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Chapter 1

Introduction

This deliverable presents results of task T4.1 and of task T4.2 at the end of the thrid year. The
achieved results are briefly discussed with respect to the task description from the Technical
Annex.

T4.1 Generalizing and Improving Elementary Tasks with Contacts. Analytical mod-
els that include physical robot-environment contact are frequently not sufficiently accurate for
gentle and dextrous interaction with the environment. Hence, there is a strong need for im-
proved models that enable more versatile predictions (e.g., of the next state or a force required
to accomplish an acceleration) for whole-body contact. Core problems in these contexts are
under-modelled nonlinearities (e.g., hydraulic tubes, cable drives, etc.) as well as that the
various contact situations have substantially different interactive behaviour. As there may be
unforeseeably many possible scenarios, real-time regression techniques may be one of the most
reasonable approaches for such kind of problems. However, we avoid the classical problem of
learning from scratch but rather learn the part of the dynamics that has not been captured by
the preceding classical system identification techniques. The resulting model is obviously more
accurate than the original and its training more efficient. As the type of contact may decide
upon the type of interaction, it is an essential feature. However, it is not directly accessible but
a latent cause for a change in behaviour and needs to be inferred online in real-time. Hence,
new real-time regression techniques need to be developed particularly for a multi-contact situ-
ation where multiple model classes exist and generalization between different latent contacts.
Here is a list of achievements for this task:

• TUD learned predictive models of joint angles and task-space forces in a probabilistic
control framework. Early results were presented at the end of year two. In particular,
TUD developed a model-free control method that can be trained from demonstrations
and generates time-varying feedback control gains that reproduces the demonstrations.
In this approach a joint distribution over states, sensory feedback (e.g., measured joint
torques or contact forces) and controls is learned. In conditioning on the current state the
next-state control-law can be computed in closed form approximating the true forward
dynamics through local linearizations given the demonstrations. During year three, TUD
refined this approach and evaluated the model-free ProMP method on the humanoid
robot iCub in lifting objects. The model could generalize to different object weights and
grasp locations. A paper was published and presented at the IEEE/RSJ Conference on
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Intelligent Robots and Systems (IROS) in Hamburg, Germany 2015 [1]. This work is
discussed in Chapter 3.

T4.2 Inferring the Operational Space and Appropriate Controls with Multiple Con-
tacts. Operational space control (OSC) is among the most general frameworks for phrasing
control tasks. It allows formulating the task in its own inherent space instead of using a
more action-oriented space such as the joint-space. Current approaches use human insight
for finding the appropriate task space and analytical physical models in order to compute the
appropriate controls that realize the task (Nakanishi et al., 2008). Clearly model errors can
have devastating impacts on the performance of operational space control laws and, hence,
learning approaches have been introduced (Peters & Schaal, 2008) (Salan et al., 2010). As
these learning approaches do not yet include contact, the extension to a multi-contact scenario
will be essential. However, this step is neither straightforward nor incremental. Only by relying
on the latent contact inference engine from T4.1, the new Learning OSC module will be able
to deal with learning multiple different OSCs for different scenarios.

An additional trouble arises from finding the appropriate space for a task. This step is
known to be very difficult, as here the latent manifold of the task will need to be considered.
We will present a machine learning approach that will recover the latent task space from the
data and models provided by WP2. Here is a list of achievements for this task:

• For controlling high-dimensional robots, most stochastic optimal control algorithms use
approximations of the system dynamics and of the cost function (e.g., using lineariza-
tions and Taylor expansions). These approximations are typically only locally correct,
which might cause instabilities in the greedy policy updates, lead to oscillations or the
algorithms diverge. To overcome these drawbacks, TUD added a regularization term to
the cost function that punishes large policy update steps in the trajectory optimization
procedure. TUD applied this concept to the Approximate Inference Control method
(AICO), where the resulting algorithm guarantees convergence for uninformative initial
solutions without complex hand-tuning of learning rates. The new algorithm was eval-
uated on two simulated robotic platforms. A robot arm with five joints was used for
reaching multiple targets while keeping the roll angle constant. On the humanoid robot
Nao, we show how complex skills like reaching and balancing can be inferred from desired
center of gravity or end effector coordinates. This work was presented at the Interna-
tional Conference on Humanoid Robots (HUMANOIDS) in Madrid, Spain in 2014 [3].
The stochastic optimal control algorithm is discussed in Chapter 4.

• In an ongoing student project, TUD currently evaluates this approach on a real system
(the Nao robot). A journal paper is in progress of writing.

• Another source of inspiration for novel operational space control algorithms is drawn
from observations of how animals solve planning tasks. In particular, TUD investigated
how spiking neural networks can be used to learn a mapping between joint and task
space and utilized this mapping in a temporal model for movement planning. A paper
demonstrating for the first time how a spiking neural network architecture can implement
probabilistic planning through local reward modulated synaptic plasticity rules was pub-
lished the journal of Scientific Reports [2]. The main contribution is a theoretical model
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with implications for neuroscience studies on path planning in the hippocampus and
robot controller implemented on neuromorphic hardware. Optimal learning rules were
derived based on probabilistic inference and links to the widely used machine learning
techniques expectation maximization and policy search were established.

As computational model for hippocampal sweeps during maze navigation tasks, the
model suggests that contextual information about rewarding goal locations or obstacles
modulate not only the end point of a path (as done in state-of-the-art attractor models)
but the complete movement trajectory.

For robotics, the resulting neural network offers the foundation for future neuromorphic
hardware implementations that can be used in dynamic human robot co-worker envi-
ronments. In this challenging domain large sensory streams from cameras and tactile
skins have to processed and stochastic decisions have to be computed based on noisy
or partial observations taking future expectations about human motion into account.
In first experiments, it is shown that the neural model can be trained to represent and
generate multimodal movement plans that avoid obstacles in a real robot arm reaching
task in real-time. This work is discussed in Chapter 5.

• In a student’s Master thesis, TUD refined the above spiking neural network model to a
deep neural network architecture. In using factorized population codes, the model could
generalize to high-dimensional robot systems (i.e., a robot with more than six joints).
TUD demonstrated that both, the state transition model and the inverse kinematic
model can be learned from human demonstrations using kinesthetic teaching. For that
purpose TUD derived a spike dependent version of contrastive divergence. The models
are learned and evaluated on a KUKA lightweight arm in simulation and on the real
robot by solving target reaching and obstacle avoidance tasks. A paper on these results
is currently in progress of writing.
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Chapter 2

Executive Summary

In this deliverable, three studies relevant for improving operational space control with contacts
are presented. The first work demonstrates how model-free probabilistic movement primitives
can be learned from human demonstrations and generalize to different task-space forces. In
a second study, TUD demonstrated how a simple regularization term can greatly improve
the convergence properties of incremental stochastic optimal control methods. This work was
evaluated in simulations and is currently tested on real humanoid robots. In the last chapter of
this deliverable we present an interesting control approach using spiking neural networks. The
approach does not aim at solving the challenging control problems within CoDyCo but rather
provides an alternative with great potentials for future research. As such TUD is investigating
how deep neural network variants of this model can be used for controlling real robots in
high-dimensional joint and task spaces.
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Model-Free Probabilistic Movement
Primitives for Physical Interaction
(TUD)
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Model-Free Probabilistic Movement Primitives for Physical Interaction

Alexandros Paraschos1, Elmar Rueckert1, Jan Peters1,2 and Gerhard Neumann1

Abstract— Physical interaction in robotics is a complex prob-
lem that requires not only accurate reproduction of the kine-
matic trajectories but also of the forces and torques exhibited
during the movement. We base our approach on Movement
Primitives (MP), as MPs provide a framework for modelling
complex movements and introduce useful operations on the
movements, such as generalization to novel situations, time
scaling, and others. Usually, MPs are trained with imitation
learning, where an expert demonstrates the trajectories. How-
ever, MPs used in physical interaction either require additional
learning approaches, e.g., reinforcement learning, or are based
on handcrafted solutions. Our goal is to learn and generate
movements for physical interaction that are learned with imi-
tation learning, from a small set of demonstrated trajectories.
The Probabilistic Movement Primitives (ProMPs) framework
is a recent MP approach that introduces beneficial properties,
such as combination and blending of MPs, and represents the
correlations present in the movement. The ProMPs provides
a variable stiffness controller that reproduces the movement
but it requires a dynamics model of the system. Learning such
a model is not a trivial task, and, therefore, we introduce the
model-free ProMPs, that are learning jointly the movement and
the necessary actions from a few demonstrations. We derive
a variable stiffness controller analytically. We further extent
the ProMPs to include force and torque signals, necessary for
physical interaction. We evaluate our approach in simulated
and real robot tasks.

I. INTRODUCTION

Developing robots that can operate in the same environ-
ment with humans and physically interacting with every-day
objects requires accurate control of the contact forces that
occur during the interaction. While non-compliant robots can
achieve a great accuracy, the uncertainty of complex and less-
structured environment prohibits physical interaction. In this
paper, we focus on providing a compliant control scheme that
can enable robots to manipulate their environment without
damaging it. Typically, force-control requires an accurate
dynamics model of the robot and its environment that is not
easy to obtain. Other approaches suggest to learn a dynamics
model, however, this process can be time-consuming and
is prone to model-errors. We present an approach that can
jointly learn the desired movement of the robot and the
contact forces by human demonstrations, without relying on
a learned forward or inverse model.

*The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–2013)
under grant agreements #600716 (CoDyCo) and #270327 (CompLACS)

1Intelligent Autonomous Systems, TU Darmstadt, 64289
Darmstadt, Germany {paraschos,neumann,rueckert}
@ias.tu-darmstadt.de

2 Robot Learning Group, Max Planck Institute for Intelligent Systems,
Germany mail@jan-peters.net

Fig. 1. The iCub robot is taught by imitation how to tilt a grate that we
use of during the experimental evaluation of our approach. We demonstrated
how to lift a grate from three different positions. Grasping from different
positions change the dynamics of the task. Our method provides online
adaptation and generalizes in the area of the grasps

Existing approaches for motor skill learning that are based
on movement primitives [1], [2], [3], [4], [5], often incorpo-
rate into the movement primitive representation the forces
needed for the physical interactions [6], [7], [8]. However,
such approaches model a single successful reproduction of
the task. Multiple demonstrations are typically averaged,
despite that they actually represent similar, but different,
solutions of the task. Thus, the applied contact forces are
not correlated with the state of the robot nor sensory values
that indicate the state of the environment, e.g. how heavy an
object is.

In this paper, we propose learning the coordination of the
interaction forces, with the kinematic state of the system, as
well as the control actions needed to reproduce the movement
exclusively from demonstration. Motor skill learning for such
interaction tasks for high-dimensional redundant robots is
challenging. This task requires real-time feedback control
laws that process sensory data including joint encoders,
tactile feedback and force-torque readings. We present a
model-free version of the Probabilistic Movement Primitives
(ProMPs) [9] that enables robots to acquire complex motor
skills from demonstrations, while it can coordinate the move-
ment with force, torque, or tactile sensing. The ProMPs have
several beneficial properties, such us generalization to novel
situations, combination of primitives and time-scaling, which
we inherit in our approach.

ProMPs assume a locally linearizable dynamics models to



compute time-varying feedback control laws. However, such
dynamics models are hard to obtain for physical interaction
tasks. Therefore we obtain a time varying feedback controller
directly from the demonstration without requiring such a
model. In the model-free extension of the ProMPs, we
condition the joint distribution over states and controls on
the current state of the system, and obtain a distribution
over the controls. We show that this distribution represents
a time-varying stochastic linear feedback controller. Due to
the time-varying feedback gains, the controller can exhibit
behavior with variable stiffness and, thus, it is safe to use in
physical interaction. A similar control approach has recently
been presented in [10].

Our approach inherits many beneficial properties of the
original ProMP formulation. We can reproduce the variability
in the demonstrations and use probabilistic operators for
generalization to new tasks or the co-activation of learned
primitives. The resulting feedback controller shows similar
properties as in the model-based ProMP approach, it can
reproduce optimal behavior for stochastic systems and ex-
actly follow the learned trajectory distribution, at least, if the
real system dynamics are approximately linear for each time
step. For non-linear systems, the estimated variable stiffness
controller can get unstable if the robot reaches configurations
that are far away from the set of demonstrations. To avoid this
problem, we smoothly switch between a stable PD-controller
and the ProMP controller if the support of the learned
distribution for the current situation is small. We show
that this extension allows us to track trajectory distributions
accurately even for non-linear systems.

The model-free ProMP approach is evaluated in simulation
with linear and non-linear dynamical systems in Section V.
In a real task, we tilt a grate which is grasped at different
positions. We show that the model-free ProMPs can gen-
eralize to different grasping locations on a grate through
exploiting the correlations between motor commands and
force feedback.

II. RELATED WORK

In this section, we review related work on movement
primitives for imitation learning that combine position and
force tracking, model the coupling between kinematics and
forces and are able to capture the correlations between these
two quantities.

The benefit of an additional feedback controller to track
desired reference forces was demonstrated in grasping tasks
in [6]. Individual dynamical systems (DMPs) [5] were trained
for both, position and force profiles in imitation learning. The
force feedback controller substantially improved the success
rate of grasps in tracking demonstrated contact forces under
changing conditions. For manipulation tasks like opening a
door, the authors showed that the learned force profiles can
be further improved through reinforcement learning [7].

For many tasks, such as like bi-manual manipulations, the
feedback controller needs to be coupled. Gams et al. [11]
proposed cooperative dynamical systems, where deviations
from desired forces modulate the velocity forcing term in the

DMPs for position control. This approach was tested on two
independently operating robot arms solving cooperative tasks
like lifting a stick [8]. Deviations in the sensed contact forces
in one robot were used to adapt the DMP of the other robot
and the coupling parameters were obtained through iterative
learning control. A related probabilistic imitation learning
approach to capture the couplings in time was proposed in
[12]. In this approach, Gaussian mixture models were used to
represent the variance of the demonstrations. The approach
was evaluated successfully on complex physical interaction
tasks such as ironing, opening a door, or pushing against a
wall.

Adapting Gaussian Mixture Models (GMMs) [13], [14],
[15], [16] have been proposed for use in physical interaction
tasks. The major difference to the dynamical systems ap-
proach is that GMMs can represent the variance of the move-
ment. Closely related to our approach, Evrard et al. in [17]
used GMMs to learn joint distributions of positions and
forces. Joint distributions capture the correlations between
positions and forces and were used to improve adaptation
to perturbations in cooperative human robot tasks for object
lifting. In this approach, the control gains were fixed to track
the mean of the demonstrated trajectories. In [18], it was
shown that by assuming known forward dynamics, variable
stiffness control gains can be derived in closed form to match
the demonstrations. We address here an important related
question of how these gains can be learned in a model-free
approach from the demonstrations.

III. MODEL-FREE PROBABILISTIC MOVEMENT
PRIMITIVES

We propose a novel framework for robot control which
can be employed in physical interaction scenarios. In our
approach, we jointly learn the desired trajectory distribution
of the robot’s joints or end-effectors and the corresponding
controls signals. We train our approach from a limited set of
demonstrations. We refer to the joint distribution as state-
action distribution. Further, we incorporate proprioceptive
sensing, such as force or tactile sensing, into our state
representation. The additional sensing capabilities are of high
importance for physical interaction as they can disambiguate
kinetically similar states. We present our approach by, first,
extending the Probabilistic Movement Primitives (ProMPs)
framework [9] to encode the state-action distribution and,
second, we derive a stochastic feedback controller without
the use of a given system dynamics model. Finally, we
extend our control approach for states which are relatively
far from the vicinity of the learned state-action distribution.
In that case, our control approach can no longer produce
correcting actions, and an additional backup controller with
high gains is needed. Our framework inherits most of the
beneficial properties introduced by the ProMPs that sig-
nificantly improved generalization to novel situations and
enables the generation of primitives that concurrently solve
multiple tasks [9].



A. Encoding the Time-Varying State-Action Distribution of
the Movement

We avoid explicitly learning robot and environment mod-
els by learning directly the appropriate control inputs, while
keeping the beneficial properties of the ProMP approach,
such us generalization and concurrent execution.

In order to simplify the illustration of our approach, we
first discuss the special case of a single Degree of Freedom
(DoF) and, subsequently, we expand our description to the
generic case of multiple DoF. The description is based in [9],
but modified appropriately to clarify how the actions can be
modelled. First, we define the extended state of the system
as

yt = [qt, q̇t, ut]
T , (1)

where qt is the position of the joint, q̇t the velocity, and ut
the control applied at time-step t. Similar to ProMPs, we use
a linear basis function model to encode the trajectory of the
extended state yt. The feature matrix and the weight vector
of the non-linear function approximation model become

yt =



qt
q̇t
ut


 = Φ̃tw, Φ̃t =



φT

t 0

φ̇
T

t 0

0 ψT
t


 ,w =

[
wq

wu

]
, (2)

where the vectors φt and ψt represent the feature vectors for
the position qt and the control ut respectively. The derivative
of the position feature vector φ̇t is used to compute the
velocity of the joint q̇t. The weight vector w contains the
weight vector for the position wq and the weight vector
for the control wu. The dimensionality of the feature φt

and weight wq vectors is N × 1, where N is the number
of features used to encode the joint position. Similarly,
the dimensionality of ψt and wu vectors is M × 1. The
remaining entries of Φ̃t, denoted by 0, are zero-matrices with
the appropriate dimensionality. In our approach, we distinct
between the features used to encode the position from the
features used to encode the control signal due to the different
properties of the two signals. The distinction allows us to use
of different type of basis functions, different parameters, or
a different number of basis functions.

We extend our description to the multidimensional case.
First, we extend the state of the system from Equation (2) to

yt =
[
qTt , q̇

T
t ,u

T
t

]T
, (3)

where the vector qt is a concatenation of the positions of
all joints of the robot, the vector q̇t of the velocities of the
joints, and ut of the controls respectively. The feature matrix
Φ̃t now becomes a block matrix

Φ̃t =
[
ΦT

t , Φ̇
T

t ,Ψ
T
t

]T
, (4)

where

Φt =



φT

t · · · 0
...

. . .
... 0

0 · · · φT
t


 , (5)

Ψt =




ψT
t · · · 0

0 ...
. . .

...
0 · · · ψT

t


 , (6)

define the features for the joint positions and the joint
controls. Similarly to the single DoF, the features used for
the joint velocities Φ̇t are the time derivatives of the features
of the joint positions Φt. We use the same features for every
DoF. The dimensionality of the feature matrices Φt and Ψt

is K ×K · (N +M), where K denotes the number of DoF.
The weight vectorw has a similar structure to Equation (2)

and, for the multi-DoF case, is given by

w =
[

1wT
q , · · · , KwT

q︸ ︷︷ ︸
weights for joint positions

, 1wT
u , · · · , KwT

u︸ ︷︷ ︸
weights for joint controls

]T
, (7)

where iw denotes the weight vector for joint i ∈ [1,K ].
The probability of a single trajectory τ = {yt, t ∈

[1 · · ·T ]}, composed from states of T subsequent time steps,
given the parameters w, is computed by

p(τ |w) =
∏

t

N (yt|Φtw,Σy) , (8)

where we assume i.i.d. Gaussian observation noise with zero
mean and Σy covariance. Representing multiple trajectories
would require a set of weights {w}. Instead of explicitly
maintaining such a set, we introduce a distribution over
the weights p(w;θ), where the parameter vector θ defines
the parameters of the distribution. Given the distribution
parameters θ, the probability of the trajectory becomes

p(τ ;θ) =

ˆ

p(τ |w)p(w;θ)dw, (9)

where we marginalize over the weights w. As in the
ProMP approach, we use a Gaussian distribution to represent
p(w;θ), where θ = {µw,Σw}. Using a Gaussian distribu-
tion enables the marginal to be computed analytically and
facilitates learning. The distribution over the weight vector
p(w;θ) correlates (couples) the DoFs of the robot to the
action vector at every time-step t. The probability of the
current state-action vector yt given θ is computed by

p(yt;θ) =

ˆ

N (yt|Φtw,Σy)N (w|µw,Σw) dw

= N
(
yt

∣∣∣Φtµw,ΦtΣwΦT
t + Σy

)
, (10)

in closed form. We use normalized Gaussian basis functions
as features. Each basis function is defined in the time domain
by

φi(t) =
bi(t)∑n
j=1 bj(t)

, (11)

bi(t) = exp

(
− (t− ci)2

2h

)
, (12)



0 0.25 0.5 0.75 1
−1

0

1

time [s]

q
[r

ad
]

Fig. 2. We evaluate our approach on a simulated 1-DoF linear system.
We use N = 30 demonstrations (red) for training. During the reproduction
(blue) our approach matches exactly the demonstrations.

where ci denotes the center of the ith basis function and h
the bandwidth. The centers of the basis functions are spread
uniformly in [−2h, Tend+2h]. The number of basis functions
and the bandwidth value we used, depend on the complexity
of task. Typically, complex task require higher number of
basis functions in order to represent them accurately.

B. Imitation Learning for Model-Free ProMPs

We use multiple demonstrations to estimate the parameters
θ = {µw,Σw} of the distribution over the weights p(w|θ).
First, for each demonstration i, we use linear ridge regression
to estimate the parameter vectorwi associated to that specific
demonstration, i.e.,

wi = (ΦT
t Φt + λI)−1ΦT

t Y i, (13)

where λ denotes the ridge factor and Y i the observations of
the state and action for all the time steps of that demon-
stration. We set λ to zero, unless numerical issues arise.
Subsequently, we estimate the parameters θ from the set
of weights {wi, i ∈ [1, N ]} using the ML estimators for
Gaussians, i.e.,

µw =
1

L

L∑

i=1

wi,

Σw =
1

L

L∑

i=1

(wi − µw)(wi − µw)T , (14)

where L is the number of demonstrations.

C. Integration of Proprioceptive Feedback

Additional sensory feedback integration, e.g., force-torque
feedback, is beneficial for physical interaction scenarios as
we can capture the correlation of the trajectory, the controls
and the sensory signal. This correlation might contain useful
information for the reproduction of the movement. We extend
our approach to additionally contain the sensory signal st.
The extension require the state yt to include the sensory
signal st. We estimate an individual weight vector ws that
we include in the concatenated weight vector w. Hence,
by learning the distribution p(w), we can represent the
correlations between the sensory signal and the control
commands. We use the sensory signal to get a new desired
trajectory distribution and its controls.
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Fig. 3. We evaluate the generalization capabilities of our approach with
conditioning. The initial distribution is depicted in blue. At time t = 0.75s
we condition the initial distribution to pass at a specific position q =
{0.5, 0.8, 1.3} with low variance. We generate N = 30 demonstrations
for every conditioning point and we show the resulting distribution in red.
The X markers denotes the position at the conditioning point.
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Fig. 4. We evaluate our approach on an non-linear system with D = 4
DoF. While the dynamics of the task are non-linear we are able to reproduce
(blue) accurately the demonstrated distribution (red). We show the trajectory
distribution of the “y” dimension of the task-space of the robot. Our
approach captures the correlations between the DoF of the robot and reduces
the variance of the trajectory reproduction at both via-points.

D. Generalization with Conditioning

The modulation of via-points and final positions is an
important property of any MP framework to adapt to new
situations. Generalization to different via-points or final
targets can be implemented by conditioning the distribution
at reaching the desired position q∗t (or by conditioning on
any other sensory value) at time step t.

By applying Bayes theorem, we obtain a new distribution
p(w|q∗t ) for w which is Gaussian with mean and variance

µ[new]
w = µw +Qt

(
q∗t −ΨT

t µw

)
, (15)

Σ[new]
w = Σw −QtΨ

T
t Σw, (16)

Qt = ΣwΨt

(
Σ∗

q + ΨT
t ΣwΨt

)−1

, (17)

where Σ∗
q is a covariance matrix specifying the accuracy of

the conditioning. As the weight vectors for the controls are
also contained in the distribution, the distribution over the
controls will change accordingly, such that, by executing the
controls, we will reach the desired state q∗t .

E. Robot Control with Model-Free ProMPs

We derive a stochastic feedback controller which is ideally
capable of reproducing the learned distribution. We define as
ỹt the observable state of the system, that contains the joint



0 0.25 0.5 0.75 1
−1
−0.5

0

0.5

time [s]

q
[r

ad
]

0 0.25 0.5 0.75 1
0.2

0.4

0.6

0.8

time [s]
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

time [s]
0 0.25 0.5 0.75 1

0

0.5

1

1.5

time [s]

Fig. 5. The evaluation of our approach on the quad-link robot. We present the results of the of the DoF in joint space. The demonstrated distribution
is plotted in red and the reproduction in blue. The two distributions match. The two via-points of the movement, which were set in task-space, are not
visible in joint-space.

positions, velocities, and potentially force or torque data, but
not the action. We rewrite the joint probability

p(yt) = p(ỹt,ut)

= N
([
ỹt

ut

]∣∣∣∣Φ̃tµw, Φ̃tΣwΦ̃
T

t + Σy

)
, (18)

where

Φ̃tΣwΦ̃
T

t =

[
ΦtΣwΦT

t ΦtΣwΨT
t

ΨtΣwΦT
t ΨtΣwΨT

t

]
, (19)

and condition on the current observable state ỹt to obtain
the desired action. From the Bayes theorem, we obtain the
probability of the desired action

p(ut|ỹt) =
p(ỹt,ut)

p(ỹt)
= N (ut|µu,Σu) , (20)

which is a Gaussian distribution as both p(ỹt) and p(ut) are
Gaussian. The mean and covariance of p(ut) are computed
by

µu = Ψtµw +Kt, (ỹt −Φtµw) (21)

Σu = ΨtΣwΨT
t +Kt ΦtΣwΦT

t , (22)

Kt = ΨtΣwΦT
t

(
ΦtΣwΦT

t

)−1

, (23)

using Gaussian identities. We rewrite the mean control given
the observable state ỹt as

µu = Ψtµw +Ktỹt −KtΦtµw

=Ktỹt + kt, (24)

and observe that it has the same structure as a feedback
controller with time varying gains. The feedback gain matrix
Kt couples the DoF and the additional force-torque signals
of the system. The control covariance matrix Σu introduces
correlated noise in the controls. The noise used only if
we want to match the variability of the demonstrations.
Alternatively, we can disable the noise and replay the noise-
free behavior.

F. Correction Terms for Non-Linear Systems

A basic assumption for the linear feedback controller
obtained by the ProMP approach is that the movement is
defined in a local vicinity such that a linear controller is
sufficient. Whenever the robot’s state “leaves” this vicinity,
due to the non-linearities of the dynamics, the learned

−2 0 2 4

0

1.5

3

x-axis [m]
y-

ax
is

[m
]

Fig. 6. An animation of the movement of the quad-link non-linear robot
during the execution of our approach. We use darker colors at the beginning
of the movement and lighter at the end.

feedback controller might not be able to direct the robot back
to the desired trajectory distribution. Therefore, we apply a
correction controller that is active only when the state is
sufficiently “far” outside the distribution and directs the sys-
tem to the mean of the demonstrated state distribution. The
correction controller is defined as a standard PD controller
with hand-tuned gains, i.e.,

uC
t =KP

(
µq,t − qt

)
+KD

(
µq̇,t − q̇

)
+ uff,t, (25)

where the feed forward term uff,t is still estimated from the
ProMP and given by the mean action of the ProMP for time
step t, i.e.,

uff,t =KtΦtµw + kt. (26)

The correcting action uC
t is only applied if we are outside

the given trajectory distribution. We use a sigmoid activation
function that depends on the log-likelihood of the current
state to switch between the ProMP feedback controller and
the correction controller,

σ (qt, q̇t) =
1

1 + exp (− log (p (qt, q̇t;θ))β
−1 − α) , (27)

where α and β are hand tuned parameters of the activation
function. We linearly interpolate between the controls of the
ProMP and the correction action. For a high likelihood, e.g.,
σ(qt, q̇t) = 1 we fully activate the feedback controller from
the ProMP. For σ(qt, q̇t) = 0 we fully activate the correction
action.
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Fig. 7. The trajectory distribution of the wrist joint of the iCub during
our experiment. The demonstrated distribution is presented in blue and
the reproduction in red. The demonstrated distribution contain trajectories
from all three grasping locations. The reproduction distribution contain
trajectories from seven grasping locations. The Model-Free ProMPs can
reproduce the demonstrated distribution in new grasping locations.

IV. EXPERIMENTAL EVALUATION

We begin our experimental evaluation with different toy
tasks to demonstrate the properties of the model-free ProMP
approach. First, we demonstrate that our model-free ProMP
controller can reproduce the demonstrated trajectory distribu-
tion accurately on a linear 1-D system. Then, we change the
desired trajectory distribution by conditioning, to generalize
to different via-points and we execute our controller. We shot
that the resulting distribution exactly reaches the via-points.

In a sub-sequent experiment, we test the model-free
ProMP on a non-linear Quad-Link pendulum. We show that
by the use of the correcting PD controller we can still track
the distribution accurately.

Finally, we performed first experiments on the iCub, where
the humanoid is grasping a grate at different grasp locations
and has to tilt it. By learning the correlation between the
force-torque readings and the demonstrated control actions
the iCub should learn to compensate for gravitational effects.

A. Reproduction of the Trajectory Distribution

We illustrate our approach in an one dimensional linear
second order integrator as the underlying dynamical system.
We created the demonstrations by first creating different
desired trajectories with splines that go through different
via-points. The real trajectories are created by following a
given spline with a PD control law. We also added noise
to the acceleration of the system. The resulting trajectory
distribution is given in Fig. 2 (red). In the same figure,
we illustrated the resulting trajectory distribution by using
the ProMP controller from the learned model-free ProMP.
As we can see, the controller could match the distribution
accurately.

B. Generalization by Conditioning to Different Via-Points

We test the conditioning operations that can be performed
upon the trajectory distribution to generalize to different via-
points. We conditioned the trajectory distribution to reach
the positions 0.5, 0.8 and 1.3 respectively at time point t =
0.75s. The resulting via points are indicated by a red cross
in Fig. 3. For each of the conditioning scenarios, we plot the
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Fig. 8. The torque distribution of all grasping locations used during
the demonstrations. Each location created a distinct offset in the measured
torque. We present the demonstrated torque distributions in blue. Addition-
ally, we show that our approach can reproduce the torque distribution when
we position the grate at the same locations as in the demonstrations. We
present the reproduction results in red.
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Fig. 9. The trajectory distribution of the wrist joint of the robot, when
we disable the torque feedback. Depending on the grasping location, the
robot either fails to lift the grate to the same height as demonstrated, or,
it overshoots the lifting task due to gravity. In the later case, it should be
noted that the center of mass of the grate is moved over the axis of the
joint and, thus, gravity forces the grate to lift. For comparison, we present
the demonstration distribution from all grasping locations in blue.

resulting trajectory distribution when executing the controller
of the conditioned ProMP. The model-free ProMP controller
keeps the shape of the distribution while reaching the desired
via-points.

C. Non-Linear Quad-Link Pendulum

To evaluate the quality of our controller on a non-linear
system, we tested our model-free ProMP approach on a non-
linear quad-link planar pendulum. Each link had a mass of
1kg and a length of 1m. We used the standard rigid body
dynamics equations, where the gravity and the Coriolis forces
are the major non-linear terms. We collected demonstrations
by defining the desired trajectory as a spline with two via-
point at t = 0.3, 0.8 in the task-space of the robot. We gener-
ated the demonstration trajectories using inverse kinematics
for generating the joint space reference trajectories. Then,
we used a inverse dynamics controller to track the reference
trajectories and we collected the joint state-action data. We
trained our approach using N = 30 demonstrations.

The resulting trajectory distribution for the y-dimension
of the task-space is show in Fig. 4. The robot can track with
its end-effector the desired distribution accurately and can
reproduce the two via-points. In Fig. 5 we show all four



the joint trajectories. In the joint space distributions the via-
points are not visible but are captured in the covariance
matrix of the weights. While the distribution is a wide,
the controller could match the mean and variance of the
demonstrated trajectory distribution. In Fig. 6, we illustrated
the resulting trajectory from the controller in the task space
of the robot. The activation of the correcting controller is
around 1% of the total execution time.

D. Adaptation to External Forces on the ICub

In this experiment we used the presented model-free
ProMP approach to learn a one-dimensional torque feedback
controller in the humanoid robot iCub. The task is to tilt a
grate multiple times from an initial distribution to a goal
distribution, as show in Fig. 7. In our experiments we
use the wrist joint. The grate is attached to the robot at
different lengths, to simulate different grasping locations.
We demonstrate 20 movements per grasping location to
train our approach. The data where recorded through tele-
operation. In this experiment the state encodes the joint
angle encoder value and the joint torque reading in the
wrist. We present the recored torques from the sensor of
the robot for all three demonstrated grasping locations in
Fig. 8. By placing the grate on the same location as during
the demonstration and reproducing the movement with our
approach, we show that we observe the same torque profile.
The force measurement is crucial in our experiment as it
is used for applying the correct forces during the execution
of the movement. When disabled, the robot either fails to
lift the grate to the demonstrated location or it overshoots.
The overshooting is due to gravity, as in that grasping
location the center of the mass of the grate is moved over
the axis of wrist rotation. The results are shown in Fig. 9.
The reproduction distributions where created using twenty
executions of the model-free ProMP controller per grasping
location. Our approach can generalize to different grasping
locations between the demonstrations. We generalized into
four new locations and executed our controller. The robot
reproduces the same joint distribution while compensating
for the different dynamics, as shown in Fig.7.

V. CONCLUSION

In this paper, we presented a model-free approach for
Probabilistic Movement Primitives (ProMP) that can be
used for learning skills for physical interaction with the
environment from demonstrations. In contrast to the original
approach, the model-free ProMP approach does not require
a known model of the system dynamics as the stochastic
feedback controller is directly obtained from the estimated
distribution over the trajectories, which includes the control
signals. We showed that the model-free ProMP approach
inherits many beneficial properties from the original ProMPs
such as reproducing the variability in the demonstrations as
well as using probabilistic operations such as conditioning
for generalization to different via points. Our approach is
different from directly encoding the actions, as generates the
action through a model that depends on the state and the time.

Hence, our approach can generalize well in the vicinity of
the demonstrations. Our approach can be used in tasks where
time is critical for the execution of the task, e.g. pushing a
button at a specific movement, or grasping a moving object.

For learning physical interaction tasks, we showed that we
can include sensory signals, for example the measure torques,
in our distribution. By learning the correlations of this
sensory signal, we can coordinate the controls needed for the
physical interaction with the measured torques and forces.
Such coordination is essential for the complex interaction
tasks. In a preliminary study, we showed how the model-free
ProMP approach can be applied to the iCub to apply forces
to objects with unknown masses. In future work, we will
investigate the use of model-free ProMPs for more complex
scenarios.
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Robust Policy Updates for Stochastic Optimal Control

Elmar Rueckert1, Max Mindt1, Jan Peters1,2 and Gerhard Neumann3

Abstract— For controlling high-dimensional robots, most
stochastic optimal control algorithms use approximations of
the system dynamics and of the cost function (e.g., using lin-
earizations and Taylor expansions). These approximations are
typically only locally correct, which might cause instabilities in
the greedy policy updates, lead to oscillations or the algorithms
diverge. To overcome these drawbacks, we add a regularization
term to the cost function that punishes large policy update
steps in the trajectory optimization procedure. We applied
this concept to the Approximate Inference Control method
(AICO), where the resulting algorithm guarantees convergence
for uninformative initial solutions without complex hand-tuning
of learning rates. We evaluated our new algorithm on two
simulated robotic platforms. A robot arm with five joints was
used for reaching multiple targets while keeping the roll angle
constant. On the humanoid robot Nao, we show how complex
skills like reaching and balancing can be inferred from desired
center of gravity or end effector coordinates.

I. INTRODUCTION
Typical whole body motor control tasks of humanoids, like

reaching for objects while walking, avoiding obstacles during
motion, or maintaining balance during movement execution,
can be characterized as optimization problems with multiple
criteria of optimality or objectives. The objectives may be
specified in the robot’s configuration space (e.g., joint angles,
joint velocities and base reference frame), in task space
(where objectives such as desired end effector coordinates or
center of gravity positions are specified), or in combinations
of both. In this paper, we consider control problems in
nonlinear systems with multiple objectives in combinations
of these spaces.

A common strategy to whole body motor control is to
separate the redundant robot’s configuration space into a task
space and an orthogonal null space. Objectives or optimality
criteria of motion are implemented as weights or priorities
[1] to the redundant solutions in the null space. While
these approaches have been successfully applied to a variety
of tasks, including reaching, obstacle avoidance, walking
and maintaining stability [2]–[5], the application of these
methods is typically limited to motor control and can not
be directly used for motor planning. It is also unclear how
these methods can be applied to motor control problems in
nonlinear systems like compliant robots.

Alternatively, in Stochastic Optimal Control (SOC) prob-
lems [6], a movement policy is optimized with respect to a

1Intelligent Autonomous Systems Lab, Technische Universität Darm-
stadt, Hochschulstr. 10, 64289 Darmstadt, Germany {rueckert,
mindt}@ias.tu-darmstadt.de

2Robot Learning Group, Max-Planck Institute for Intelligent Systems,
Tuebingen, Germany mail@jan-peters.net

3Computational Learning for Autonomous Systems, Hochschulstr. 10,
64289 Darmstadt, Germany neumann@ias.tu-darmstadt.de

Fig. 1. A 5-degree-of-freedom robot arm has to reach for a via-point (the
posture on the left in A) and return to its initial pose (the posture on the
right in A). The reaching task is encoded in four task objectives, i.e., three
Cartesian coordinates and the roll angle of the end effector. The inferred
trajectories for the y coordinate and the roll angle, including the objectives,
are shown in (B).

cost function, which combines the different criteria of opti-
mality with different weightings. For nonlinear systems, SOC
methods use approximations of the system dynamics and of
the cost functions, e.g., through linearizations and 2nd order
Taylor expansions. These approximations are only locally
correct and the updates of the policy may become unstable
if the minima is not close to the points of the linearizations,
or may oscillate in the case of multiple solutions.

Many SOC methods address this issue and implement
regularizations on the algorithmic level. E.g., in the iLQG
method [7] a diagonal regularization term is added to the
control cost Hessian1, and in an extension [8], it was sug-
gested to penalize deviations from the state trajectory used
for linearization rather than controls. A drawback of this
approach is that the additive regularization term needs rapid
re-scaling to prevent divergence and accurate fine-tuning of
a learning rate to find good solutions, which is challenging
and increases the computational time of the algorithm.

Probabilistic planning methods that translate the SOC
problem into an inference problem, typically implement
learning rates in their belief updates [9] or in the feed-
back controller [10]. However, in nonlinear systems, both
strategies are suboptimal in the sense that even with a small
learning rate on the beliefs the corresponding control updates
might be large (and vice-versa, respectively).

We propose to regularize the policy updated on the cost
function level for probabilistic planning. We also penalize
large distances between two successive trajectories in the it-
erative trajectory optimization procedure. In [8], the regular-
ization term is only used for the control gains and not for the
updates of the value function. However, the deviation from
the linearization point can still be high if small regularization

1The update step in the trajectory optimizer corresponds to a Gauss-
Newton Hessian approximation [8].



terms are used. In our approach, we always want to stay
close to the linearization point as the used approximations
are only locally correct. Hence, using too large update steps
by greedily exploiting the inaccurate models might again
be dangerous, leading the instabilities or oscillations. The
scaling parameter of our punishment term serves as step size
of the policy update. Due to the use of probabilistic planning,
the need of an additional learning rate and complex update
strategies of this learning rate can be avoided. Moreover,
we will demonstrate that this type of regularization results
in more robust policy updates in comparison to [8]. We
choose the Approximate Inference Control (AICO) algorithm
as probabilistic planning method [9] to discuss and analyze
the proposed regularization, however, the same “trick” can
be applied to large variety of SOC methods.

In the rest of this paper, we introduce the probabilistic
planning method AICO, analyze its convergence properties
in a reaching task in a light-weight robot arm and introduce
the proposed regularization on the cost function level. The
resulting algorithm is evaluated on the humanoid robot Nao,
where in first results, arm reaching and balancing skill
are inferred from desired center of gravity or end effector
coordinates. We conclude in Section IV.

II. METHODS

We consider finite horizon Markov decision problems2.
Let qt ∈ Q denote the current robot’s state in configuration
space (e.g., a concatenation of joint angles, joint velocities
and reference coordinates in floating base systems) and let
vector xt ∈ X denote task space features like end effector
positions or the center of gravity of a humanoid (these
features will be used to specify a cost function later). At
time t, the robot executes the action ut ∈ U according to
the movement policy π(ut|qt).

The chosen action at the current state is evaluated by
the cost function Ct(qt,ut) ∈ R1 and results in a state
transition characterized by the probability P (qt+1|qt,ut).
In Stochastic Optimal Control (SOC), the goal is to find a
stochastic policy π∗ that minimizes the expected cost

π∗ = argmin
π
〈CT (qT ) +

T−1∑

t=0

Ct(qt,ut) 〉qπ , (1)

where the expectation, denoted by the symbols 〈·〉, is taken
with respect to the trajectory distribution

qπ(q0:T ,u0:T−1) = P (q0)
T−1∏

t=0

π(ut|qt)P (qt+1|qt,ut) ,

where P (q0) is the initial state distribution.

A. Bayesian inference for control

An interesting class of algorithms to SOC problems have
been derived by reformulating the original Bellman formu-
lation in (1) as an Bayesian inference problem [14]–[17].

2Note that the same principle of regulating the update steps in trajectory
optimization can also be applied to planning algorithms in infinite horizon
problems such as [11], [12]

Fig. 2. Comparison of the convergence properties of iLQG, AICO and
our robust variant, where the rate of convergence is controlled via the
parameter α. In the top row (A-B), the model of the forward dynamics
was approximated by a pseudo dynamics model [13]. In the bottom row,
an analytic forward dynamics model of a 5-degree-of-freedom robot arm
was used. The panels in the first column denote the costs of the planning
algorithms applied to a simple task, where the robot arm has to reach for
an end effector target and return to the initial state. In the second column
(B,D), the robot has to keep additionally the roll angle constant (at π/2).
Shown are the mean and the standard deviations for 10 initial states ‘q0
sampled from a Gaussian with zero mean and a standard deviation of 0.05.

Instead of minimizing costs, the idea is to maximize the
probability of receiving a reward event (rt = 1) at every
time step

p(rt = 1|qt,ut) ∝ exp{−Ct(qt,ut)} . (2)

Note that the idea of turning the cost function in Eq. (1) into
a reward signal was also used in operational space control
approaches [18], [19].

In the probabilistic framework, we want to compute the
posterior over state and control sequences, conditioning on
observing a reward at every time step,

pπ(q0:T ,u0:T−1|r0:T = 1) = exp{−CT (qT )}

qπ(q0:T ,u0:T−1)

T−1∏

t=1

p(rt = 1|qt,ut) .

For efficient implementations of this inference problem, a
number of algorithms have been proposed that apply iterative
policy updates assuming that all probability distributions can
be modeled by an instance of the family of exponential
distributions [9], [20], [21]. We will restrict our discussion on
the Approximate Inference Control (AICO) algorithm with
Gaussians [9].

B. Approximate inference control with Gaussians (AICO)

We consider system dynamics of the form
qt+1 = f(qt,ut) + ε with ε denoting zero mean Gaussian
noise. In AICO (with Gaussians), the system dynamics
are linearized through 1st order Taylor expansions, i.e.,



P (qt+1|qt,ut) = N (qt+1|Atqt + at + Btut, Qt), where
the state transition matrix At, the linear drift term at and
the control matrix Bt are often computed with derivatives
simulated through finite differences methods. The numerical
stability of AICO also depends on the accuracy of the
linearized model, we will therefore additionally compare to
an approximation of the system dynamics, where controls
ut correspond directly to joint accelerations3. We will refer
to this approximation as pseudo-dynamic model.

We propose to add a regularization term to the cost func-
tion. Before explaining the regularization term in more detail,
we briefly discuss how different objectives are implemented
in AICO. In the simplest case, the task-likelihood function
in (2) can be split into separate state and a control dependent
terms, i.e.,

p(rt = 1|qt,ut) = N [qt|rt, Rt]N [ut|ht, Ht] , (3)

where, for analytical reasons, the Gaus-
sians are given in canonical form, i.e.,
N [ut|ht, Ht] ∝ exp(−1/2uTt Htut + u

T
t ht). Note that the

vector rt in (3) denotes the linear term for the Gaussian
distribution and must not be confused with the auxiliary
variable rt = 1 in (2) denoting a reward event. By inserting
(3) in (2) we obtain the quadratic costs,

Ct(qt,ut) = q
T
t Rtqt − 2rTt qt + u

T
t Hut − 2hTt ut . (4)

The state dependent costs, encoded by N [qt|rt, Rt], can be
defined in configuration space4, in task space5, or even in
combinations of both spaces [16].

On the algorithmic level, AICO combines forward mes-
sages and backward messages to compute the belief over
trajectories. We represent these Gaussian forward message
by N [qt|st, St], the backward message by N [qt|vt, Vt], and
the belief by N [qt|bt, Bt]. The recursive update equations
are given in [9] and in [10] where an implementation which
additionally implements control constraints (otherwise ht =
0) is given.

We can also compute the most likely action given the task
constraints. By doing so, in the case of AICO with Gaussians,
we obtain a time varying linear feedback controller

u
[n]
t = ot +Otqt , (5)

where ot is an open loop gain and Ot denotes the feedback
gain matrix (n denotes the iteration).

3For a single joint with q = [q, q̇]T , the matrix A =
(
1 τ
0 1

)
, a =

(
0
0

)
,

and B =
(
τ2

τ

)
, where τ denotes the time step.

4Reaching a goal state g∗ ∈ Q in configuration space can be encoded
by rt = Rtg∗ where the precision matrix Rt scales the importance of
different dimensions.

5Let x∗ ∈ X denote a desired end effector position and let x = f(q) be
the forward kinematics mapping and J(qt) = ∂f/∂q|q = qt its Jacobian.
We can now obtain a Gaussian task likelihood by approximating the forward
kinematics by its linearization through the Jacobian, i.e., x ≈ f(q0)+J(q−
q0). The parameters of the Gaussian are then given by rt = JTC

(
f(q0)−

x∗) and Rt = JTCJ , where the diagonal elements of the matrix C specify
the desired precision in task space.

Algorithm 1: Approximate Inference Control with Reg-
ularized Update Steps

1 Input: initial state q0, parameter α[0], threshold θ
2 Output: feedback control law o0:T−1 and O0:T−1

3 initialize q[0]1:T = q0, S0 = 1e10 · I, s0 = S0q0, n = 1
4 while not converged do

5 q
[n−1]
0:T = q

[n]
0:T

6 for t← 1 to T do
7 linearize model: At,at, Bt
8 compute: Ht,ht, Rt, rt
9 update: st, St, vt, Vt, bt, and Bt

10 if ‖bt − q[n]t ‖ > θ then
11 repeat this time step
12 t← t− 1

13 q
[n]
t = B−1

t bt

14 for t← T − 1 to 0 do
15 ..same updates as above...

16 for t← 0 to T − 1 do
17 compute feedback controller: ot, Ot
18 u

[n]
t = ot +Otqt

19 q
[n]
t+1 = Atq

[n]
t + at +Btu

[n]
t

20 n = n+ 1
21 α[n] = α[n−1]γ

22 return o0:T−1 and O0:T−1

C. Evaluation of the convergence properties of AICO

To investigate the convergence properties of AICO, we
use a simulated light-weight robot arm [22] with five joints.
The robot has to reach a desired end effector position in
Cartesian space and subsequently has to return to its initial
pose. To increase the complexity, we define a second task,
where the robot should additionally keep the roll angle of the
end effector constant. For this task, we used the cost function

Ct(qt,ut) =

{
104(xi − xt)T (xi − xt) if t = T i

10−2uTu else
, (6)

where xi denotes the desired robot postures in task space
at times T 1 = 500 and T 2 = 103 (the planning
horizon is 2 seconds with a time step of 2ms) with
x1 = [1,−0.4, 0, 0, π/2, 0]T and x2 = [1, 0, 0, 0, π/2, 0]T .
Note that we do not assume any initial solution to initialize
the planner, solely the initial posture of the robot in con-
figuration space is used as initial ‘trajectory’. An example
movement is shown in Figure 1.

Using the pseudo-dynamics approximation of the system
dynamics, the convergence rate of the costs per iteration
of both tasks are shown in Figure 2A,B. For the simple
task in Figure 2A the inferred cost values converge fast for
all algorithms, with the standard AICO algorithm showing



Fig. 3. Reaching task with the humanoid robot Nao. The robot has to reach a desired end effector position with the right arm while maintaining balance.
Eight snapshots of the inferred movement are shown in (A). In (B), the convergence of the costs of the optimization procedure is shown, where we compare
iLQG, the standard implementation of AICO and the regularized variant. The mean and the standard deviations for 10 initial states ‘q0 are sampled from
a Gaussian with zero mean and a standard deviation of 0.05. The movement objectives for the right arm are shown in the left panel in (C). To counter
balance, the robot moves its left hand and the head.

the best performance. However, the fast convergence also
comes with the costs of a reduced robustness of the policy
update as can be seen from the results in the second
scenario illustrated in Figure 2B, where AICO is unstable
and cannot infer solutions with low costs. When we used the
analytic forward dynamic model (where the linearizations are
computed through finite differences) instead of the pseudo
dynamics model, computing the messages in AICO became
numerically unstable and no solutions could be inferred.
Therefore, the panels in Figure 2C,D do not include results
of AICO. We also evaluated the iLQG method [7] that
implements an adaptive regularization schedule and line
search to prevent divergence [8]. While the iLQG algorithm
performed well for the pseudo dynamics model, the learning
rate was automatically decreased to almost zero for the
analytical dynamics model. Our regularization method for
AICO, that we will present in the next section, considerably
outperformed both competing methods.

D. Regulating the policy updates in AICO

To regularize the policy update steps in (1), we add an
additional cost term to the task-likelihood function, i.e.,

p(rt = 1|q[n]t ,u
[n]
t ) ∝ exp{−Ct(q[n]t ,u

[n]
t )

− α[n](q
[n]
t − q[n−1]

t )T (q
[n]
t − q[n−1]

t )} ,

which punishes the distance of the state trajectories of
two successive iterations of the algorithm (n denotes the
iteration). The parameter α controls the size of the update
step. For large α, the trajectory update will be conservative
as the algorithm will stay close to the previous trajectory
that has been used for linearization. For small α values, the
new trajectory will directly jump to the LQG solution given
the linearized dynamics and the approximated costs. Hence,

α is inverse proportional to the step size. The value of α
is updated after each iteration according to α[n] = α[n−1]γ.
For α[0] ≥ 1 and γ > 1, convergence is guaranteed as the
regularization term will dominate with an increasing number
of iterations.

The algorithms is listed in Algorithm 1. An interesting
feature of this algorithm is that no learning rate is needed as
α is used directly to implement a step size. In the original
formulation of AICO the learning rate is either applied to
the state update (in Line 13 in Algorithm 1) [9] or to
the feedback controller (in Line 18 in Algorithm 1) [10].
However, neither implementation can guarantee convergence
in nonlinear systems or in tasks with costs inducing a
nonlinear mapping from Q to X.

We evaluate the resulting algorithm on the same robot arm
reaching tasks. For both tasks, the Cartesian planning task
in Figure 2A,C and the extension with the additional roll
angle objective in Figure 2B,D, we evaluated AICO with the
regularization parameter α ∈ {1, 10} (we did not increase
α and γ = 1). For both models of the system dynamics,
the pseudo-dynamics approximation (shown in Figure 2A,B)
and the analytic model (illustrated in Figure 2C,D), AICO
benefits from the regularization term and the costs decay
exponentially fast. Interestingly, without “good” initial solu-
tions, the differential dynamic programming method iLQG
[8] that implements a sophisticated regularization scheme
cannot generate movement policies with low costs when
using the analytic model. This is shown in Figure 2C,D.

III. RESULTS

We evaluated the proposed planning method in simula-
tion with the humanoid robot Nao. The Nao robot has 25
degrees-of-freedom. In first experiments, we investigated the
performance of the planner with a pseudo-dynamics model



Fig. 4. Balancing task in the humanoid robot Nao. The robot should swing its hips, which is encoded by adding an offset scalar to the x-coordinate of
the center of gravity vector. In (A) 10 snapshots of the resulting movement for an increasing planning horizon are shown for α = 1. The convergence
properties of iLQG, the standard AICO and its regularized variants are shown in (B). The mean and the standard deviations for 10 initial states ‘q0 are
sampled from a Gaussian with zero mean and a standard deviation of 0.05. In (C) the x-coordinate of the center of gravity of the Nao is illustrated. The
large dots denote the objectives.

of the robot.
The humanoid had to reach for an end effector target

using the right arm while maintaining balance. In a second
experiment, Nao had to shift the x-coordinate of the center
of gravity while maintaining balance.

A. Arm reaching with a humanoid robot

The humanoid has to reach for the end effector target
x∗ = [0, 0.2, 0.06]T , where only the y- and the z- Carte-
sian coordinates are relevant. Additionally, the robot has to
maintain balance, which is implemented as deviation of the
center of gravity vectors from its initial values xCoG(t = 0),
i.e., we specify the desired center of gravity as x∗

CoG =
xCoG(t = 0). The same cost function as in the experiments
for the light weight robot arm in (6) is used. For this task,
however, only a single via-point is defined that is used for
the desired end effector target and the center of gravity, i.e.,
x1 = [x∗T ,x∗

CoG
T ]T .

Only by specifying two scalars in x∗ (the scaling pa-
rameters in (6) are constants that take the values 104 or
10−2), the planning algorithm infers 50-dimensional state
trajectories (the state qt at time t encodes the joint angles
and the joint velocities, ignoring the base frame). This is
shown in Figure 3A for the proposed planning algorithm
with the regularization parameter α = 1. As in the robot
arm experiments, the Approximate Inference Control (AICO)
algorithm benefits from the regularization. As can be seen in
Figure 3B, AICO cannot infer movement solutions with low
costs without regularization.

Interestingly, to maintain balance, the humanoid utilizes its
head and its left arm for which no objectives were explicitly
specified. This effect is a feature of model-based planning
methods that consider the coupled dynamics and is best

illustrated in Figure 3C, where the end effector trajectories
of both arms and the desired target values are shown.

B. Balancing with a humanoid

In this task the humanoid has to balance on one foot by
moving its center of gravity. In this experiment, we specify
three desired via-points for the center of gravity, i.e., xi =
xiCoG with i = 1, ..., 3. The last via-point is set to the initial
center of gravity xCoG(t = 0). The first via-point has an
offset of 0.1m in the x-coordinate of xCoG(t = 0) to force
the robot to move its center of gravity to the right. The second
via point has the same negative offset in the x-direction to
exhibit a movement to the left. The planning horizon was
three seconds (T 1 = 100,T 2 = 200 and T 3 = 300 with
τ = 10ms) and the distance matrix C in (6) was scaled
with the importance weights [106, 10, 10]T for the x,y, and
z coordinate of xiCoG.

For α = 1, the resulting movement is illustrated in Figure
4A. Illustrated are 10 snapshots. Nao first moves its hip to
the right (with respect to the robot frame) and thereafter to
the left. This movement is the result of an inference problem
encoded in mainly two scalars, i.e., the offsets.

The standard implementation of AICO was not able to
infer successful balancing solutions, which is illustrated
in Figure 4B. In contrast, the regularized variant using
α ∈ {1, 10} converged after 25 iterations of the trajectory
optimization procedure. For α = 1, the x-coordinate of the
center of gravity and the implemented objectives are shown
in 4C.

C. Computational time

The computational time of the proposed planning algo-
rithm is the same as for the standard implementation of



AICO. If the algorithm is implemented in C-code it achieves
real time performance in humanoid planning problems [9].
However, for our experiments we used a Matlab implemen-
tation on a standard computer (2.4GHz, 8GB RAM), where,
e.g., the computation of the balancing movements in Figure
4 took less then 50 seconds (which includes all 25 iterations
of the optimization process). The movement duration of the
executed trajectory was three seconds.

IV. CONCLUSIONS

Stochastic Optimal Control (SOC) methods are powerful
planning methods to infer high-dimensional state and con-
trol sequences [7]–[9], [20]. For real time applications in
humanoids, efficient model predictive control variants have
been proposed [8]. However, the quality of the generated
solutions heavily depends on the initial movement policy
and on the accuracy of the approximations of the system
dynamics. Most methods use regularization to prevent nu-
merical instabilities, but typically greedily exploit the ap-
proximated system dynamics model. The resulting trajectory
update might be far from the previous trajectory used for
linearization.

As the linearizations are only locally valid, we explicitly
avoid large jumps in the trajectories by punishing large
deviations from the previous trajectory. We demonstrated in
this paper that SOC methods can greatly benefit from such
a regularization term. We used such regularization term for
the Approximate Inference Control (AICO) algorithm [9].
Due to the regularization term, which implicitly specifies the
step size of the trajectory update, no learning rate as in the
standard formulation of AICO is needed. Our experiment
shows that the used regularization term considerably outper-
forms existing SOC methods that are based on linearization,
in particular if highly non-linear system dynamics are used.

An interesting open question is if the proposed regulariza-
tion parameter facilitates a combination of SOC and model
learning approaches. Typically, inaccurate model predictions
have catastrophic effects on the numerical stability of SOC
methods. In particular, if the model predictions are poor,
the SOC method should not further explore but collect
more data around the current trajectory. Such idea could be
implemented by modeling the regularization parameter as a
function of the model uncertainty.
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ABSTRACT

A recurrent spiking neural network is proposed that implements planning as probabilistic inference for finite and infinite horizon
tasks. The architecture splits this problem into two parts: The stochastic transient firing of the network embodies the dynamics
of the planning task. With appropriate injected input this dynamics is shaped to generate high-reward state trajectories. A
general class of reward-modulated plasticity rules for these afferent synapses is presented. The updates optimize the likelihood
of getting a reward through a variant of an Expectation Maximization algorithm and learning is guaranteed to convergence to a
local maximum. We find that the network dynamics are qualitatively similar to transient firing patterns during planning and
foraging in the hippocampus of awake behaving rats. The model extends classical attractor models and provides a testable
prediction on identifying modulating contextual information. In a real robot arm reaching and obstacle avoidance task the ability
to represent multiple task solutions is investigated. The neural planning method with its local update rules provides the basis for
future neuromorphic hardware implementations with promising potentials like large data processing abilities and early initiation
of strategies to avoid dangerous situations in robot co-worker scenarios.

Introduction

Probabilistic inference has emerged as a promising framework for solving Markov decision problems (probabilistic planning).1, 2

In parallel to this development, the probabilistic inference perspective has also been successfully used in cognitive science and

neuroscience for modeling how biological organisms solve planning problems.3–6 However, it was not clear how probabilistic

planning can be implemented in neural substrates with biologically realistic learning rules. Here, we show that probabilistic

planning can be implemented and learned by recurrent networks of spiking neurons such that the generated spike sequences

realize mental plans.

Recently, it was shown that recurrent spiking networks can implement Bayesian filtering and are able to learn a generative

model of temporal sequences from presented examples drawn from a target distribution (i.e., the distribution that has generated

the samples).?, 7, 8 Training was realized through synaptic plasticity rules without supervision. After learning, when running

freely, the neural networks effectively perform forward sampling in the dynamic Bayesian network representing the target

distribution. For solving a planning problem, however, it is necessary to sample from the posterior distribution conditioned on

receiving a reward. In other words, forward sampling needs to integrate future rewards propagating backward in time in the

dynamic Bayesian network.

We consider a recurrent network of stochastic spiking neurons, which without any input, samples sequences through forward

sampling from the corresponding dynamic Bayesian network. We show that by injecting appropriate input in the network

from a layer of task-related context neurons, it can generate samples from the posterior distribution conditioned on getting a

reward. Optimal reward-modulated Hebbian learning rules are derived that implement planning as probabilistic inference in



the spiking network through iterative local updates. The recurrent dynamics of the neural network can be reused for solving

different planning problems through activating different sets of context neurons which encode different goals and constraints

(e.g., reaching for different goals or avoiding obstacles).

The presented theory is compatible with recent results on transient firing observed in behaving animals in phases of rest.9–12

In particular, the model reproduces characteristic spatiotemporal spiking activity that preplays movement paths to remembered

home locations9 and provides an alternative to attractor networks,13 which are typically used to explain movement planning in

maze navigation tasks.14–17 In attractor networks only the end point can be adapted. For non-straight line paths, for example

to escape a labyrinth, complex attractor sequence models were proposed.18 The presented neural model allows to learn such

non-straight line paths from single scalar rewards that encode in addition to desired goals and obstacles knowledge about

rewarding routes. The ability to modulate the shape of a movement path is a testable prediction for future neuroscience studies.

Another contribution of the presented theory is that it provides the basis for neuromorphic hardware implementations of

control and planning strategies in mobile robots. Similar architectures building also on winner-take-all circuits and spike-timing

dependent plasticity (STDP) rules were already proposed as computational models for such brain-like chips.?, ?, ? For planning,

neuromorphic hardware implementations promise to process large input streams from visual and tactile sensors through parallel

computing,? go round strategies may be initiate in real-time to avoid dangerous situations in robot co-worker scenarios and

event based neural network implementations are energy efficient alternatives to classical von Neumann architectures.? In first

experiments, we demonstrate that spiking neural networks can be trained to simultaneously represent multiple obstacle avoiding

strategies in a real robot arm reaching task.

Methods

We first formulate finite horizon probabilistic planning tasks with terminal rewards only. Later we will generalize to infinite

horizons where rewards can be received at any point in time. Let xxxt ∈Rd denote the d dimensional continuous state of a

behaving agent at time t. The goal of the agent is to find the sequence of states xxx = (xxx1. . .xxxT ) that maximizes the total received

reward (i.e., the return) r̂ at the end of the trial.

Such planning tasks can be modeled as inference problems1, 2 where the joint distribution over state sequences and returns is

given by p (xxx,r) = p (xxx0) p (r | xxx)∏T
t=1 T (xxxt | xxxt−1). The distribution p (xxx0) encodes an initial prior over states, T corresponds

to the state transition model, and the distribution p (r | xxx) determines the probability of receiving the return r given the trajectory

of states xxx. As in related work1, 2, 19 we assume that p (r | xxx) can be factorized as p (r | xxx) = 1/Zr ∏T
t=1 ψt(r|xxxt). In this

formulation, r denotes a binary random variable, where without loss of generality, the probability of observing such a binary

return event is a modulo rescaling of the original reward maximization problem.1

An agent can use such an internal model of the environment to plan a sequence of movements by solving the inference
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problem

p (xxx | r = 1) =
1
Z

p (r | xxx) p (xxx0)
T

∏
t=1

T (xxxt | xxxt−1) , (1)

where Z = ∑xxx p (xxx,r) is a term that guarantees that equation (1) is normalized. In our formulation of the planning problem,

the actions in the probabilistic model are integrated out. It is assumed that the actions can be subsequently inferred from the

posterior over state sequences.

The unconstrained process for planning models a freely moving agent by

p (xxx) = p (xxx0)
T

∏
t=1

T (xxxt | xxxt−1) . (2)

Sampling from this probability distribution can be implemented by a recurrent network of spiking neurons (e.g., using ideas

from?, 7, 8). However, it is not straightforward for a recurrent network to solve the inference problem in equation (1), which

requires to integrate future returns backward in time. Only local temporal information is available when sampling from the

network. Such temporal models are different to model-based Markov decision process methods encoding global value or Q

functions.20

We propose here a solution to this problem that relies on replacing p (xxx) with a model distribution q(ννν ; θθθ), where sampling

from q(ννν ; θθθ) is implemented with an extended neural network architecture and ννν is the neural approximation of xxx. The

parameters θθθ are learned such that the Kullback-Leibler divergence between the true posterior for planning in equation (1) and

a model distribution q(ννν ; θθθ) converges to zero.

Planning with recurrent neural networks

We propose a recurrent spiking neural network to implement planning. Our network consists of two populations of neurons,

which we denote by Y and V (see Fig. 1A). V is a layer of K state neurons that control the state (e.g., the agent’s spatial location)

of a freely moving agent. These neurons receive lateral connections from neighboring state neurons and from all N neurons in a

population of context neurons Y with weights wki and θk j. The context neurons produce spatiotemporal spike patterns that

represent high-level goals and context information (e.g., the target state that should be reached after T time steps). We show

that probabilistic planning problems defined in equation (1) can be implemented in the network by training the synapses θk j.

We denote the activity of the state neurons at time t by ννν t = (νt,1, . . . ,νt,K), where νt,k = 1 if neuron k spiked at time t and

νt,k = 0 else. Discrete random variables xxxt can be encoded as a multinomial distribution, where one neuron maps to one state

instance. For continuous variables a simple encoding scheme is used, i.e., xxxt = 1/ |ννν t | ∑K
k=1
(
νt,k pppk

)
, where |ννν t |= ∑K

k=1 νt,k

and pppk is the preferred position of state neuron k.

Analogously, we define the spiking activity of the context neurons at time t by a binary vector yyyt = (yt,1, . . . ,yt,N). Using
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these definitions of ννν t and yyyt , we define the membrane potential ut,k and firing probability ρt,k of state neuron k at time t by

ut,k =
K

∑
i=1

wki νt−1,i +
N

∑
j=1

θk j yt−1, j and ρt,k = p
(
νt,k = 1

)
= f (ut,k) . (3)

The last term f (ut,k) denotes the activation function, where we only require that it is differentiable. The probability that the

network generates a spike sequences ννν = (ννν1, . . . ,νννT ) of length T starting from a given initial state ννν0 is thus

q(ννν ; θθθ) = p(ννν0)
T

∏
t=1

K

∏
k=1

ρt,k
νt,k (1−ρt,k)

1−νt,k . (4)

We assume that the transition model (encoded in the synaptic weights wki) is known or was acquired in a pre-learning phase,

e.g., using contrastive divergence learning.21 Using this assumption, we define the goal of probabilistic planning as minimizing

the Kullback-Leibler divergence between the true posterior for planning in equation (1) and the model distribution

DKL(p(ννν |r = 1) ||q(ννν ; θθθ)) = ∑ννν p(ννν |r = 1) log
p(ννν |r = 1)
q(ννν ; θθθ)

=−Hp(ννν |r=1)−〈 logq(ννν ; θθθ)〉p(ννν |r=1) , (5)

where Hp(ννν |r=1) denotes the entropy of the true data distribution. Thus, solving the inference problem in equation (1) is equal to

minimizing the Kullback-Leibler divergence in equation (5).

Typically, p(ννν |r = 1) is unknown and we cannot draw samples from it. However, we can draw samples from the model

distribution q(ννν ; θθθ) and update the parameters such that the probability of receiving a reward event is maximized

∆θk j = η
〈

r
∂

∂θk j
logq(ννν ; θθθ)

〉

p(r | ννν)q(ννν ;θθθ)
, (6)

where η denotes a small learning rate. Note that this general update rule is the result of a standard maximum likelihood

formulation where we exploited that p(ννν |r = 1) ∝ p (r | ννν) p (ννν) using equation (1) and equation (2). The update is an

instance of the Expectation-Maximization (EM) algorithm,22 where evaluating the expectation with respect to p (r | ννν) q(ννν ; θθθ)

corresponds to the E-step and the parameter update realizes the M-step. The update is also related to policy gradient methods?, ?, ?

with the difference that we interpret the parameters θθθ as having the role of linear controls.23

To derive the update rule for the proposed neural network architecture, the network dynamics in equation (4) is used in

equation (6). For a detailed derivation we refer to the supplement. The spiking network update rule reads

∆θk j = η

〈
r

T

∑
t=1

(
νt,k−ρt,k

) ∂
∂θk j

logit(ρt,k)

〉

p(r | ννν)q(ννν ;θθθ)

, (7)

where logit(ρt,k) = log
(
ρt,k/(1−ρt,k)

)
are the log-odds of neuron k firing at time t. Equation (7) is the general learning rule for

arbitrary differentiable activation functions f (ut,k) = ρt,k. It adapts the weights θk j to maximize the return. For many relevant

activation functions (e.g., exponential or sigmoid functions), equation (7) turns into a simple reward-modulated Hebbian-type
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Figure 1. Illustration of the model for finite horizon planning. A: The neural network architecture considered here for solving
the probabilistic planning problem. A recurrent layer of state neurons (green) that control the behavior of the agent receive
feedforward input from context neurons (blue), the activity of which determine the desired goal. B,C: A simple planning
problem that requires to pass through a passage at two specific points in time. Superposition of network activity averaged over
100 trial runs (B) and decoded network states (C) are shown. Blue dots in (B) show 1 example spike train. D: The accumulated
number of rewards for the spiking network. E: The Kullback-Leibler divergence between the learned distribution and the true
posterior. (C) and (D) show averages over 100 trial runs.

update rule.

We will compare online and offline updates of equation (7). In its stochastic online variant, the E-step is approximated

by sampling a finite set of L samples to estimate the expectation,24 or in the simplest case after a single sample (L = 1) as

done in our experiments. We refer to this as the online approximation of equation (7). With offline updates, implemented as

batch learning, the KL divergence DKL(p(ννν |r = 1)||q(ννν ; θθθ)) between the true posterior for planning in equation (1) and the

model distribution converges to zero for L→ ∞ (assuming an exact encoding of the state and the transition model). This KL

divergence establishes the relation between the inference problem for planning in equation (1) and the introduced problem of

finding the network parameters that maximize the expected return.

A finite horizon planning task

To evaluate the spiking neural network model we consider a simple one dimensional planning problem, where the agent moves

on a linear track and the activity of the state neurons population V directly determines its position. K = 9 state neurons encode

nine discrete locations. A final reward is only received if the agent passes through two obstacles, one at time T/2 and one at

time T (see Fig. 1C). Furthermore the agent is constrained not to jump to distant states within one time step. We model this

constraint by the state transition model, i.e., T (ννν t = k | ννν t−1 = i) = 1/3, if k−1 ≤ i ≤ k+1 and (close to) zero otherwise

(see the supplement for further details).

Due to the limitation on the state transitions, this problem requires planning ahead in order to avoid the obstacles successfully,

i.e., to start moving to the passage before the obstacle actually appears. We show that the optimal planning policy can be learned

using the reward modulated update rule in equation (7) in a network where the state neurons follow (soft) winner-take-all

(WTA) dynamics. The probability ρt,k of neuron k to spike at time t is given by ρt,k = exp
(
ut,k
)
/ ∑K

l=1 exp
(
ut,l
)
. Thus, in each
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time step exactly one state neuron is active and encodes the current position of the agent.

The precise timing required to solve this task can be learned if the context neurons provide sufficient temporal structure.

We study here the case of only one context neuron being active for one time-step, i.e., yt, j = 1 for j = t and yt, j = 0 else. The

weights θk j were adapted according to the online approximation of equation (7). Prior to learning, the agent performs a random

walk according to the state transition model encoded in the weights wki, performing successful trials only occasionally. As

learning proceeds, the activity of the context neurons shapes the behavior of the agent leading to nearly optimal performance.

Figure 1D shows the accumulated reward throughout learning. After 5000 training iterations, the network generates rewarded

trajectories in 97.80± 4.64% of the trials. We also evaluated a more detailed spiking version of the network model which

produced similar results (success rate: 87.40±15.08%, see Fig. 1B,C in the supplement).

In addition to the online learning rule, we also evaluated the offline update rule. The network draws samples from a fixed

distribution q(ννν ;θθθ 0 = 0) simulating random walks without any input (the initial state distribution p(ννν0) was uniform). Offline

updates are applied to the parameters θθθ and Kullback-Leibler divergence converges towards zero with an increasing number of

updates as shown in Fig. 1E.

Extension to the infinite horizon problem

Previously, we demonstrated how our network can model finite horizon planning tasks with terminal rewards (i.e., returns).

Here we generalize to infinite horizon planning problems where rewards can be received at any point in time. The goal of the

planning problem is to optimize the parameters θθθ in the neural network so that it generates infinite trajectories that maximize

the expected total discounted reward 〈∑∞
t=0 γ t r̂t〉, where γ is the discount factor. We can reformulate this planning problem as

probabilistic inference in an infinite mixture of Markov chains of finite lengths T .1 The corresponding mixture distribution of

trajectories is given by

q(r,ννν ; θθθ) =
∞

∑
T=1

p(T )q(νννT ; θθθ) p(r|νννT ) (8)

where p(T ) = (1− γ)γT is the prior distribution over trajectory lengths, and q(νννT ; θθθ) is the distribution over spike trains of

length T according to the network dynamics in equation (4). The probability of getting a reward r at the end of the trajectory is

given by p(r = 1|νννT ). Intuitively, in infinite horizon planning tasks the agent seeks a solution that balances getting to the goal

as fast as possible (imposed by the prior) against the cost of large state jumps (imposed by the state transition model).

For the infinite horizon model we consider network dynamics where each state neuron has a sigmoid activation function,

i.e., ρt,k = σ(ut,k) with σ(u) = 1/(1+ e−u). Using this activation function we find that for learning the infinite planning task

the parameters θk j should undergo a change in each time step t where the reward is present, according to

∆θt,k j = η r̂t

t

∑
τ=1

∞

∑
T=t−τ

p(T )yτ, j
(
ντ,k−ρτ,k

)
= η r̂t

t

∑
τ=1

γ t−τ yτ, j
(
ντ,k−ρτ,k

)
. (9)
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Figure 2. Illustration of the model for infinite horizon planning. A: The agent has to move from the red cross the black cross.
The radii of the dots are proportional to the log of the θθθ parameters. The results for the offline and the online learning rules are
shown in the two rows, respectively. B: Illustration of 12 sampled trajectories after 10000 trials of offline learning. C: The
mean of the received rewards over 20 experiments. We compare to Monte-Carlo policy evaluation (MC).

This synaptic weight update can be realized using an eligibility trace? et,k j associated to each synapse with dynamics

et,k j = γ et−1,k j + yt, j
(
νt,k j−ρt,k j

)
and θt,k j = θt−1,k j + η rt et,k j . (10)

The eligibility trace is updated in each time step, whereas the weight updates are only applied for r̂t > 0. More details on the

learning rule can be found in the supplement.

Note that the precise timing of attracting or repelling states cannot be modeled through explicit context neurons per time

step as in the finite horizon model (since t→ ∞). Therefore, we consider stationary activity patterns of context neurons. This

assumption implies that after convergence of the parameter updates an attractor cannot be visited twice.

An infinite horizon planning task

To test the infinite horizon model we consider a planning task, where the goal of the agent is to navigate from a given initial

state to a target state in a grid maze with obstacles (dimensions [15×20]). The network has 300 state neurons, one for each

grid cell. The agent can perform only one-step moves, to the left, to the right, up or down, with equally probable transitions in

each direction, and receives a reward r̂t = 1 only at the target state. The sampling process is either terminated if the target state
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is reached, or if the time step exceeds the maximum number of allowed steps (T = 300). The discount factor was γ = 0.98.

With the offline learning rule the learned parameters θθθ setup a gradient towards the target state, which covers multiple

solution trajectories that lead to high total received rewards (θθθ 0 is chosen such that the agent starts at the initial state). This

gradient is indicated by the radii of the dots in the first row in Fig. 2A. Figure 2B illustrates 12 example trajectories with weights

obtained after 10000 trials of learning. Out of the shown 12 trajectories 9 reached the target state that is denoted by the black

horizontal lines.

With the online learning rule, the learned parameters θθθ specialize on one locally optimal path through the maze, which is

illustrated in the second row of Fig. 2A. In the evaluated example, there are two locally optimal trajectories that are also the

global optima. They are shown in the inset in Fig. 2C. For both, the offline and the online updates the average received reward

converges to the maximum value (see Fig. 2C), where we compare to Monte-Carlo policy evaluation (MC).20

Results

A computational model for hippocampal sweeps

We show that the neural network reproduces the transient firing recorded in place cells in rats during planning phases. We

compare our model predictions to recent results in,9 where the authors analyzed the neural activity of 250 simultaneously

recorded hippocampal neurons during phases of mental planning (using a 40-tetrode microdrive). In the experiments the

animals received a reward, in an alternating manner, either at a known home location or at some (unknown) random location

(one out of 36 locations arranged in a grid in a 2 × 2m maze). Here, we model only events that were observed while the animal

was resting at some known current location and plans a route to the memorized home location (mental planning). An example

event of a rat is illustrated in Fig. 3C, which illustrates the transient in the reconstructed position posterior probabilities. The

resulting movement plan, i.e., the decoded and summed place cells’ activity across time is shown in the lower panel in Fig. 3C.

In our network, the current location and the target location of the rat are modeled by N = 20 context neurons. The activity

of which is denoted by y(t) and shown in Fig. 3A. The first ten context neurons encode the current location through a transient

pattern. The remaining ten context neurons represent the desired target location. These neurons fire with a stationary Poisson

process throughout the experiment. In this experiment we did not learn the weights of the context neurons. The weights were

set proportional to the Euclidean distance of the preferred position of place cells to the initial state or the home location.

The network activity of 100 place cells (the preferred positions of which are aligned with a 10-by-10 grid) is solely driven

by the context neurons and the recurrent weights. The recurrent synapses implement a Gaussian state transition model which

prevents that the network directly draws samples close to the target state. In contrast to the ideal model used in the previous

experiments multiple place cells can be active simultaneously, i.e., the recurrent weights encode a soft WTA circuit as in.25

Encoding continuous state variables

A simple encoding scheme is used to reconstruct the two dimensional state of the simulated rat xxx(t) from the place cells’

activity, i.e., xxx(t) = 1/ |ννν(t)| ∑L
l=1 (νl(t) pppl), where |ννν(t)|= ∑L

l=1 νl(t) and pppl is the preferred position of place cell l.
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The generated transient activity of the place cells realize a path between the initial and the home location as shown in the

3rd row in Fig. 3A. The reconstructed movement plan is denoted by the line in Fig. 3B, where the integrated activity over

the whole movement duration of each place cell is encoded by the color of the corresponding grid position. The simulated

sequential firing shows a coherence to the transient firing in place cells in rats that is illustrated in Fig. 3C (see also the online

material in a work of B. Pfeiffer and D. Foster9). A notable difference from the biological data is the resolution of the simulated

activity in Fig. 3B. To visualize the corresponding spike events only 100 place cells were modeled. For a higher density of 900

uniformly distributed place cells we refer to additional results provided in the supplement.

Task adaptation through context neurons in a real robot

Typical robot planning tasks have to consider a large number of constraints that dynamically change and planning algorithms

have to adapt to new solutions online. Here, we show that by activating context neurons multiple constraints can be modeled

and used for task adaptation. As test platform we used a KUKA lightweight arm controlled in a two dimensional Cartesian

space. The network generated movement plans in 2D and the complexity of the control problem itself is absorbed by a built-in

Cartesian tracking controller. The two coordinates modeled, x and y span the transverse plane. The trajectory was executed

using inverse kinematics to obtain a reference joint trajectory and inverse dynamics control to execute it.

We used K = 225 state neurons that receive excitatory input from context neurons modeling the initial state and the target

state (as in the previous experiment), see Fig. 4A. Strong inhibitory input is used to model obstacles (the gray areas in Fig. 4B).
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The transition model was learned from demonstrated state transitions (through kinesthetic teaching) in contrastive divergence

learning21 (see the supplement for details).

After learning, the network generates goal-directed movement plans that can be used for obstacle avoidance. Sampling

a movement plan of a duration of 1.3 seconds took on average 635±8 milliseconds on a standard computer (the symbol ±

denotes the standard deviation computed from 1000 trajectories). The minimum distance to the target was 2.71±2.24 cm in an

operation area of 70×70 cm.

An interesting property of the spiking model is that multiple solutions can be encoded in the same model. For the considered

obstacle avoidance task, two solutions are shown in Fig. 4B and snapshots of the second solution are depicted in Fig. 4C.

Discussion

The brain efficiently processes and predicts sequential activity patterns in the context of planning tasks.9–12 Understanding

these processes and how information is possibly encoded in stochastic neurons are major goals of theoretical neuroscience. In

this paper, we demonstrated how recurrent spiking neural networks can solve planning problems and provide a solid theory

based on the framework of probabilistic inference. The model reproduces observed neural dynamics, predicts that contextual

information is one of the key modulating factors and is a promising low-energy control strategy for mobile robot applications.

Theoretical contributions

Spiking neural networks are a reasonable neuroscience model as verified by data.26–29 Their capabilities in solving planning

tasks however have been underexplored to date. It was shown that spiking networks can encode and draw samples from arbitrary

complex distributions,30, 31 models of temporal sequences can be learned7, 8 and Bayesian filtering was studied.29, 32–34

Our model builds on these probabilistic sampling results and a solution to planning problems is suggested that approximates

a stochastic process for planning through forward sampling from a parameterized model distribution. The parameters of the

model distribution denote the synaptic weights of a population of afferent neurons for which local Hebbian update rules were
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derived from the principle of probabilistic inference. The derivations include arbitrary differentiable activation functions and

postsynaptic potential shapes for the neuron model (details are provided in the supplement).

Links to expectation maximization22, 24 and policy gradient methods?, ?, ? were established, where the resulting offline

learning rules are similar to Monte Carlo policy evaluation20 and the network parameters subject to these updates converge to

the globally optimal solution for WTA network dynamics. The online learning rules resemble the online Monte Carlo policy

iteration algorithm and converge to local lower bounds of the optimum.

The correctness of the neural planning method was validated in two toy tasks, a finite horizon planning task with a known

optimal solution and an infinite horizon task, where the neural network achieved the same performance level as Monte-Carlo

policy evaluation.20

Implications for neuroscience

Previous neural models that implement path planning have focused on attractor networks or potential fields14, 35–38 and their

activity was related to hippocampal firing.16, 17 A deficit of these models is however that the path which was taken to reach

a desired state cannot be modeled with attractors. To overcome this limitation a sequence of successive metastable states in

attractor networks was proposed18 but it is left unclear how these networks can be trained from rewards. We followed a different

approach where attractors emerge through reinforcement of rewarding trajectories. As a result, different input neurons with its

synaptic weights can model different routes to multiple attractors. Thus, the proposed model extends the modulation abilities of

attractor networks and can be validated, e.g., in a study on contrasting planning of safe versus straight-line paths.

We demonstrated in simulation results that the proposed recurrent neural network can reproduce the dynamically changing

firing rates observed during hippocampal sweeps.9 The input modulated activity in our network hypothesizes that a cognitive

map representation (the recurrently connected state neurons) receives contextual input from other brain regions. Potential sites

for these contextual inputs are projections from the entorhinal and the prefrontal cortex.39, 40 It is worth mentioning that the

network is not limited to model hippocampal sweeps. It may be used to model frequently observed dynamically changing firing

rates from other brain regions.41–44

Embedded in the framework of probabilistic inference, the proposed network can be naturally extended in multiple ways,

e.g., the place cells encoding the state transition model might be learned,16 actions might be encoded additionally,25 forward

and backward replays10, 11 can be simulated, or multiple cognitive maps can be installed.17 Furthermore, Poisson neurons were

chosen for simplicity and the model generalizes to noisy integrate and fire neurons.45

Implications for robotics

State-of-the-art planning algorithms in robotics generate movement plans within seconds and scale to many degrees of

freedom.?, ?, ? Spiking neural networks could not compete with these methods due to the encoding of continuous variables,

e.g., in our robot experiment, we used population codes?, ? to encode a two-dimensional continuous state variable and more

than a few hundred neurons could not be simulated without risking to run out of memory in a standard computer. A potential
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solution that is currently under investigation are factorized population codes which scale but can not capture correlations

(which are needed to avoid obstacles). Another promising alternative are neuromorphic chips which were already used to learn

62-dimensional joint angle sequences of human jump motions in recurrent networks.? In addition, related spiking network

models were proposed which also build on winner-take-all circuits and local plasticity rules.?, ?, ? Therefore, it is reasonable to

assume that the presented theory provides the basis for future neural controller implementations in neuromorphic hardware for

robot control.

In contrast to previous work on spiking neurons in a reinforcement learning framework,25 we followed here a model-based

approach where the recurrent dynamics of the network can be reused to learn multiple related tasks with different sets of

weights from the context neurons (e.g., representing different goal positions or obstacles). The state transition model does not

need to be re-learned when switching between environments.

Furthermore, our model has the advantage that multi-modal solutions to planning tasks can be learned. This feature was

exploited in an obstacle avoidance task in a real robot, where the network randomly sampled one out of two paths. This ability

to encode non-linear mappings is in particular beneficial for learning forward and inverse kinematic models in robotics.

References

1. Toussaint, M. & Storkey, A. Probabilistic inference for solving discrete and continuous state markov decision processes. In

proceedings of the ICML, 945–952 (ACM, 2006).
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