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Abstract Highly redundant robots, such as humanoids, can
execute multiple simultaneous tasks allowing them
to perform complex whole-body behaviors. Unfortu-
nately, tasks are generally planned without close con-
sideration for the underlying controller being used,
or the other tasks being executed. Because of this,
tasks are often incompatible with one another and/or
the system constraints, and cannot always be accom-
plished simultaneously. These incompatibilities can
be managed using prioritization and gains, but tun-
ing them is tedious. After introducing a passivity
based control approach designed to maximally ben-
efit from a potential external support in a multi-
contact interaction (here a standing motion using
external support), this deliverable introduces and de-
velops the concept of task compatibility optimiza-
tion, as a alternative/complementary method to the
prioritization learning methods introduced in Deliv-
erable 4.3 [1]. Task compatibility optimization au-
tomatically improves task compatibility by modifying
their trajectories using reinforcement learning. To do
so, the tasks are iteratively optimized by minimizing
a compatibility cost, which measures the compatibil-
ity between one or more tasks, and the system con-
straints. Using two common, CoDyCo related, sce-
narios, it is shown that that task compatibility opti-
mization results in whole-body behaviors which bet-
ter match the original intent of the task combination
without the need for manual tuning of task/controller
parameters, heuristics, or re-planning.

Keyword List: Whole-body controllers, Multi-contacts, Unforeseen
situations, Task compatibility optimization, Learning
and adaptation
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Foreword: Research works performed within the framework of CoDyCo and that directly
relate to this deliverable are cited as [xx]. These papers being available online, they are not
provided in Appendix of this deliverable.

1 Introduction

Highly redundant robots, such as humanoids, can execute multiple simultaneous tasks allowing
them to perform complex whole-body behaviors. Unfortunately, tasks are generally planned
without close consideration for the underlying controller being used, or the other tasks being
executed. Because of this, tasks are often incompatible with one another and/or the system
constraints, and cannot always be accomplished simultaneously. These incompatibilities can
be managed using prioritization and gains, but tuning them is tedious.

After introducing a passivity based control approach designed to maximally benefit from
a potential external support in a multi-contact interaction (here a standing motion using
external support), this deliverable introduces and develops the concept of task compatibility
optimization, as a alternative/complementary method to the prioritization learning methods
introduced in Deliverable 4.3 [1]. Task compatibility optimization automatically improves task
compatibility by modifying their trajectories using reinforcement learning. To do so, the tasks
are iteratively optimized by minimizing a compatibility cost, which measures the compatibility
between one or more tasks, and the system constraints. Using two common, CoDyCo related,
scenarios, it is shown that that task compatibility optimization results in whole-body behaviors
which better match the original intent of the task combination without the need for manual
tuning of task/controller parameters, heuristics, or re-planning.

2 Dealing with unforeseen situations: the case of exter-
nal support

The generic, optimization-based, whole-body control architecture introduced in Deliver-
able 3.2 [2] has been used in conjunction with non rigid-contact models in order to achieve
multi-contact balanced behaviours under non strictly rigid physical interaction in the demon-
stration of Year 3 (see Deliverable 5.3 [3] for details on the implementation). The effectiveness
of the work on compliant contacts described in Deliverable 3.2 [2] is also illustrated by some
recent experimental results [4] which combine control and learning approaches in order to
estimate a contact model and control compliant contact normal forces.

While non rigid-contacts are a challenging situation to cope with, there is a much larger
number of situations where physical interactions with the environment cannot be determin-
istically predicted. Among these unforeseen situations, CoDyCo focuses on the useful, yet
complex, scenario where an external force of contact is applied on the robot with a supportive
goal in mind. Assuming that this external influence can be measured and monitored (see
Deliverable 5.4 [5]), a question remains opened (taking here the perspective of a standing up
motion):
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How can we synthesize a controller which exploits the user’s assistance during the
robot standing up motion?

To answer this question, it is first recalled that whole-body controllers are often decom-
posed in two stages (see Deliverable 3.2 [2]). This is actually the case of the controller used
in CoDyCo demonstrations.

At the first stage, a momentum-based controller is derived [6, 7, 8] where the Newton-
Euler equation for the floating-base system, written at the center of mass of the system,
relates contact wrenches and the dynamics of the center of mass. In this equation, contact
wrenches can be seen as a virtual control input which can be computed in order to achieve
some desired center of mass linear acceleration ẍd and to maintain the angular momentum null.

The robot’s momentum (expressed at the center-of-mass and with the inertial frame ori-
entation) is defined by

H =
∑

Hi =

(
mẋ
Hω

)
,

with Hi the momentum of each link composing the multi-body system, m the total mass of
the robot, x ∈ R3 the position of the robot center-of-mass, and Hω the angular momentum
of the multi-body system.

As mentioned earlier, the control of the robot momentum is achieved assuming the contact
wrenches as a virtual control input in the dynamics of H. For instance, assuming that the
robot is balancing on two feet, two external wrenches fL ∈ R6 and fR ∈ R6 act on the left
and right foot, respectively. Then, one has

Ḣ = mg +c XLfL +c XRfR = mg +
(
cXL

cXR

)
f, (1)

where cXL,
cXR ∈ R6×6 are two proper projection matrices, and f := (f>L , f

>
R )>. Since f is

assumed to be a control input, one can choose it so that Ḣ = Ḣ∗, where Ḣ∗ ensures that
x→ xd and Hω → 0.

Assuming that a supplementary, independently controlled, contact wrench fsupport is ap-
plied at the CoM, Eq. 1 becomes

Ḣ = mg +
(
cXL

cXR

)
f + fsupport, (2)

Given a measure of fsupport, f can be computed using Eq. 2 in order to achieve the
desired centroidal dynamics Ḣ∗ while accounting for contact constraints (friction cones) and
minimizing internal forces by solving a first LQP.

Once f ∗, the optimal value for f is determined, the second stage consists in computing
the joint torque required to actually reach the desired value for the contact forces at the feet.
This computation is also achieved by solving a constrained LQP where a secondary postural
task can be used in order to reach some desired configuration (the one corresponding to a
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standing posture for example) and implemented as an impedance controller in joint space, i.e.
such that τ ∗posture = kp,posture(q

∗
j − qj)− kd,postureq̇j with qj the joint coordinates. Assuming,

for example and without loss of generality of the overall method, soft task priorities ωCoM et
ωposture (with ωCoM � ωposture), this second LQP to be solved can be written:

τ ∗ = argmin
X

1
2

(
ωCoM(f ∗ − f)2 + ωposture(τ − τ ∗posture)2

)
(3a)

subject to M(q)ν̇ + C(q, ν)ν +G(q) = Bτ +
nc∑
k=1

J>Ck(q)fk︸ ︷︷ ︸
J>(q)f

(3b)

A(q, ν)X = b(q, ν) (3c)

D(q, ν)X ≤ h(q, ν) (3d)

where:

� τ ∈ Rn is the internal actuation torque with n + 1 the number of rigid bodies – called
links – connected by n actuated joints with one degree of freedom each.

� q ∈ R3×SO(3)×Rn is the generalized coordinates that parametrizes the configuration
of the free-floating system. q is a triplet composed of the origin and orientation of the
base frame expressed in the inertial frame

(IpB, IRB) and the n joint angles qj.

� ν ∈ Rn+6 is the system velocity, a triplet concatenating the floating-base twist(I ṗB,I ωB) and the joint velocities q̇j.

� J(q) =
[
J>C1(q) . . . J>Ck(q)

]>
is the contact Jacobian matrix for all k contact points.

� f =
[
f>1 . . . f>k

]>
is the vector of external contact wrenches applied by the environ-

ment on the links. fsupport is not included in f as it acts as an independently controlled
wrench.

� X = (ν̇, τ, f) gathers the dynamic variables of the multi-body system.

� M ∈ R(n+6)×(n+6) is the mass matrix.

� C ∈ R(n+6)×(n+6) is the Coriolis and centrifugal effects matrix.

� G ∈ Rn+6 is the gravity term.

� B = (0n×6, 1n)> is a selection matrix.

� A(q, ν)X = b(q, ν) gathers kinematics constraints related to the velocity of the contact
points.

� D(q, ν)X ≤ h(q, ν) gathers inequality constraints related to joint limits (position and
velocity), control input saturation, contact forces (existence and friction limits) and
potentially obstacle avoidance.
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One of the main problems of this approach is that the external supportive wrenches
fsupport applied on the robot would be completely cancelled by the pure feedback linearisation
achieved with this strategy. The macroscopic effect of this cancellation is that if a user would
like to help the robot stand up, the robot motion would be invariant with respect to the help
provided by the user since the effects of the external wrenches are cancelled out.

To solve this issue, one has to focus on Eq. (2), and on the role of the fictitious control
input f to obtain Ḣ(f) = Ḣ∗. First, recall that Ḣ∗, i.e.

Ḣ∗ = Ḣd − kdH̃ − kp
∫ t

0

H̃ds

renders the energy-based Lyapunov function

V =
1

2
|H̃|2 +

kp
2

∣∣∣∣∫ t

0

H̃ds

∣∣∣∣2 (4)

negative semi-definite, i.e.

V̇ = − kd|H̃|2. (5)

The equation (5) stresses the fact that an eventual help from a user to lift the robot up is
useless: the rate of change of V does not depend upon the external forces, so the standing
up motion is invariant to the user interactions. The modification proposed here is based on
a decomposition of the external force fsupport that highlights the component of this external
force that helps decrease the function V . More precisely, one can decompose the external
supportive force as follows:

fsupport = αH̃‖ + βH̃⊥ (5a)

H̃‖ =
H̃

|H̃|
(5b)

α =
H̃>fsupport

|H̃|
(5c)

Note that the scalars α and β are the components of the external force fsupport along and
perpendicular to the momentum error H̃. Now, one can re-define Ḣ∗ as follows

Ḣ∗ =

{
Ḣd − kdH̃ − kp

∫ t
0
H̃ds if α > 0

Ḣd − kdH̃ − kp
∫ t

0
H̃ds+ αH̃‖ if α ≤ 0

(6)

and choose the control input f such that

Ḣ(f) = Ḣ∗.

By computing the time derivative of (4) along the system evolution (2)-(6), one easily verifies
that:

V̇ = −kd|H̃|2 +

{
0 if α > 0

α|H̃| if α ≤ 0
(7)
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The fact that when the external supportive forces help the robot stand up is encompassed in
the right hand side of the above equation: a negative α, i.e. the external forces are in the
direction of motion, make the Lyapunov function decrease faster. Hence, (6) can be used to
compute f ∗ in order to give the possibility of providing help to the robot during standing up
motions.

The remaining open question is related to the choice of the CoM trajectory compatible
with a balanced evolution from the robot being seated on thighs to the robot standing on
two feet, as illustrated by Figure 1a-1b. While this trajectory can be based on a naive guess,
it may have to be adapted in order to properly synchronize contact constraints activation
and deactivation (managed using a finite state machine) and the CoM motion, as well as
to compensate for model uncertainties and controller inaccuracies. The remainder of this
deliverable is dedicated to the development of a generic method for such task adaptation
within the framework of whole-body control. This work on “task compatibility optimization”
has recently been submitted for publication [9].

(a) (b) (c)

Figure 1: The standing up motion with and without user interaction: (a) iCub seating on a bar, (b)
iCub standing on two feet, (c) iCub interacting with users.

3 Task compatibility optimization: motivations

Modern control architectures employ multiple levels of control in order to decouple complex
behaviors into manageable control problems. As recalled in section 2, at the lowest level is
reactive whole-body control, where joints torques are calculated at high frequency (∼ 1kHz)
given one or more tasks [10]. As presented in Deliverable 3.2 [2], the control problem can be
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written as a constrained convex optimization, where the objective function is a combination of
task errors, and the constraints are the equations of motion, articulation and actuation limits,
and contacts [11, 12, 13]. Task errors are calculated as the difference between the current
task state and its reference value. This reference value comes from the next level of task
servoing. At this level, closed loop controllers are used to servo task trajectories using state
feedback (PID) or Model Predictive Control (MPC) schemes at frequencies between 100Hz
and 10Hz [14], [15], [16]. These task trajectories are provided by higher-level open-loop
planning which takes seconds to minutes, and generally combines operator expertise and
automated planning algorithms [17, 18]. This control hierarchy of planning, servoing, and
whole-body control is presented in Fig. 2.

Because each level in the control hierarchy is agnostic of the others by design, there is no
guarantee that the planned task trajectories will be executed properly by the lower control
layers [19, 20]. Furthermore, even though specific contexts such as non rigid contacts may
be accounted for as described in Deliverable 3.2 [2], tasks may conflict with one another or be
infeasible with the system constraints [21, 22]. The end result is typically unstable or unde-
sirable whole-body behaviors, and these tasks can be qualified as incompatible. Prioritization
techniques presented in Deliverable 3.2 [2] use weighted sums[11, 13], hierarchies [12, 23, 24]
or a mix of both [25, 26] to manage task incompatibilities at the whole-body control level,
but are difficult to tune and only hide the problem. Moreover, tasks incompatibilities may
be temporal and change over the course of the movement so applying static priorities may
be overly restrictive. While the works presented in Deliverable 4.3 [1] provide very powerful
tools to reactively adapt priorities [27], learn proper prioritizations [28, 29] or derive them
from demonstrations [30], it seems obvious that well designed tasks should not need to be
prioritized.

Given that it is the task reference values which generate the incompatible control optima,
an alternative to prioritization tuning is to modify the task trajectories supplied by planning
and make them compatible as initially suggested in [31]. To do so, a feedback loop must be
implemented, which measures the errors induced by incompatibilities and changes the task
trajectories to reduce them. It should also take into account the servoing and whole-body
control levels with all of their parameters, as well as the robot’s dynamics and environment.
Given the complexity of the proposed feedback loop, one solution is to use model-free
Reinforcement Learning (RL) techniques to modify the trajectories through trial and error by
minimizing some cost function using Black-Box Optimization (BBO) solvers [32].

The objective of the proposed approach is to establish the task compatibility optimization
loop, shown on the left in Fig. 2, by iteratively improving task trajectories using RL. To do
so, some details are provided on how task trajectories are parameterized providing variables
with which they can be modified. A generic task compatibility cost is then developed from
simple principles which measures the incompatibility between one or more tasks and the robot’s
constraints. Using two common BBO solvers, this compatibility cost is minimized by optimizing
the task trajectory parameters. This task compatibility optimization is then tested on two
typical muti-task scenarios. In the first scenario the relatively banal chore of reaching while
balancing is studied. While seemingly simple, reaching is a key ingredient in robot autonomy,

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

11/26 Contract No. FP7-600716
www.codyco.eu



Version 1.0, Feb. 28, 2017

Task Trajec-
tory Planning

Servoing/MPC

Reactive
Whole-Body Control

Robot
<

0.
1H

z
∼

10
0H

z
∼

1k
H

z

xdes

xref

τ [
q
q̇

]T
as

k
C

om
pa

ti
bi

lit
y

O
pt

im
iz

at
io

n
Figure 2: A modern control hierarchy for highly
redundant robotic systems, e.g. humanoid
robots. At the lowest level is whole-body con-
trol, which determines the torques needed to
accomplish a set of tasks. At the intermedi-
ate level, these tasks are controlled by the ser-
voing/MPC level where task trajectory errors
are compensated using state feedback. Finally
the task trajectories are provided by high-level
planning, which is usually a combination of op-
erator expertise and automated planning. Each
of these levels operates independently from one
another and a feedback mechanism is needed
to measure and compensate for tasks which are
not executed as planned. This is the role of the
Task Compatibility Optimization loop proposed
in this work.

which often requires parameter and gain tuning before done reliably. A performance comparison
of two BBO solvers for this experiment is presented to illustrate the generality of the framework.
The second experiment explores the dynamically complex activity of moving from sitting to
standing. This motion requires contact breaking and potentially unstable dynamic equilibrium
to succeed. In both experiments a Center of Mass (CoM) task is used to maintain balance,
and its trajectory is optimized to minimize the task compatibility cost. Through these two
completely different motion scenarios, the proposed generic task compatibility optimization
loop is shown to dramatically improve task achievement, without ever touching the low-level
control parameters.

4 Methods

In this section, the methods and tools used to develop the task compatibility optimization
are described. First, trajectory parameterization is detailed. A task compatibility cost is then
developed to measure the degree of incompatibility between one or multiple tasks. A brief
overview of the two BBO solvers used is provided. Finally the use of these components to
optimize task compatibility is explained.

4.1 Task Parameterization

For the purpose of brevity, here, Cartesian acceleration tasks only are considered. In the
whole-body controller used in this study, [11], an acceleration task error, Ti, is formulated as,

Ti =
∥∥∥Ji(q)q̈ + J̇i(q, q̇)q̇ − ẍref

i

∥∥∥2

, (8)

where Ji and J̇i, are the task Jacobian and its derivative, [q, q̇], the joint-space state variable
and ẍref

i the reference operational-space acceleration. The ẍref
i values are provided by task
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servoing, which are feedforward proportional-derivative controllers. These trajectories are gen-
erated from a series of keyframes/waypoints, which represent task coordinates of particular

importance. A single position waypoint is given by λi = xi =
[
x y z

]T
i

, while a set of

nλ waypoints is denoted Λ =
[
λ1 λ2 . . . λn

]
. Given Λ, a variety of methods exist for

generating a trajectory, e.g. splines, polynomials, optimal control methods, etc. In this study
the time-optimal formulation proposed by [33] is used, which can be passed Λ and returns a
time-optimal trajectory through the waypoints, with a duration, dΛ, dependent on the velocity
and acceleration limits imposed on the movement.

4.2 Task Compatibility Cost

In this section a measure of task compatibility is derived from simple principles related to the
task error objective function in (8).

4.2.1 Tracking Cost

In (8), ẍref
i is the optimal operational-space value for Ti at time, t. If the objective is perfectly

realized then the squared norm error is zero, meaning that the robot perfectly follows the
task’s operational-space reference. Therefore, any error in the position tracking reflects an
imperfect optimization of the squared norm task error and consequently a task incompatibility.
Using this concept, a tracking cost is defined as

jit =

tend∑
t=0.0

‖xi(t)− xref
i (t)‖2 , (9)

where xi(t), is the task frame position and xref
i (t), its reference, at time t. The term tend is

the actual total duration of the whole-body motion.

4.2.2 Goal Cost

The assumption is made that the ultimate objective of any point to point trajectory is to reach
its target coordinate, or final waypoint. With this in mind a goal cost is developed as,

jig =

tend∑
t=0.0

t

dΛ

‖xi(t)− λn‖2 , (10)

where xi(t)− λn, is the difference between the task’s position at t and the final waypoint in
its trajectory. The weight of this difference increases linearly from 0.0 with time.

4.2.3 Energy Cost

Finally, given the redundancy of the system, it is possible that many whole-body motions exist
for the execution of the same set of ntasks tasks to be performed. To reduce these possibilities,
those which are energy optimal are favoured using an energy cost,

je = β

tend∑
t=0.0

‖τ (t)‖2 , (11)
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where the term β is used to scale the energy cost for meaningful comparison with jt and jg.
Here, β = 1.0e−4 is used.

4.2.4 Compatibility Cost

The compatibility cost for ntasks tasks can be calculated by first summing their tracking and
goal costs, then adding the energy cost, which is common to all tasks, and finally averaging
over tend,

jc =

[
je +

ntasks∑
i=1

(
jit + jig

)]/
tend . (12)

With (12) the compatibility cost of an arbitrary number of tasks can be estimated. This cost,
however, has no absolute significance on its own. There is no threshold value for determining
if a set of tasks is compatible, incompatible, or somewhere in between. For any task set, the
jc of the initial task trajectories, denoted j′c, are taken as the reference with which all other
task trajectories are compared using,

jnewc =
jc
j′c

. (13)

This means that for any task combination, the initial task trajectories have a compatibility
cost equal to 1.0. Any modifications to the trajectories yielding a jnewc < 1.0 represent
improvements in task compatibility, and vice versa for jnewc > 1.0.

Finally tasks used for computation of (12) must be determined. In a typical whole-body
controller there may be a multitude of simultaneously active tasks at any given time. Generally
there are a few primary tasks which are designed to affect some motion, and any number of
helper tasks used to improve the stability, posture, or quality of the movement. The decision
of which tasks to use to calculate (12) is an open one, but here the principal tasks are used,
such as those for balance and reaching.

4.3 BBO Solvers

The task compatibility optimization problem is non-linear, non-convex, and possibly discontin-
uous. BBO solvers are therefore used. Local solvers, such as Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) use the statistics from a set of objective variable samples and
their costs to estimate the mean and covariance of the sample distribution and then update
this distribution in the direction of the natural gradient [34]. Global solvers such as Bayesian
Optimization (BO) explicitly model the latent cost function using Gaussian Processes and
provide a set of parameters to test which both minimize the expected cost and the uncertainty
of the cost model [35].
BO solvers usually require fewer trials to obtain an optimal solution and have become a popular
choice in robotics because of this efficiency [36, 37, 38]. The performance and solution quality
of BO and CMA-ES are highly dependent on proper tuning of the solver meta-parameters; e.g.
kernel type, kernel parameters, acquisition function, initial variance, etc. To properly compare
solvers, meta-parameters for BO and CMA-ES are selected to ensure consistent convergence
without being overly greedy, and are maintained for all experiments.
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4.4 Task Compatibility Optimization

Algorithm 1 Task Compatibility Optimization

1: Given a set of tasks to execute on a whole-body controller.
2: Select task waypoint to be optimized: θnew = λi.
3: Θ = [ ] and j = [ ].
4: do
5: Generate task trajectory with λi = θnew.
6: Simulate task set execution.
7: Compute jc with (12).
8: if first iteration then
9: j′c = jc

10: end if
11: Calculate jnewc = jc

j′c
.

12: Θ = [Θ,θnew]
13: j = [j, jnewc ]
14: Update solver with Θ and j.
15: Get new waypoint to test θnew.
16: while (14) is false
17: return θbest

In this section, the algorithm for optimizing task compatibility is developed. A set of tasks
with various priorities and gains that are fixed is assumed to be given. Initial trajectories for
these tasks are provided by a human operator manually selecting waypoints. Given the task
parameterization described in Section 4.1, one or more task waypoints can be used as the
objective variable, θ. By modifying these waypoints, the resulting task trajectory is modified
and consequently, the overall whole-body behavior. The first step in the optimization is then
to select the waypoint(s) which serve as the objective variable. Here, the use of one waypoint
only is considered so the objective variable is simply θ = λi. The cost associated with θ
is then evaluated using (12) after simulating the execution of the tasks. The simulation is
stopped when either all tasks have been completed or a fixed amount of time has elapsed.
This initial compatibility cost is used as the baseline, j′c, to which all subsequent costs are
compared. The observed parameter and cost samples are concatenated together into Θ and
j, respectively, and provided to either BO or CMA-ES. The solver proposes a new objective
variable to test, θnew to use as the task waypoint and the task trajectory is regenerated. The
task set is then executed and its compatibility cost, jnewc , is calculated. Both θnew and jnewc

are concatenated to the current objective variable-cost pairs, and the solver is updated again.
This process is iterated until,

‖θnew − θbest‖ ≤ Ψ , (14)

where θbest is the best observed waypoint with the lowest cost and Ψ is a meta-parameter which
dictates the minimum threshold for convergence. When converged, the algorithm returns the
optimal waypoint, θbest, with the best observed compatibility cost. This is detailed in Algorithm
1.
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(a) (b) (c)

Figure 3: Figure (a) shows the ran-
dom reaching targets used to pro-
vide a statistical analysis of the task
compatibility optimization described
in Section 4. The target spheres
are color coded to indicate their test
case, with green meaning reachable,
orange meaning possibly reachable,
and red meaning unreachable. These
test cases are detailed in Section
5.1. Figures (b) and (c) show the
θnew bounding boxes used for the
task compatibility optimization of the
reaching and standing experiments,
respectively.

5 Experiments

The experiments presented in this section are designed to illustrate the task compatibility
optimization described in Section 4, compare the performances of BBO solvers used within
the method, and highlight the subtle complexities of common tasks from the perspective
of whole-body control. A simulation of a humanoid robot, iCub, is used for these studies.
Gazebo is used as the simulation environment with the ODE physics engine.

The first experiment explores basic reaching movements under bipedal equilibrium, and
serves as a benchmark for the task compatibility optimization method. It provides us with
useful statistics to analyze the method and BBO solvers. The second experiment, entitled
standing presents a more dynamically complex scenario in which the robot starts from a
seated position and must transition to standing. Here, the difficulties of contact transitioning
and dynamic equilibrium is studied. In both experiments, balance is achieved by keeping the
robot’s CoM position over its Polygon of Support (PoS). The PoS is defined by the convex
hull of the active model contacts in the whole-body controller.

Each experiment begins with a fixed set of tasks, parameters and gains. In the following,
right hand and CoM tasks only are discussed, but it should be noted that postural, torso
orientation, and left hand tasks are also active during the motion. The tasks all have initial
trajectories which are generated from waypoints, picked by an expert operator. For both
reaching and standing the CoM task trajectory is optimized to improve the task compatibility
cost. Box constraints for the optimization can be applied in both BO and CMA-ES and are
set here using static stability constraints, i.e. the projection of the CoM must remain inside
the PoS. The z bounds are chosen as 0.3m ≤ z ≤ 0.52m. The bounding boxes for both
experiments are shown in Figs. 3b and 3c.

All code for these experiments is open-source and can be found here: https://github.

com/rlober/ra-l_2017.git.
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reachable

(a) (b)

(c)

possibly reachable

(d) (e)

(f)

unreachable

(g) (h)

(i)

Figure 4: Results of 100 reaching experiments used to study the task compatibility optimization
method. An average example is presented for the three possible reach cases. In the reachable case,
(a) & (b), both the original and optimized movements attain the reach target. In the possibly
reachable case, (d) & (e), the original movement does not attain the target but the optimized
movement does. Finally in the unreachable case, (g) & (h), neither movement attains the target,
but the optimized movement reduces the target error. For each case, the relative cost means and
standard deviations are plotted for both the BO and CMA-ES solvers. Any relative cost lower than
1.0 is an improvement (the 1.0 line is indicated by a dashed grey lines). For all three cases the
relative compatibility cost jbestc is always less than or equal to 1.0. This indicates that the optimized
movements will always be as good if not better than the original movements. In the reachable case,
(c), little improvement is seen because the tasks are already compatible. For the possibly reachable
and unreachable cases, (f) and (i), the compatibility is improved by reducing the tracking and goal
costs at the expense of increased energy usage. For each of the cases BO outperformed CMA-ES
in convergence iterations on average, but was less consistent across-the-board. See Section 6.1 for
more details.

5.1 Reaching

This experiment is concerned with demonstrating the flexibility of the proposed task compat-
ibility optimization, as well as gleaning useful statistics about the two proposed solvers, BO
and CMA-ES. To accomplish this, 100 reach targets are randomly generated around the sim-
ulated robot, see Fig. 3a. For each target, a straight line trajectory is generated for the right
hand task between its starting position and the target’s position. The CoM task trajectory is
generated between two waypoints,

ΛCoM =
[
λstart λgoal

]
, (15)
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where λstart is the initial CoM position, and λgoal is the desired goal CoM position, which
is initially chosen to be the center of the PoS at the current CoM z height. λgoal is
chosen as the task compatibility objective variable, θnew. By optimizing λgoal the CoM tra-
jectory is modified. The compatibility cost, (12), is computed using right hand and CoM tasks.

The objective of the experiment is to attain the reach target and a target is considered
attained when the right hand task frame is within 3.0cm of it. The movement is stopped if
the target is attained or if a time limit is exceeded. For each reach target, the optimization
is run using both BO and CMA-ES as solvers. The target is then classified into one of three
cases. If the robot attains the target with the original CoM trajectory, the target is considered
reachable. If it is unable to attain the target with the original CoM trajectory, but attains
the target with the optimized CoM trajectory then the target is possibly reachable. Finally,
if the reach target is unattainable with either the original or optimized CoM trajectories, then
it is considered unreachable.

5.2 Standing

In this experiment, the robot is seated on a stationary bench and the objective is to stand
up. In this case the only primary task is the CoM task, and its trajectory is defined by three
waypoints,

ΛCoM =
[
λstart λmiddle λgoal

]
, (16)

where λstart and λgoal have the same meaning as in (15) and λmiddle is a middle waypoint
between the start and goal CoM positions. Here, λgoal is picked as a nominal standing CoM
position near the middle of the PoS in x and y and at approximately 0.5m from the ground,
and λmiddle is picked as a point halfway between λstart and λgoal. In this experiment, λmiddle is
chosen as θnew.

In order to stand, the bench contacts used in the whole-body controller model must be
deactivated or the robot will never be able to get up. The bench contacts are deactivated
arbitrarily at 2.0 seconds. The motion is executed until the CoM task has attained λgoal or
some time limit has been exceeded. The compatibility cost, (12), is computed using only the
CoM task.

6 Results

In this section the results for the reaching and standing experiments are presented. Please see
the accompanying video for a better look at the results presented here.

6.1 Reaching

In Fig. 4 shows representative examples of the three reach cases. For each, the relative
cost means and optimization iteration means are computed. The relative compatibility cost,
jbestc , and the component relative costs, jbeste , jbestg , and jbestt , are calculated by dividing the
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2.0s 2.5s 3.0s

(a) original

2.0s 4.0s 5.0s

(b) optimized

Figure 5: Original and optimized CoM reference trajectories and their resultant whole-body motions.
The original trajectory produces an unstable standing motion causing the robot to lose balance. The
optimized CoM trajectory, however, produces a successful sit-to-stand transition. The right hip is
translucent in (b) to make the reference trajectory visible.

optimized costs by the original costs.

In the reachable case, Figs. 4a, 4b and 4c, it can be seen that the original task trajectories
go unmodified because they are already compatible. In a few cases CMA-ES is able to
improve slightly on the compatibility cost. Compatibility cost improvements can be observed
between 30%-50% in the possibly reachable case, Figs. 4d, 4e and 4f, where both solvers
quickly converge on solutions which reduce the tracking and goal errors allowing the robot
to attain the reach target. These improvements require increased energy usage to move the
CoM, but the resulting successful reach which finishes more quickly, amortizing the impact of
the increased energy cost. In the unreachable case, Figs. 4g, 4h and 4i, cost improvements
similar to those in the possibly reachable case can be seen, despite the fact that the targets
are physically unattainable.
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For all three cases, BO and CMA-ES show similar performance in terms of cost reduction.
In terms of convergence iterations, BO tends to find an optimum in approximately half the
number of iterations needed by CMA-ES, however is less consistent than CMA-ES across-the-
board.

6.2 Standing

Figure 6: Evolution of the CoM
for the original and optimized move-
ments. The original CoM curves are
cut off after 2.7 seconds when the
robot loses balance. The red dashed
line indicates the moment when the
bench contacts are deactivated in the
whole-body controller.

In Fig. 5, the evolution the CoM for the original and optimized movements is provided.
The whole-body motion produced by the original CoM trajectory, Fig. 5a, is unstable and
causes the robot to loose balance. The optimized CoM trajectory, on the other hand,
produces a stable sit-to-stand transition as shown in Fig. 5b. In Fig. 6 it is observed that,
at the moment the bench contacts are deactivated in the controller (the dashed vertical red
line), the original motion immediately tends to lift the CoM upwards, despite an inappropriate
x-location of the CoM (not close enough to the foot PoS). This inconsistent CoM trajectory
does not respect the dynamic balancing conditions (see [16]) and causes the robot to fall.The
optimized trajectory moves the CoM more aggressively in the forward direction as well as
lowering it prior to the contact deactivation instant. The resulting CoM trajectory is balance
consistent, thus leading to a successful sit-to-stand transition.

A video associated to these results and submitted with [9] can be viewed here: https:

//tinyurl.com/hszx2qs.

6.3 Towards year 4 demonstration

In preparation of the final year demonstration, the CoM task optimization for standing is
also tested in simulations including external support. Here external support is simulated,
in simple and naive way, as an external force applied at each forearm of the robot through
out the overall movement. The magnitude of the force at each forearm is chosen small:
Fsupport = 5.23 N pointing 45◦ upward and front in the sagittal plane of the robot. Including
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Original Optimized Original w/ force Optimized w/ force

Figure 7: Original and optimized CoM reference trajectories. The original trajectory produces an
unstable standing motion causing the robot to lose balance. The optimized without support and
externally supported cases produce successful sit-to-stand transitions.

the two aforementioned “original” and “optimized movement”, two extra cases are tested:
original movement with external support and optimized movement with external support.
The resulting CoM trajectories are presented in Fig. 7.

The results in terms of compatibility cost optimization are presented in Fig. 8. As intuitively
expected, the use of an external supporting force together with an optimized CoM trajectory
yields the best results in terms of tracking and whole-body energy expenditure. The main
difference between the optimized motion without external support and the optimized motion
with external support lies in the energetic expenditure and time needed to reach a standing
posture. This is also illustrated in Fig. 9 where the time needed to reach the CoMheight
zCOM = 0.5 m is more than 1.5× larger (measured from the instant where bench contact
constraints are no longer enforced) in the case where no external support is present.

Figure 8: The costs presented here
corresponds to the three following
cases: optimized movement with-
out external support, original move-
ment with external support and op-
timized movement with external sup-
port. Each cost is presented as a ra-
tio of the original cost (no optimiza-
tion, no external support). As intu-
itively expected, the use of an exter-
nal supporting force together with an
optimized CoM trajectory yields the
best results in terms of tracking and
whole-body energy expenditure.
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Figure 9: Evolution of the CoM
for the original and optimized move-
ments, without and with support.
The original CoM curves without sup-
port are cut off after 2.7 seconds
when the robot loses balance. The
red dashed line indicates the moment
when the bench contacts are deacti-
vated in the whole-body controller.

7 Conclusion

The primary conclusion to draw from this work is that through task compatibility optimiza-
tion, the overall performance of a wide variety of movements can be improved using generic
principles. By improve, it is meant that the original intent of the planned task trajectories
is better realized. In the reaching experiments this means more targets are attained, and in
the standing case it means the robot can successfully transition from sitting to standing.
Moreover, the need for fine tuning of controller priorities and gains is alleviated because
they are accounted for in the task optimization. In addition, the compatibility optimization
concept is controller independent and, while it is expected that the controller described in
section 2 will be used during the final year demo, the use of another controller would not
imply any modification at the task compatibility optimization level.

With regards to BBO solvers, a comparison of the BO and CMA-ES reveals that BO
tends to converge to an optimal solution in half the number of simulation iterations needed by
CMA-ES. Such efficiency is desirable if the optimization iterations are to occur on a real robot.

Finally, it is believed that the proposed task compatibility optimization loop is an important
first step towards an intermediate control layer between high-level planning and low-level
control, where task trajectories are optimized for compatibility before being executed on the
real robot, as illustrated by Fig. 10 for a reaching motion. The combination of state-of-the-art
whole-body control and task level optimization will hopefully also be demonstrated during the
final year demonstration. Improved results can even be expected using the estimation of the
supporting wrenches applied by the caregiver developed in Deliverable 5.4 [5].
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(a) original (b) optimized

Figure 10: An original and optimized reaching motion executed on an iCub robot is illustrated here.
These preliminary results show that the movements produced by task compatibility optimization may
be viable on real platforms.
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[24] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space projections for
redundant torque-controlled robots,” The International Journal of Robotics Research,
vol. 34, no. 11, pp. 1385–1400, 2015.

[25] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,” Autonomous Robots,
vol. 40, no. 1, pp. 17–31, 2016.

[26] M. Liu, R. Lober, and V. Padois, “Whole-body hierarchical motion and force control for
humanoid robots,” Autonomous Robots, vol. 40, no. 3, pp. 493–504, 2016.

[27] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task prioritization in Whole-
Body Control,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept 2015, pp. 3944–3949.

[28] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and S. Ivaldi, “Learning
soft task priorities for control of redundant robots,” in IEEE International Conference on
Robotics and Automation, May 2016, pp. 221–226.

[29] V. Modugno, U. Chervet, G. Oriolo, and S. Ivaldi, “Learning soft task priorities for
safe control of humanoid robots with constrained stochastic optimization,” in Humanoid
Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on, 2016, pp. 101–
108.

[30] A. Paraschos, J. Peters, and G. Neumann, “Probabilistic prioritization of movement
primitives,” 2017, under review.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

25/26 Contract No. FP7-600716
www.codyco.eu

http://dx.doi.org/10.1080/01691864.2012.686345
http://dx.doi.org/10.1080/01691864.2012.686345
https://doi.org/10.1109/TRO.2014.2351113
https://doi.org/10.1109/TRO.2014.2351113
http://hal.archives-ouvertes.fr/tel-01398868/en
http://www.lirmm.fr/~bouyarmane/hal-01247118.pdf
http://www.lirmm.fr/~bouyarmane/hal-01247118.pdf
https://hal.inria.fr/hal-01418462
https://hal.inria.fr/hal-01418462
http://dx.doi.org/10.1177/0278364914521306
http://dx.doi.org/10.1177/0278364914521306
http://dx.doi.org/10.1177/0278364914566516
http://dx.doi.org/10.1177/0278364914566516
http://dx.doi.org/10.1109/IROS.2015.7353932
http://dx.doi.org/10.1109/IROS.2015.7353932
https://doi.org/10.1109/ICRA.2016.7487137
https://doi.org/10.1109/ICRA.2016.7487137


Version 1.0, Feb. 28, 2017

[31] R. Lober, V. Padois, and O. Sigaud, “Multiple task optimization using dynamical move-
ment primitives for whole-body reactive control,” in IEEE-RAS International Conference
on Humanoid Robots, Nov 2014, pp. 193–198.

[32] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[33] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path following with
bounded acceleration and velocity,” 2012.

[34] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen, “Information-geometric optimization
algorithms: A unifying picture via invariance principles,” arXiv preprint arXiv:1106.3708,
2011.

[35] C. E. Rasmussen and C. Williams, Gaussian processes for machine learning. MIT Press,
2006.

[36] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian gait
optimization for bipedal locomotion,” in International Conference on Learning and Intel-
ligent Optimization. Springer, 2014, pp. 274–290.

[37] R. Antonova, A. Rai, and C. G. Atkeson, “Sample efficient optimization for learning
controllers for bipedal locomotion,” in IEEE-RAS International Conference on Humanoid
Robots, Nov 2016, pp. 22–28.

[38] P. Englert and M. Toussaint, “Combined Optimization and Reinforcement Learning for
Manipulations Skills,” in Robotics: Science and Systems, 2016.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

26/26 Contract No. FP7-600716
www.codyco.eu

http://dx.doi.org/10.1109/IROS.2009.5354341
http://dx.doi.org/10.1109/IROS.2009.5354341
http://dx.doi.org/10.1177/0278364913495721
http://www.roboticsproceedings.org/rss08/p27.pdf
http://www.roboticsproceedings.org/rss08/p27.pdf
https://arxiv.org/pdf/1106.3708.pdf
https://arxiv.org/pdf/1106.3708.pdf
http://www.gaussianprocess.org/gpml/
http://spiral.imperial.ac.uk:8080/bitstream/10044/1/15225/8/LION8.pdf
http://spiral.imperial.ac.uk:8080/bitstream/10044/1/15225/8/LION8.pdf
https://doi.org/10.1109/HUMANOIDS.2016.7803249
https://doi.org/10.1109/HUMANOIDS.2016.7803249
https://ipvs.informatik.uni-stuttgart.de/mlr/papers/16-englert-RSS.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/papers/16-englert-RSS.pdf

	Introduction
	Dealing with unforeseen situations: the case of external support
	Task compatibility optimization: motivations
	Methods
	Task Parameterization
	Task Compatibility Cost
	Tracking Cost
	Goal Cost
	Energy Cost
	Compatibility Cost

	BBO Solvers
	Task Compatibility Optimization

	Experiments
	Reaching
	Standing

	Results
	Reaching
	Standing
	Towards year 4 demonstration

	Conclusion
	References

