful in robotics,
such as Jacobians, mass matrices etc.), but most importantly the way contact forces are
computed. The first class considers contacts forces as bilateral/unilateral constraints, which
are added to the list of constraints used to describe the joints; then the same solver is used
to find the forces for the global system, including contacts and joints. In the second class,
on the contrary, only constraints from the contacts are solved, which notably simplifies the
problem. This leads to more stable and physically consistent numerical integration results.

In order to benefit from alternative physics core libraries and from a widely used, open-
source, modular simulation framework, the IIT has developed a new version of its iCub simu-
lator based on Gazebo [22]. Gazebo is a multi-robot simulator, developed by the Open-Source
Robotics Foundation. It is the official software tool for the Darpa Robotics Challenge and it
can rely on Bulletphysics [23] as the physics simulation core. The latest version of Bullet (2.82)
relies on efficient dynamics computation algorithms developed by R. Featherstone [24] as well
as on the state of the art Mixed Linear Complementarity Problems contact solver developed at
INRIA [25]. A schematic view of the Gazebo iCub simulator software architecture is provided
in Fig. 2a. A view of the simulator is given in Fig. 2b.

4.3 iCub in XDE

Based on its past experience with the Arboris-Python3 dynamics simulator [26] and on its
long lasting collaboration with the CEA LIST, UPMC has chosen to explore the possibilities
offered by the XDE modular simulation framework [20].

3This simulator was first developed in Matlab by A. Micaelli, researcher at CEA, and then in Python by S.
Barthélémy and J. Salini at UPMC.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

9/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

(a) Schematic view of the software architecture. (b) A view of the Gazebo iCubSim simulator.

Figure 2: Software architecture and view of the Gazebo iCub simulator.

XDE is a modular, extensible, component-based simulation framework based on the
Orocos [14] robotics middle-ware and primarily dedicated to interactive simulation and virtual
reality applications. XDE is based upon a physics simulation kernel that handles rigid and
deformable bodies, in particular cables, multi-body systems with kinematic constraints and
intermittent contacts, fluids: liquid, gas or smoke. XDE is equipped with two different
proximity computing engines to achieve a precision guaranteed collision detection between
objects, even with complex industrial models produced by CAD tools. XDE is based upon
widely accepted technologies like Orocos RTT, Python, C++, Ogre, OpenMP, CUDA. It
comes with a rigid-body model computation component and its functionalities come with
Python wrappers facilitating the rapid prototyping of code.

Based on this framework and on the work of Joseph Salini [27] on whole-body controllers
for humanoid robots, a model of iCub in XDE has been implemented and several simulations
including iCub in whole-body and multi-contact situations have been performed. A view of
the simulator including iCub in a whole-body multi-contact situation is given in Fig. 3.

Figure 3: A view of the XDE iCub simulator.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

10/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

4.4 Digital human URDF file generator

Within the framework of WP2, WP3 and WP4, simulating digital humans using the iCub
dynamics simulator (especially in the case where the human-robot interaction is studied) is
required. In order to easily generate digital humans of various heights and weights, XDE
includes a parametrized digital human model with 45 ”actuated” degrees of freedom among
which 6 are located in the back. A view of four instances of the same parametrized mannequin
with different heights and weights is provided by Fig. 4.

In order to provide a way to generate URDF [28] models of digital mannequins indepen-
dently from a specific simulator, JSI has developed a software for generating instances of a
parametrized digital human (similar to the one present in XDE) as well as to edit the detailed
parameters of an existing instance. The user manual of this software is provided in Appendix B.

Figure 4: iCub and four instances of the same parametrized mannequin with different heights
and weights in XDE.

5 Assessment of the proposed simulation solutions

This section describes some preliminary work aiming at quantitatively evaluating the accuracy
of the rigid body simulation of the iCub robot in the Gazebo [22] and XDE [20] simulators.
In order to perform this comparison, an initial experiment on a real iCub robot is performed.
This experiment is used to identify a reasonably accurate model of the friction acting in the
real robot so that this model can complete the pre-existing rigid-body model of the robot
used for simulation. Friction being a major component of the torques acting on the robot at

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

11/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

low velocities, this first phase is needed to ensure that the comparison between the physical
and virtual world robot is meaningful. Once this fairly accurate model is obtained, the second
stage consists in performing similar experiments on the real robot as well as on its XDE and
Gazebo simulated counterparts.

5.1 Methodology

The experiment chosen to perform the comparison consists in a free-fall of the right leg of
iCub, starting from of a configuration where the leg is stretched horizontally as illustrated by
Fig 5a and Fig. 5b respectively in the Gazebo and XDE simulators. A shared URDF model of
the iCub robot is used in both simulators.

(a) Gazebo view. (b) XDE view.

Figure 5: iCub Free-falling right leg experiment: initial posture.

While all the dynamics parameters of the robot are computed based on the robot CAD
model as well as on the various components data-sheets, a friction model is estimated using a
software module4 developed at IIT. The retained friction model Γf,i for joint i can be written
as follows

Γf,i = (kvps(q̇) + kvns(−q̇))q̇ + (kcps(q̇) + kcns(−q̇))sign(q̇), (1)

where kvp, kcp, kvn, kcn are respectively the viscous and Coulomb friction coefficients for
positive joint velocities and the viscous and Coulomb friction coefficients for negative joint
velocities. q̇ is the joint velocity, s(x) is the step function (1 for x > 0, 0 otherwise) and
sign(x) is the sign function (1 for x > 0, −1 for x < 0 , 0 for x = 0).

This model ignores the Stribeck friction regime acting at very low velocities and generating
stick-slip behaviours. Still, it can reasonably be used in many applications and presents the
advantage of begin linear with respect to the friction coefficients, thus making it rather
straightforward to identify using least-squares identification techniques.

Two models have been identified: one including both viscous and Coulomb friction
components and one including only a hand-tuned/adapted viscous friction component. This

4https://github.com/robotology/codyco/tree/master/src/modules/motorFrictionIdentification

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

12/48 Contract No. FP7-600716
www.codyco.eu

https://github.com/robotology/codyco/tree/master/src/modules/motorFrictionIdentification

Version 1.0, Feb. 28, 2014

hand-tuned coefficient is based on an inverted pendulum model and the obtained value
accounts for the mass distribution of the bodies and the observed velocity of the joints on the
real robot. Table 1 summarizes the values obtained by IIT on one of their iCub robot.

XXXXXXXXXXXXJoint
Coefficient

Viscous [N.m.s] Coulomb [N.m] Adapted viscous [N.m.s]

Hip
kvp = 0.69212 kcp = 2.64804

k′
v = 93.51401

kvn = 0.68809 kcn = 1.78945

Knee
kvp = 0.57051 kcp = 2.00711

k′
v = 19.84783

kvn = 0.57482 kcn = 3.21653

Table 1: Identified friction coefficient for the knee and hip of the iCub robot.

Based on these models and on the real robot experiment, different tests have been
performed in both the Gazebo and XDE simulators. It has to be noticed that, both in XDE
and Gazebo, viscous friction is intriniscally part of the description of a joint and can thus
be integrated implicitly by the physics engine. It is not the case of Coulomb friction and
accounting for it requires to add it as a control torque in the simulator. Given, the highly
non-linear nature of this term, this results in non realistic oscillatory behaviours of the joints.
Moreover, the identified viscous + Coulomb model exhibits extremely low frictions. For these
two reasons, the retained experiments only compare the real robot motion to the simulated
one using the adapted friction model in both simulators.

Real robot Gazebo XDE
Real world friction A1 - -

Adapted viscous friction model - B2 B3

Table 2: Tests performed in the Gazebo and XDE simulators.

The joint trajectories of the hip and knee are recorded for comparison. These results are
presented in the next section.

5.2 Results

Figures 6 and 7 provide plots of the evolution of the hip and knee angle over time in the cases
described by Table 2.

The first observation from these curves is the large amount of friction faced by the leg
joints of the robot. This is a known problem, especially by control people, in most humanoid
robots. iCub is similar to them in that sense.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

13/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

The second observation is related to the similarity of the results obtained using both XDE
and Gazebo. Some minor differences can be observed but, in this experiment, it is impossible
to conclude whether one simulator is more accurate than the other. Indeed, in the process
of obtaining these results, IIT and UPMC realized the difficulty to share common robots
models, despite the existence of the URDF standard description format. The small difference
between the two simulators’ results are likely to be due to a mismatch between the used models.

Finally, simulating viscous friction is not enough for accurate simulations. This really
emphasizes the importance of identification in order to properly close the gap between the real
world robot and its simulated counterpart. This is an on-going effort in CoDyCo, especially
in WP1, WP3 and WP4.

Figure 6: Evolution of the hip angle.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

14/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

Figure 7: Evolution of the knee angle.

References

[1] R. Featherstone and D. E. Orin, Handbook of Robotics. B. Siciliano and O. Khatib
Eds., Springer, 2008, ch. Dynamics, pp. 35–65.

[2] A. Jain, Robot and Multibody dynamics: analysis and algorithms. Springer, 2011.

[3] E. Todorov, “Analytically-invertible dynamics with contacts and constraints: theory and
implementation in mujoco,” in IEEE Int. Conf. on Robotics and Automation, 2014.

[4] E. Drumwright and D. Shell, “An evaluation of methods for modeling contact in multi-
body simulation,” in IEEE Int. Conf. on Robotics and Automation, 2011, pp. 1695–1701.

[5] ——, “Extensive analysis of linear complementarity problem (lcp) solver performance on
randomly generated rigid body contact problems,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2012, pp. 5034–5039.

[6] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012, pp. 5026–5033.

[7] E. Todorov, “A convex, smooth and invertible contact model for trajectory optimization,”
in IEEE Int. Conf. on Robotics and Automation, 2011, pp. 1071–1076.

[8] B. Brogliato, A. ten Dam, L. . Paoli, F. Gnot, and M. Abadie, “Numerical simulation
of finite dimensional multibody nonsmooth mechanical systems,” Applied Mechanics Re-
views, vol. 55, pp. 107–150, 2002.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

15/48 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2014

[9] Y.-B. Jia, “Three-dimensional impact: energy-based modeling of tangential compliance,”
Int. J. Robotic Research, vol. 32, no. 1, pp. 56–83, 2013.

[10] C. Duriez, “Control of elastic soft robots based on real-time finite element method,” in
IEEE International Conference on Robotics and Automation. IEEE, 2013, pp. 3982–3987.

[11] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic rendering of inter-
acting deformable objects in virtual environments,” IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 1, pp. 36–47, 2006.

[12] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot platform.” International
Journal of Advanced Robotic Systems, vol. 3, no. 1, 2006.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: an open-source robot operating system,” ICRA workshop on open source software,
vol. 3, no. 3.2, 2009.

[14] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion control core of the
Orocos project,” in IEEE International Conference on Robotics and Automation, 2003,
pp. 2766–2771.

[15] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H. Gross, “Mira - middleware for
robotic applications,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012,
pp. 2591–2598.

[16] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and F. Nori, “An open-
source simulator for cognitive robotics research: the prototype of the icub humanoid robot
simulator,” in Proceedings of the 8th workshop on performance metrics for intelligent
systems. ACM, 2008, pp. 57–61.

[17] “The Robotcub project.” [Online]. Available: http://www.robotcub.org

[18] “ODE – Open Dynamics Engine.” [Online]. Available: http://ode-wiki.org

[19] “SDL – Simple Directmedia Layer.” [Online]. Available: http://www.libsdl.org

[20] “XDE.” [Online]. Available: http://www.kalisteo.fr/lsi/en/aucune/a-propos-de-xde

[21] “OpenHRP.” [Online]. Available: http://www.openrtp.jp/openhrp3/en

[22] “Gazebo.” [Online]. Available: http://gazebosim.org

[23] “Bullet Physics.” [Online]. Available: http://bulletphysics.org

[24] R. Featherstone, Rigid Body Dynamics Algorithms. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007.

[25] “Siconos – MLCP.” [Online]. Available: http://siconos.gforge.inria.fr/Numerics/
MLCProblem.html

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

16/48 Contract No. FP7-600716
www.codyco.eu

http://www.robotcub.org
http://ode-wiki.org
http://www.libsdl.org
http://www.kalisteo.fr/lsi/en/aucune/a-propos-de-xde
http://www.openrtp.jp/openhrp3/en
http://gazebosim.org
http://bulletphysics.org
http://siconos.gforge.inria.fr/Numerics/MLCProblem.html
http://siconos.gforge.inria.fr/Numerics/MLCProblem.html

Version 1.0, Feb. 28, 2014

[26] S. Barthélémy, J. Salini, and A. Micaelli, “Arboris-Python.” [Online]. Available:
https://github.com/salini/arboris-python

[27] J. Salini, “Dynamic control for the task/posture coordination of humanoids: toward
synthesis of complex activities,” Ph.D. dissertation, Universit Pierre et Marie Curie, Paris,
France, June 2012.

[28] “URDF - Unified Robot Description Format.” [Online]. Available: http://wiki.ros.org/
urdf

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

17/48 Contract No. FP7-600716
www.codyco.eu

https://github.com/salini/arboris-python
http://wiki.ros.org/urdf
http://wiki.ros.org/urdf

Version 1.0, Feb. 28, 2014

A Robotics simulators survey paper

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

18/48 Contract No. FP7-600716
www.codyco.eu

Tools for dynamics simulation of robots: a survey based on user

feedback

Serena Ivaldi†,‡, Vincent Padois†,‡ and Francesco Nori§ ∗†‡§

February 27, 2014

Abstract

The number of tools for dynamics simulation has grown in the last years. It is necessary for the
robotics community to have elements to ponder which of the available tools is the best for their research.
As a complement to an objective and quantitative comparison, difficult to obtain since not all the tools
are open-source, an element of evaluation is user feedback. With this goal in mind, we created an
online survey about the use of dynamical simulation in robotics. This paper reports the analysis of the
participants’ answers and a descriptive information fiche for the most relevant tools. We believe this
report will be helpful for roboticists to choose the best simulation tool for their researches.

1 Introduction

With the progress of powerful computers enabling fast computations, dynamics simulation in robotics is no
longer expected to be an offline computational tool. It is used to rapidly prototype controllers, evaluate
robots design, simulate virtual sensors, provide reduced model for model predictive controllers, supply with
an architecture for real robot control, and so on.

There is a growing number of tools for dynamics simulation, ranging from dynamic solver libraries to
systems simulation software, provided through either open or closed source code solutions, each more or less
tailored to their expected domains of application.

The spectrum of robotics applications being large and in expansion, it is necessary for the developer
community to have a feedback about the users’ needs, and for the researchers to be aware of the available
tools and have the elements to ponder which of the available tools is the best for their research.

With this goal in mind, we created an online survey about the use of dynamical simulation in robotics.1

The survey was divided into four parts: general information about the user, user experience with dynamics
simulation in general, user experience with one tool of his choice, technical questions and subjective evaluation
about the selected tool. The survey was advertised on the main robotics mailing lists (e.g., euron-dist,
robotics-worldwide) as well as in other mailing lists of correlated disciplines (e.g. comp-neuro), and kept
open for approximately one month.

This paper summarizes the analysis of the users’ answers. We also report a descriptive fiche for the most
relevant software tools, for the reader’s interest. For the complete analysis of the simulators survey, we refer
the user to the extended version of the report.2

∗E-mail: serena.ivaldi@isir.upmc.fr
†† Sorbonne Universités, UPMC Paris 06, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), F-75005,

Paris, France.
‡‡ CNRS, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), F-75005, Paris, France.
§§ Robotics, Brain and Cognitive Sciences Dept., Italian Institute of Technology.
1Online survey: http://goo.gl/Tmyf5A
2http://www.codyco.eu/survey-simulation

1

1.1 Why user feedback?

Most middleware for robotics (ROS, YARP, OROCOS, Player, etc.) are already open-source, some also
cross-platforms. This makes it possible to produce interesting performance comparisons that can help the
roboticists to pick the best middleware for their needs [1]. Similar ideas (open-source and cross-platform
compatibility) should be used to compare dynamics models and simulators. For example, an interesting
evaluation and performance comparison of contact modeling algorithms was presented in [2, 3].

As a complement to quantitative comparisons, a useful element of evaluation (often un-mentioned and
neglected) is user feedback. What do users really think of the software they use for simulation? Would
they suggest it? What is their experience in their particular use case? We believe user feedback may be
useful to avoid time-consuming tuning and inappropriate choices of software to researchers. It could point a
researcher to a community that is actively using the tool and that is sharing the same concern: for example,
it is likely that people simulating flying robots have different needs than those simulating wheeled robots
or those controlling bipeds. Furthermore, user feedback can provide useful suggestions to the developers
community about the things that matter the most to users in simulation.

1.2 Challenges in simulation

Dynamics simulators for robotics have more strict requirements than the ones used for animating virtual
characters, where time, computational burden and physical reality can be less constraining. In entertainment
(e.g. video-games), unfeasible forces may not be a problem since the law of physics can be violated. In
bio/mechanical studies, simulators can be used offline to analyze or synthesize behaviors. Although the field
of dynamics modeling and simulation has matured over the last decades [4, 5, 6], the growing need to control
whole-body movements of complex structures, such as humanoids, poses additional challenges to simulators
for robotics:

1) numerical stability, which poses strong limitations on the use of simulations in real-time control
settings [2, 3];

2) the capability to be used as predictive engines in real-time control loops [7], which requires the ability
to be extremely fast in computing the dynamics and the guarantee for the solvers to converge to physically
feasible solutions upon a certain time [8];

3) the simulation of rigid and soft bodies in contact with rigid and compliant environments [9, 10]: the
inaccurate computation of contact forces between bodies may result in unrealistic contacts or physically
unfeasible contact forces (this issue has been particularly evident in the virtual phase of the Darpa Robotics
Challenge - DRC);

4) the capability to model and simulate new types of actuation systems, such as variable impedance or
soft actuators [11], and different types of contacts, for example with deformable materials, compliant and
soft surfaces [12].

Finally, the robotics community urges for standardized software tools and particularly open source soft-
ware. The benefit of open-source is not only in the community that can grow around the software, developing
new tools, improving its quality and avoiding to “re-invent the wheel” at each time, but also in checking its
efficiency and robustness on real platforms (which is expensive).

1.3 The iCub case

The iCub community recently faced the problem of choosing the correct tool for whole-body dynamics
simulation. The existing simulator iCubSim [13], is based on ODE and is mostly used as a tool for testing
behaviors before trying them on the real robot. It is provided with an interface that emulates the low-level
control of iCub, so the same code can be used to control simulated and real robot. However, the dynamics
engine makes it inadequate for research about control of contacts and compliant surfaces. At the moment
two solutions are investigated: one based on XDE and the other based on Gazebo. The choice of these tools
has been based on objective criteria (license, developing community, stability of the software simulation),
previous experience and “subjective feedback” acquired orally discussing with colleagues, that provided

2

(a) iCubSim, based on ODE. (b) iCub in XDE. (c) iCub simulated in Gazebo.

Figure 1: Simulators of iCub. From left to right: iCubSim, based on ODE, XDE and Gazebo. (credits for
Gazebo: Silvio Traversaro)

partial and unstructured information. A more structured information about user feedback would have been
helpful. We believe this survey analysis could be a further element for choosing the best simulation tool in
a research project.

1.4 Comparing simulators

It is certainly difficult to enumerate all the criteria that one can examine to choose a dynamics simulator,
especially for a humanoid robot that is supposed to have physical interactions with rigid and compliant
environments.

First, one can choose between physics engines (e.g. ODE, Bullet) and more complex softwares that
include system simulation (e.g. Gazebo, V-Rep).

Second, facing the decision to adopt a simulator for a robot, a researcher should first decide between
softwares that also include system simulation, and softwares which only simulate the dynamics of multi-body
systems. This criterion allows us to consider under different perspectives two set of softwares: the first set,
composed of software like Gazebo, OpenHRP, iCubSIM, which facilitate seamless simulation and control of
the virtual characters and their corresponding physical system/robot; the second, like Humans, OpenSIM,
Robotran, that are able to simulate the dynamics of complex systems but are not meant to provide seamless
control of robotics platforms.

Another element of discrimination is the way the simulator represents rigid-body structures: on one
hand we have software based on ODE and Bullet, such as Gazebo, iCubSim, MORSE, which represents
joints as constraints between bodies; on the other we have softwares like XDE, OpenHRP, which make use of
parameterized rigid-body dynamics representations, where joints are simply part of the robotics structure.
These two classes determine not only the way forward/inverse dynamics are computed (and of course the
second group also benefits from the straightforward computation of quantities useful in robotics, such as
Jacobians, mass matrices etc.), but most importantly the way contact forces are computed. The first class
considers contacts forces as bilateral/unilateral constraints, which are added to the list of constraints used to
describe the joints; then the same solver is used to find the forces for the global system, including contacts
and joints. In the second class, on the contrary, only constraints from the contacts are solved, which notably
simplifies the problem. In generla, finding the correct contact forces can be burdensome. Current approaches
to solve this problem are mostly based on the Linear Complementarity Problem (LCP) [3], and in some cases
there are mixed approaches combining LCP with optimization techniques, such as in MuJoCo [7].

In short, there are several “objective” criteria that one can look at, on the basis essentially of what
is advertised by the developers as a “supported feature”. However, it is very difficult to find practical
comparison of different simulators on test problems, for many reasons: first, an extensive comparison would
require access to the source code but not all software is released under open-source; second, even open-source

3

Figure 2: Country of provenience for the participants to the survey.

softwares can be difficult to compare, because their requirements in terms of architecture, dependencies etc.
are different; finally, not all softwares are well-documented and easy to test in the same way, so non-
experienced users may not know all the tweaks to boost simulations. We compensate the lack of objective
experimental comparison with the user feedback provided by this survey.

2 Survey overview

The analysis of the survey is reported hereinafter.

2.1 About the participants

The survey was filled by 119 participants (92% male, 8% female; age 32 ± 6, min 20, max 57), whose 62%
holds a PhD degree and 35% a BS or MS degree, mostly from USA, France, Italy and Germany (see Figure 2).
Participants work mostly in University (70%) or do R&D in public (16%) or private (14%) institutes. Their
primary areas of research are: 21% control, 14% locomotion, 10% machine learning, 9% HRI, 8% planning,
6% mechanical design, 5% cognitive robotics, 5% mathematical modeling. Their primary application field is:
26% humanoid robotics, 20% mobile robotics, 11% multi-legged robotics, 8% service robotics, 7% industrial
robotics, 7% numerical simulation of physical systems, 5% flying robots. Among the participants working
in humanoid robotics, 16% is also competing in the Darpa Robotics Challenge (DRC), which makes 8% of
the participants to the survey - 10 people.3

3Interestingly, the software tool they indicated as the one currently used for their research (we can presume for the DRC as
well) is Gazebo (3), MuJoCo (2), Robotran (2), Drake (1), Autolev (1) and ODE (1).

4

Tool Currently
used,
and
its the
main
tool

Currently
used,
but
not the
main
tool

Currently
used,
just to
test it

Used
once,
just to
test it

Used
then
aban-
doned

Known,
but
never
used

Never
heard
of

Gazebo 13% 7% 3% 18% 10% 34% 15%
ODE 11% 12% 5% 18% 22% 22% 10%
Bullet 5% 13% 7% 12% 10% 29% 24%
V-Rep 5% 3% 3% 18% 3% 29% 39%
Webots 4% 7% 1% 16% 13% 32% 27%
OpenRave 5% 3% 2% 7% 5% 29% 49%
Robotran 4% 0% 1% 4% 2% 13% 76%
XDE 5% 3% 0% 3% 1% 14% 74%
Blender 5% 17% 7% 22% 6% 28% 15%
MuJoCo 2% 0% 0% 4% 2% 21% 71%
iCub SIM 4% 4% 2% 3% 3% 29% 55%
Nvidia
PhysX

1% 1% 4% 12% 7% 43% 32%

OpenSIM 3% 4% 3% 8% 1% 41% 40%
HumanS 0% 0% 0% 1% 1% 10% 88%
Moby 2% 1% 0% 0% 2% 14% 81%
Vortex 3% 2% 0% 5% 5% 17% 68%
RoboRobo 3% 1% 0% 0% 1% 4% 91%

Table 1: Knowledge and past/present use of simulators.

2.2 General knowledge about simulating tools

We asked participants to indicate their familiarity with some of the most common existing simulation tools.
We provided a list of existing software tools for simulations, used in different contexts. We asked the users
to indicate whether the software was currently used or not for their researches, if it had been used before or
if it was unknown. A summary of the percentage of answers for the most relevant tools is shown in Table 1.

The software tools that have more than 5% of user share (i.e., positive answers to the fact that
the software is currently used and it is the one or one of many main tools): the most used are Gazebo (15%)
and ODE (11%), with a gap with respect to Bullet, OpenRave, V-Rep, XDE and Blender, all at 5%. These
values provide an indicative dimension of the user community around each software tool.

The software tools that are less known (because maybe they were not sufficiently advertised or do not
have a big community behind) and the ones that are most known (even if this does not necessarily means
that they are used) can be retrieved from the column “Never heard of this software” from Table 14. The
most known tools are ODE (10%), Gazebo (15%), Blender (15%), Bullet (24%), Webots (27%), Nvidia
PhysX (32%), Stage (38%), V-Rep (39%), OpenSIM (40%) and ADAMS (45%). Interestingly, the first three
are also open-source projects.

An important information that we acquired through the survey is about the abandon of software for
simulation: this can be found in the column “Used than abandoned” in Table 1. The most abandoned
software after use are ODE (22%), Stage (16%), Webots (13%), Bullet (10%), Gazebo (10%), Nvidia
PhysX (7%), OpenHRP (6%), Blender (6%), OpenRave (5%), Vortex (5%). Though this set may seem as a
sort of “blacklist” of tools that disappointed users, it must be observed that most of them are open-source
softwares that could have been the “one among many” tools that have been used then in one researcher’s
life; however, it can be equally presumed that the high percentage of abandon can be partly correlated to
the difficulty that users have encountered in using these tools and partly by their “seniority”.

4Actually, Table 1 is only showing values for the most relevant software tools. To see the full data, we refer the reader to
the full report of the survey.

5

RankFeature Evaluation
1 Stability of simulation Very im-

portant
2 Speed Important
3 Precision of simulation Important
4 Accuracy of contact resolution Important
5 Same interface between real & simu-

lated system
Important

6 Computational load (CPU) Neutral
7 Computational load (memory) Neutral
8 Visual rendering Neutral

Table 2: Most important features for a simulator.

2.3 Important features for simulation

We asked participants to indicate the main purposes for the use of dynamics simulation in their research
(they could indicate more than one): 66% simulating the interaction of the robot with the environment, 60%
simulating the robot locomotion, 59% simulating behaviors of the robot before doing them on the real robot,
49% simulating the robot navigation in the environment, 48% simulating collisions and interactions between
bodies (not specifically robots), 41% testing low-level controllers for robots, 22% simulating multi-fingered
grasp, 21% simulating human movements, 8% animating virtual characters.

We also asked participants to evaluate, upon their experience, what are the most important features for
a good simulation (they could evaluate the importance of each element from “not important at all” - 1 to
“very important, crucial” - 5). Their ranking of important features is reported in Table 2. The stability of
simulation is the only element that was evaluated as “very important”, whereas speed, precision and accuracy
of contact resolution were marked important. Remarkably, the same API between real and simulated robot
is also signed as important.

2.4 Criteria for choosing a simulator

We asked participants to indicate the most important criteria for choosing a simulator. The answer was
broken in three parts, i.e. participants could point out the first, second, and third most important criteria.
The first most important criteria: 32% simulation very close to reality, 24% open-source, 19% same code for
real and simulated robot, 11% light and fast, 6% customization, 3% no inter-penetration between bodies, 5%
other. The second and third choice for the important criteria follow more or less accordingly. Considering
the three criteria as a whole, i.e. grouping the three of them on the same level, the important criteria
is 23% simulation very close to reality, 20% open-source, 18% light and fast, 16% same code for real and
simulated robot, 14% customization, 4% no-inter-penetration between bodies, 1% ease to learn/use, 1% real
time - based simulation, 2% other. If instead we consider the weight of each selection (most important=3,
second important=2, third most important=1), then grouping the answers we have: 26% simulation very
close to reality, 22% open-source, 17% same code for both real and simulated robot, 17% light and fast, 11%
customization, 4% no inter-penetration between bodies (5% other)

2.5 Currently used tools

We asked participants to indicate the current simulation tool they are using. Results are shown in Figure 3.
The most diffused software among the participants are: 13% Gazebo, 9% ARGoS, 8% ODE, 7% Bullet, 6%
V-Rep, 6% Webots, 5% OpenRave, 4% Robotran, 4% XDE. All the other tools (see Figure 4) have less than
4% of user share. These tools are the ones we are focusing on in our following analysis.

Some technical information about the selected tools can be indicative of the user needs and use:

6

Rank Most important criteria
1 Simulation very close to reality
2 Open-source
3 Same code for both real and simulated robot
4 Light and fast
5 Customization
6 No interpenetration between bodies

Table 3: Most important criteria for choosing a simulator.

Figure 3: The simulation tools currently in use among the participants to the survey. The vertical axis
reports the number of users that indicated the tool as their principal.

7

Research area Users Most used software Other used software

Humanoid Robotics 32 (4) ODE, (3) Gazebo, Robo-
tran, OpenRave, Arboris-
Python, (2) XDE, iCub SIM

(1) Drake, MapleSim, MuJoCo, Open-
SIM, RoboticsLab, SL, Vortex, V-Rep,
Webots, own code

Mobile Robotics 25 (5) Gazebo, ARGoS, (3) We-
bots, (2) V-Rep, Vortex

(1) ADAMS, Autodesk Inventor, Bul-
let, ODE, Morse, roborobo, Sim, own
code

Multi-legged robotics 13 (3) Webots, (2) ODE (1) Gazebo, ADAMS, Autolev, Bullet,
Moby, RoboticsLab, SIMPACK, Vox-
Cad

Service robotics 12 (4) Gazebo, (3) OpenRave (1) OpenSIM, V-Rep, Morse, RCIS, SL
Numerical simulation of physical
systems

8 (2) Bullet (1) MuJoCo, ODE, OpenSIM,
Simulink, trep, XDE

Flying robots 6 (2) ARGoS (1) Robotran, crrcsim, Gazebo,
Simulink/Matlab

Swarm robotics 5 (4) ARGoS (1) roborobo
Industrial manipulators 5 (1) Bullets, Dymola, Matlab, V-Rep,

XDE
Mechanical design 4 (1) Moby, MuJoCo, V-Rep, own code
Human Motion analysis 3 (1) Robotran, Bullet, XDE
Snake robots 3 (2) ODE (1) Matlab

Table 4: Most diffused tools for a selection of the research areas.

• Primary OS: 66% GNU/Linux, 30% Windows, 4% MAC OSX.

• Primary API language: 52% C++, 18% python, 13% Matlab, 8%C, 3% LUA, 2% Java; 3% of
participants do not use an API

• License: 67% of the tools are open-source (GPL, Apache, BSD and analogous/derivatives licenses),
only 17% of the tools have a commercial license, 16% have an academic license (i.e., they are free but
not open-source).

• Hardware: 39% a powerful desktop (i.e., multi-core, 8/16GB RAM), 35% everyday laptop, 18%
powerful desktop with powerful GPU card, 5% multi-core cluster.

• Middleware: 52% is not using the tool with a middleware, the remainder is using ROS (25%), YARP
(6%), OROCOS (4%).

The research areas being different, we extracted the most used tools for a selection of research areas:
results are shown in Table 4. The most relevant results are for humanoid robotics (31 users, that is 26%
of the participants to the survey) and mobile robotics (25 users, that is 21% if the participants). For
humanoid robotics, the most diffused tools are ODE and Gazebo, and there is a variety of several custom-
made simulators. It is interesting to notice that Gazebo supports ODE and Bullet as physical engines, hence
it is probable that the quota of ODE for humanoid robotics is higher. For mobile robotics, the most diffused
tools among the survey participants are Gazebo, ARGoS and Webots.

The different concentration of tools for the different research areas reveals that some tools are more
appropriate than others for simulating robotic systems in different contexts or applications. A researcher
may therefore let his choice about the adoption of a simulator be guided by the custom in his field. With
this in mind, we investigated what was the main reason for a researcher to pick up his current tool. Overall,
the main reasons why they chose the current tool is: 29% the best tool for their research upon evaluation,

8

Tool DocumentationSupport Installation Tutorials Advanced
use

Active
project &
commu-
nity

API Global

Gazebo 3.47±0.99 4.00±1.07 3.93±1.03 3.53±1.12 3.80±0.86 4.73±0.45 3.67±0.82 3.88±0.91
ARGoS 3.40±0.70 3.90±0.99 4.70±0.48 4.20±0.63 4.60±0.70 4.10±0.74 4.30±0.67 4.17±0.70
ODE 3.80±0.63 3.40±1.07 4.10±1.28 3.20±1.13 3.90±1.37 3.30±1.25 3.40±1.26 3.59±1.15
Bullets 3.37±1.06 3.62±0.91 4.75±0.46 4.00±0.76 3.75±0.71 4.37±0.74 3.87±0.83 3.96±0.78
V-Rep 4.28±0.76 4.43±0.79 4.71±0.76 4.14±0.90 4.28±0.76 4.43±0.53 4.14±1.07 4.25±0.80
Webots 3.86±1.07 3.57±1.13 4.43±0.79 3.43±1.51 4.42±0.78 4.14±0.69 4.57±0.53 4.20±0.96
OpenRave3.50±0.55 4.67±0.52 4.17±0.75 3.50±1.22 4.33±0.82 4.33±0.52 4.33±0.52 4.12±0.70
Robotran3.60±0.55 3.80±0.45 3.80±0.45 3.20±0.84 4.20±0.84 3.20±0.84 3.80±0.45 3.66±0.63
Vortex 3.33±1.15 3.67±1.53 5.00±0.00 2.67±0.58 3.67±0.58 2.67±1.15 3.33±0.58 3.48±0.80
OpenSIM4.33±0.58 4.67±0.58 3.67±0.58 3.00±1.00 4.00±0.00 4.67±0.58 3.67±0.58 4.00±0.55
MuJoCo 2.33±1.15 1.67±0.58 4.33±1.15 3.33±1.15 4.67±0.57 4.00±0.00 5.00±0.00 3.62±0.66
XDE 1.40±0.55 2.80±1.09 3.60±0.55 2.80±1.09 3.40±1.10 2.80±0.84 3.00±1.00 2.83±1.07

Table 5: Ratings for the level of user satisfaction of the most diffused tools.

23% “inheritance”, i.e. it was “the software” (already) used in their laboratory, 8% they are the developers,
8% it was chosen by their boss/project leader, 7% it is open-source, 7% it was happily used by colleagues.
Only 3% of the participants chose the tool because of a robotic challenge. Interestingly there is quite a
demarcation between the first reasons and the others. There are certainly some tools that distinguish for
the fact that they have been chosen as best option for research, for example V-Rep (71%), Bullet (63%)
and Gazebo (53%). Some tools have instead been adopted by “inheritance”, i.e., they were already used in
the lab: ARGoS (45%), Robotran (40%) and XDE (40%). For the latter, it is also a choice imposed by the
project leader (40%).

We asked participants to evaluate their level of satisfaction of the use of their tool, in a global way, from
Very negative (1) to Very Positive (5): all software tools were evaluated “positive”, whereas only MuJoCo
was “very positive” (subjective evaluation by 3 users). We also asked participants to indicate their level of
satisfaction with respect to some specific aspects (documentation, support, installation, tutorials, advanced
use, active project and community, API), and to rate each element on a scale from 1 to 5. Table 5 reports
the mean and standard deviation of the notes received by the users of each tool.

2.6 Tools for robots

The majority of participants to the survey is using the software tool to simulate robots (91%). We extracted
the principal tools used for simulating the main robots:

• iCub: 25% Arboris-Python, 17% ODE, 17% Robotran, 17% iCub SIM

• Atlas: 50% Gazebo, 25% MuJoCo, 12% Autolev, 12% Drake

• PR2: 21% OpenRave, 14% Gazebo, 14% MuJoCo, 7% Bullet, 7% V-Rep

• Multi-legged robot: 22% ODE, 11% SL, 11% Bullet, 11% Webots

• Wheeled vehicle: 14% Gazebo, 14% V-Rep, 11% ARGoS, 7% Morse, 7% Webots, 7% Vortex

• Quadrotor: 24% Gazebo, 24% ARGoS, 12% V-Rep

9

3 Software information fiches

We report in the following some essential information for the main software tools (the most diffused) that
may be of help for the interested reader. Most of the information gathered here is extracted from the survey
(each item is marked by a filled dot, •). When it is not the case, an empty dot ◦ is used. For the subjective
user feedback we refer the reader to the full report of the survey. Data are reported with %, however to have
a fair comparison we report in brackets the number of participants that selected the specified tool. Note
that in the following “main simulated robots” refers to real robots that are simulated in the software.

3.1 Gazebo

Gazebo is a multi-robot simulator for outdoor environments, developed by Open-Source Robotics Foundation.
It is the official software tool for the DRC. It supports multiple physics engines (ODE, Bullet).

◦ Web: http://gazebosim.org/

◦ License: Apache 2

• Survey participants: 15

• OS share: 100% GNU/Linux

• Main API: 80% C++

• Main reason for adoption: 53% best tool upon evaluation, 20% software already used in the lab, 20%
official tool for a challenge, 7% open-source

• Mostly used in USA (33%)

• Mainly used for: 33% mobile robotics, 27% service robotics, 20% humanoid robotics

• Main simulated robots: 40% Atlas, 33% custom platform, 27% wheeled vehicle, 27% quadrotor, 27%
turtlebot, 20% PR2

• Main middleware used with: 93% ROS

• Main simulated robots: 40% Atlas, 33% custom platform, 27% wheeled vehicle, 27% quadrotor, 27%
turtlebot, 20% PR2

3.2 ARGoS

ARGoS is a multi-robot, multi-engine simulator for swarm robotics, initially developed within the Swar-
manoid project5.

◦ Web: http://iridia.ulb.ac.be/argos/

◦ License: GPLv3.0

• Survey participants: 11

• OS share: 91% GNU/Linux, 9% MAC OSX

• Main API: 73% C++

• Main reason: 45% software already used in the lab, 27% colleagues using it

• Mostly used in Belgium (36%) and Italy (27%)

• Used for: 46% mobile robotics, 36% swarm robotics, 18% flying robots

• Main simulated robots: 64% khepera/e-puck/thymio, 36% marXbot/footbot, 27% quadrotor

5http://www.swarmanoid.org/

10

3.3 ODE

ODE (Open Dynamics Engine) is an open-source library for simulating rigid body dynamics, used in many
computer games and simulation tools. It is used as physics engines in several robotics simulators, such as
Gazebo and V-Rep.

◦ Web: http://www.ode.org/

◦ License: GNU LGPL and BSD

• Survey participants: 10

• OS share: 100% GNU/Linux

• Main API: 80% C++

• Main reason: 50% best tool upon evaluation, 20% used before, 10% boss choice, 10% open-source, 10%
software already used in the lab

• Mostly used in France (20%)

• Used for: 50% humanoid robotics, 20% multi-legged robotics, 20% snake robots, 10% numerical simu-
lation of physical systems

• Main simulated robots: 40% multi-legged robot, 20% iCub

3.4 Bullet

Bullet is an open-source physics library, mostly used for computer graphics and animation. The latest release6

also supports Featherstone’s articulated body algorithm and a Mixed Linear Complementarity Problem
solver, which makes it suitable for robotics applications.

◦ Web: http://bulletphysics.org

◦ License: ZLib license, free for commercial use

• Survey participants: 8

• OS share: 50% Windows, 38% GNU/Linux, 12% MAC OSX

• Main API: 75% C++

• Main reason: 63% best tool upon evaluation, 25% open-source, 12% colleagues using it

• Mostly used in France (25%), Italy (25%) and Belgium (25%)

• Used for: 25% humanoid robotics, 25% numerical simulation of physical systems, 12.5% industrial
manipulators, 12.5% human motion analysis, 12.5% mobile robotics, 12.5% multi-legged robotics

• Main simulated robots: 25% multi-legged robot

6At the time we are submitting this paper, the latest version is 2.82, released at the end of october 2013 - after the survey.

11

3.5 V-Rep

V-Rep is a robot simulator software with an integrated development environment, produced by Coppelia
Robotics. Like Gazebo, it supports multiple physics engines (ODE, Bullet, Vortex).

◦ Web: http://www.coppeliarobotics.com/

◦ License: Dual-licensed source code: commercial or GNU GPL

• Survey participants: 7

• OS share: 57% GNU/Linux, 43% Windows

• Main API: 57% C++, 29% LUA

• Middleware: 43% ROS, 57% None

• Main reason: 72% best tool upon evaluation, 14% colleagues using it, 14% boss choice

• Used for: 29% mobile robotics, 14% industrial manipulators, 14% humanoid robotics, 14% mechanical
design, 14% cognitive architectures, 14% service robotics

• Main simulated robots: 29% Nao, 29% quadrotor, 29% wheeled vehicle, 29% Bioloid, 29% khepera/
e-puck/ thymio

3.6 Webots

Webots is a development environment used to model, program and simulate mobile robots developed by
Cyberbotics Ltd.

◦ Web: http://www.cyberbotics.com

◦ License: Commercial or limited features free academic license

• Survey participants: 7

• OS share: 57% GNU/Linux, 29% Windows, 14% MAC OSX

• Main API: 71% C++

• Main reason: 29% best tool upon evaluation, 29% software already used in the lab, 14% boss choice,
14% official tool for a challenge, 14% used before

• Used for: 43% mobile robotics, 43% multi-legged robotics, 14% humanoid robotics

• Main simulated robots: 29% KUKA LWR, 29% Lego Mindstorm, 29% wheeled vehicle

3.7 OpenRave

OpenRave is an environment for simulating motion planning algorithms for robotics.

◦ Web: http://openrave.org/

◦ License: LGPL and Apache 2

• Survey participants: 6

• OS share: 100% GNU/Linux

• Main API: 83% python

12

• Main reason: 50% best tool upon evaluation, 33% colleagues using it, 17% boss choice

• Mostly used in USA (33%)

• Used for: 50% humanoid robotics, 50% service robotics

• Main simulated robots: 50% PR2

3.8 Robotran

Robotran is a software that generates symbolic models of multi-body systems, which can be analysed and
simulated in Matlab and Simulink. It is developed by the Center for Research in Mechatronics, Université
Catholique de Louvain.

◦ Web: http://www.robotran.be/

◦ License: commercial and free non commercial license

• Survey participants: 5

• OS share: 80% Windows, 20% GNU/Linux

• Main API: 60% C

• Main reason: 40% software already used in the lab, 20% best tool upon evaluation, 20% developer,
20% open-source (free)

• Used only in Belgium (40%) and Italy (60%)

• Used for: 60% humanoid robotics, 20% human motion analysis, 20% flying robots

• Main simulated robots: 60% Coman, 40% iCub

3.9 XDE

XDE is an interactive physics simulation software environment fully developed by CEA LIST.

◦ Web:
http://www.kalisteo.fr/lsi/en/aucune/a-propos-de-xde

◦ License: Commercial and free non commercial license

• Survey participants: 5

• OS share: 60% GNU/Linux, 40% Windows

• Main API: 100% python

◦ Middleware: OROCOS

• Main reason: 40% boss choice, 40% software already used in the lab, 20% developer

• Used only in France (100%)

• Used for: 40% humanoid robotics, 20% industrial manipulators, 20% numerical simulation of physical
systems, 20% human motion analysis

• Main simulated robots: 40% industrial robots, 40% KUKA LWR, 20% iCub, 20% wheeled vehicle

13

(a) Gazebo. (b) V-Rep.

Figure 4: The simulation environment of Gazebo and V-Rep (credits: http://gazebosim.org and
http://www.coppeliarobotics.com).

4 Conclusions

With the growing interest of robotics for physical interaction, simulation is no longer a tool for offline
computation and visualization, but is used in particular for rapidly prototyping controllers. That is why
researchers stressed the importance of more realistic simulation, same code for both real and simulated robot,
beside the availability of the source code.

This shift in the expectations from simulation reflects in the migration from physics engines classically
used for animation of virtual characters and computer graphics towards physics engines supporting robotics
descriptions of bodies and more contact solvers. The users’ knowledge of multiple simulation tools and
their activity in testing and abandoning eventually a tool, suggest that users look for the right tool that
meets their requirements and is fit for their problem. For instance, the robotics community demands physics
engines with direct support of robotics descriptions of multi-body systems. This is the reason why Bullet
is now supporting LCP solvers and Featherstone’s ABA, and new physics engines like MuJoCo7 or Vortex
have been created.

A good compromise is a modular software that supports multiple physical engines, enabling a tradeoff
between simulation accuracy and computational resources. Those features, together with the stability of the
simulation, are of main concern for the users. This strategy, adopted with Gazebo by the research community
and with V-Rep at industrial level, seems to pay off in terms of user feedback, because the first is the most
diffused among the survey participants and the second the best rated. Subjective free-comments8 reported
that users of those tools, though acknowledging their current limitations, were confident in the announced
developments that could sensibly improve the tools.

To conclude, we overviewed the panorama of simulation tools that are currently used in robotics. Each
software inherits its specificities from the expected domains of application or the original application for
which is was conceived, which results in a variety of tools with different features ranging from dynamic solver
libraries to systems simulation software. More recent tools, like Gazebo and V-Rep, have the potential to be
of general use thanks to their good support and community and the support of different physical engines.
Notwithstanding, we remind that designing a perfect physics engine is impossible and there will always be a
difference between simulation and reality, a gap that should be taken into account by the simulator and the
robot controllers [14].

7MuJoCo is not merely a physics engine, it incorporates control and optimization modules.
8They can be read in the extended version of the survey report: http://www.codyco.eu/survey-simulation.

14

(a) Gazebo (b) V-Rep

Figure 5: A graphical representation of the software architectures of Gazebo and V-Rep (credits:
http://gazebosim.org and http://www.coppeliarobotics.com).

Acknowledgment

The authors are supported by the EU Project CODYCO (FP7-ICT-2011-9, No. 600716).

References

[1] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H. Gross, “Mira - middleware for robotic applica-
tions,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012, pp. 2591–2598.

[2] E. Drumwright and D. Shell, “An evaluation of methods for modeling contact in multibody simulation,”
in IEEE Int. Conf. on Robotics and Automation, 2011, pp. 1695–1701.

[3] ——, “Extensive analysis of linear complementarity problem (lcp) solver performance on randomly
generated rigid body contact problems,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2012, pp. 5034–5039.

[4] R. Featherstone and D. E. Orin, Handbook of Robotics. B. Siciliano and O. Khatib Eds., Springer,
2008, ch. Dynamics, pp. 35–65.

[5] A. Jain, Robot and Multibody dynamics: analysis and algorithms. Springer, 2011.

[6] E. Todorov, “Analytically-invertible dynamics with contacts and constraints: theory and implementa-
tion in mujoco,” in IEEE Int. Conf. on Robotics and Automation, 2014.

[7] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2012, pp. 5026–5033.

[8] E. Todorov, “A convex, smooth and invertible contact model for trajectory optimization,” in IEEE Int.
Conf. on Robotics and Automation, 2011, pp. 1071–1076.

[9] B. Brogliato, A. ten Dam, L. . Paoli, F. Gnot, and M. Abadie, “Numerical simulation of finite dimen-
sional multibody nonsmooth mechanical systems,” Applied Mechanics Reviews, vol. 55, pp. 107–150,
2002.

15

[10] Y.-B. Jia, “Three-dimensional impact: energy-based modeling of tangential compliance,” Int. J. Robotic
Research, vol. 32, no. 1, pp. 56–83, 2013.

[11] C. Duriez, “Control of elastic soft robots based on real-time finite element method,” in IEEE Interna-
tional Conference on Robotics and Automation. IEEE, 2013, pp. 3982–3987.

[12] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic rendering of interacting deformable
objects in virtual environments,” IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 1, pp. 36–47, 2006.

[13] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and F. Nori, “An open-source simulator
for cognitive robotics research: the prototype of the icub humanoid robot simulator,” in 8th Workshop
on Performance Metrics for Intelligent Systems, 2008, pp. 57–61.

[14] J.-B. Mouret, S. Koos, and S. Doncieux, “Crossing the reality gap: a short introduction to the trans-
ferability approach,” in ”Evolution in Physical Systems” Workshop in ALIFE, 2012.

16

Version 1.0, Feb. 28, 2014

B Technical paper on the digital human URDF file gen-
erator

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

35/48 Contract No. FP7-600716
www.codyco.eu

“Jožef Stefan” Institute Ljubljana, Slovenija yy yyyyy

IJS Technical report xxxx

BodyModel 1.0
Quick User Manual

Leon Žlajpah, Jan Babič

Ljubljana, 2014

Contents

1 Introduction 3

2 Human body parameters 4

2.1 Updating variables . 7

3 Installation 9

4 Basic operation 9

4.1 Load model . 9

4.2 Model editing . 11

4.3 Preparing variables . 11

4.4 Model update . 12

4.5 Save model . 12

4.6 Model example . 12

2

1 Introduction

For simulation of human body using standard simulation environments, the model a
human body is prepared using standard descriptions used for robot systems. One of
them is the Unified Robot Description Format (URDF) [1], which is an XML format
for representing a robot model. Although the URDF specification is intended for serial
link robot manipulators, it can be also used to describe a human body. Another XML
based specification is the MuJoCo XML model format [3]. A model is built by different
elements (links, joints, visual representation objects, ...), which have different attributes
(position, orientation, child, ...). For details on model building check the specifications
for each model type [1, 3].

The BodyModel is used to update values of some model parameters of a human body
in these models. The parameters which can be updated are:

• joint position

• link length

• link mass and center of mass (COM)

• link inertia

• some additional dimensional parameters

The values of these parameters depend on two parameters:

• Body height

• Body weight

and are calculated according to the data published by Zatsiorsky [4] and Leva [2]. Note
that all units are SI (m, kg), except the input of human body is for convenience in cm.

BodyModel allows to use for model attributes in the model description some prede-
fined variables instead of constant values. These variables are then replaced by Body-
Model with values according to the body height and weight. When preparing the
model, there is no limitation in the structure of the model, i.e. links and joints of a
human body (or part of a body) used in the model. The model structure is not changed
by the BodyModel.

3

2 Human body parameters

To define the human body parameters, the body is divided into parts as shown in Fig. 1:

• Head

• Torso U (upper part of the torso)

• Torso M (middle part of the torso)

• Torso L (lower part of the torso)

• UpperArm (left and right)

• LowerArm (left and right)

• Hand (left and right)

• Thigh (left and right)

• Shank (left and right)

• Foot (left and right)

and each of this parts has inertial parameters

• Mass

• COM (vertical distance of center of mass from parent joint)

• Inertia.x, Inertia.y and Inertia.z (moments around principal axes)

and geometric parameters

• Length

• Height

• Width

Note that only some geometric parameters are defined. These parameters are listed in
Table 1, where their value is explained using distances between points (as shown in
Fig. 1: the points Ji denote joint i position, Ci denote COM of corresponding body,
and Pi are some auxiliary points). For more explanation see Fig. 2 and [2].

4

Figure 1: Body parts, joint locations (J), COM (C), aux. points (P)

5

Figure 2: Fig. 1 from [2]

6

Table 1: Dimensional model parameters: Height and Length are in vertical direction
(z); Width is horizontal dimension (y); COM is in longitudinal direction (z, except foot
in y)

Parameter Value
Head.Height P10 − J3

Torso U.Height P11 − J2

Torso M.Height J2 − J1

Torso L.Height J1 −P1

Thigh.Height P7 −P8

Shank.Height P8 − J9

Foot.Height J9 −P9

UpperArm.Height P4 −P5

LowerArm.Height P5 − J6

Hand.Height J6 −P6

Head.Length P10 −P11

Torso U.Length J3 − J2

Torso M.Length J2 − J1

Torso L.Length J1 − J7

Thigh.Length J7 − J8

Shank.Length J8 − J9

Foot.Length J9 −P9

UpperArm.Length J4 − J5

LowerArm.Length J5 − J6

Hand.Length J6 −P6

Torso U.Width distance between left and right J4

Torso L.Width distance between left and right J7

Head.COM C10 − J3

Torso U.COM C3 − J2

Torso M.COM J2 −C2

Torso L.COM J1 −C1

Thigh.COM J7 −C7

Shank.COM J8 −C8

Foot.COM J9 −C9

LowerArm.COM J4 −C4

Upperarm.COM J5 −C5

Hand.COM J6 −C6

2.1 Updating variables

In BodyModel a simple calculator is implemented, which allows to use some basic
mathematical operations using the predefined variables. The predefined variables have
the following form:

<Body part>.<variable> like, e.g. Head.Height

or

7

<Body part>.<variable>.<axis> like, e.g. Head.Inertia.x

The expression has to be enclosed in braces

{<expression>} like, e.g. {Head.Height/2+0.1}

and this expression is then replaced in the model file by the value of the expression.

For example, the URDF model of head can defined as

<link name="head">
<inertial>
<origin xyz="0 0 {Head.COM}" rpy="1.57079633 0 0"/>
<mass value="{Head.Mass}"/>
<inertia ixx="Head.Inertia.x" ixy="0" ixz="0"

iyy="Head.Inertia.y" iyz="0"
izz="Head.Inertia.z" />

</inertial>

<visual>
<origin xyz="0 0 {Head.Height-Head.Length/2}"

rpy="1.57079633 0 0" />
<geometry>

<sphere radius="{Head.Length/2}" />
</geometry>

</visual>
</link>

and after BodyModel has updated the expression the result is

<link name="head">
<inertial>
<origin xyz="0 0 0.1185" rpy="1.57079633 0 0"/>
<mass value="5.238"/>
<inertia ixx="0.0289" ixy="0" ixz="0"

iyy="0.0314" iyz="0"
izz="0.0214" />

</inertial>

<visual>
<origin xyz="0 0 0.1378"

rpy="1.57079633 0 0" />
<geometry>

<sphere radius="0.0992" />
</geometry>

</visual>
</link>

8

3 Installation

BodyModel is written in Pascal language using Lazarus IDE and can be compiled on
Windows or Linux systems. The distribution contains the following files

BodyModel 32.exe Windows executable (32 bit system)
BodyModel 64.exe Windows executable (64 bit system)
BodyModel 32 Linux executable (64 bit system)
BodyModel 64 Linux executable (32 bit system)
Body MuJoCo.xml Sample MuJoCo model of a human body

No installation is needed to run the application. On Windows systems run

BodyModel.exe

and on Linux systems

BodyModel

(Make the file executable if necessary using chmod +x BodyModel 32)

4 Basic operation

Fig. 3 shows the main BodyModel window. The user can

• load the model file

• save the updated model file

• select the body height and weight

• prepare the body variables

• edit the model

• edit the attributes in the XML model file

• update the expressions in the model

4.1 Load model

In BodyModel any text file can be loaded. However, as most model descriptions files
are using XML format, the BodyModel provides special Tree view for XML files.

9

Figure 3: BodyModel - User interface

Figs. 4 and 5 show the standard Text view and XML tree view, respectively. The
XML tree view is generated from XML file and is showing the overview of the model
structure. The user can switch simply between them by selecting the corresponding
radio button.

Figure 4: BodyModel - text view of the model

10

Figure 5: BodyModel - XML view of the model

4.2 Model editing

In normal Text view (see Fig. 4), a simple text editor enables manual changes of the
model file.

In XML tree view the table on the right side shows the attributes of the selected XML
element. The user can edit the attribute values.

4.3 Preparing variables

To prepare data for predefined variables, the user has to input desired body height
and weight. Pressing the Update data button, the values of predefined variables are
calculated and the list of all variables is shown on the right side of model file in Text
view (see Figs. 4).

11

4.4 Model update

The model update depends on the selected view. In Text view, pressing the Update model
button expressions in the model are replaced by the calculated values and if the load
file is a valid XML model file, the Tree view is updated.

In XML tree view pressing the Update model button the model in the Text view is
updated according to XML tree data.

4.5 Save model

After the model has been updated it can be saved bz pressing fboxSave button.

4.6 Model example

The model for the model file Body MuJoCo.xml, which describes the human body
for MuJoCo simulator [3], is shown in Fig. 6.

Acknowledgement

The work presented in this document was supported by the European Community
Framework Programme 7 through the CoDyCo project, contract no. 600716.

References

[1] URDF Tutorial. http://wiki.ros.org/urdf/Tutorials/Create
your own urdf file.

[2] Paolo de Leva. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters.
Journal of Biomechanics, 29(9):1223 – 1230, 10 1996.

[3] Emo Todorov, Yuval Tassa, and Tom Erez. MuJoCo: Modeling and simulation of
Multi-Joint dynamics with Contact, 0.5.0 edition, June 2013.

[4] V. Zatsiorsky and V. Seluyanov. Biomechanics VIII-B, chapter The mass and inertia
characteristics of the main segments of the human body, pages 1152–1159. Human
Kinetics. 1983.

12

Figure 6: Model of a human body in MuJoCo simulator - model parameters are for
body height 180cm and weight 80kg

13

	Introduction
	Requirements for enhanced iCub simulator for whole-body contact simulation
	Motivations
	Critical features
	Conclusions

	Survey of existing robotics simulators
	Proposed technical solutions
	Historical solution: the ODE iCub simulator
	iCubsim with Gazebo
	iCub in XDE
	Digital human URDF file generator

	Assessment of the proposed simulation solutions
	Methodology
	Results

	References
	Robotics simulators survey paper
	Technical paper on the digital human URDF file generator

