
FP7-600716

Whole-Body Compliant Dynamical Contacts in Cognitive Humanoids

D4.2
Learning of tasks with multiple contacts by

imitation and reinforcement learning

Editor(s) Elmar Rueckert1 and Jan Peters1,2

Responsible Partner TUD
Affiliations 1 Intelligent Autonomous Systems Lab, Technische

Universität Darmstadt, 64289 Darmstadt, Germany.
2 Robot Learning Group, Max-Planck Institute for
Intelligent Systems, Tuebingen, Germany.

Status-Version: Draft-1.0
Date: Feb. 28, 2015
EC Distribution: Consortium
Project Number: 600716
Project Title: Whole-Body Compliant Dynamical Contacts in Cog-

nitive Humanoids

Title of Deliverable: Learning of tasks with multiple contacts by imitation
and reinforcement learning

Date of delivery to the
EC:

28/2/2015

Version 1.0, Feb. 28, 2015

Workpackage responsible
for the Deliverable

WP4

Editor(s): Jan Peters and Elmar Rueckert
Contributor(s): Elmar Rueckert, Alex Paraschos, Roberto Calandra,

Oliver Kroemer, Serena Invaldi, Jan Peters (TUD) /
Jernej Camernik, Jan Babic (JSI)

Reviewer(s):
Approved by: All Partners

Abstract The scope of the current deliverable is to present
the results on generalizing and improving elementary
tasks with contacts.

Keyword List: contacts, inverse dynamics model learning, prob-
abilistic movement representations, reinforcement
learning

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

1/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Document Revision History

Version Date Description Author
v. 0.1 Feb. 04 Initial Draft Elmar Rueckert
v. 1.0 Feb. 28 Final Elmar Rueckert

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

2/60 Contract No. FP7-600716
www.codyco.eu

Table of Contents

1 Introduction 5

2 Executive Summary 7

3 Extracting Low-Dimensional Control Variables for Movement Primitives
(TUD) 8
3.1 Introduction . 8

3.1.1 Related Work . 9
3.2 Probabilistic Movement Primitives . 11

3.2.1 Learning from Demonstrations with ProMPs 12
3.2.2 Predictions with ProMPs by Conditioning 12

3.3 Extracting Control Variables with Hierarchical Priors 12
3.3.1 Control Variables for a Single Movement Type 13
3.3.2 Predictions by Conditioning the Hierarchical Prior 14
3.3.3 Extension to Multiple Movement Types (K > 1) 15

3.4 Results . 16
3.4.1 Summary of the investigated features 16
3.4.2 The effect of noise and missing data 16
3.4.3 Analyzing the model parameters . 18
3.4.4 Learning bi-modal trajectory distributions 20

3.5 Conclusion . 21

4 Predicting Object Interactions from Contact Distributions (TUD) 22
4.1 Introduction . 22
4.2 Learning From Contact Distributions . 23

4.2.1 Related Work . 24
4.2.2 Contact Points . 24
4.2.3 Object Centers . 26
4.2.4 Computing Contact Distributions . 26
4.2.5 Kernel Between Contact Distributions 27
4.2.6 Extension to Multiple Gaussians . 27
4.2.7 Interaction-Specific Contact Similarity 28
4.2.8 Classifying Contact Distributions . 28

4.3 Experiments . 29
4.3.1 Picking up Elongated Objects . 29

3

Version 1.0, Feb. 28, 2015

4.3.2 Stacking Objects . 31
4.4 Conclusions . 33

5 Learning Inverse Dynamics Models with Contacts (TUD) 34
5.1 Introduction . 34
5.2 Problem Formulation . 35

5.2.1 Classical model-based approaches for computing the robot dynamics . . 36
5.2.2 Learning the inverse dynamics . 37

5.3 Learning Inverse Dynamics with Contacts . 37
5.3.1 Learning contacts as a mixture-of-experts 37
5.3.2 Gaussian processes as expert models 39

5.4 Experimental Set-up and Evaluation . 39
5.4.1 Experimental set-up . 40
5.4.2 Learning a single contact . 40
5.4.3 Robustness of the single contact model 42
5.4.4 Learning multiple contacts . 43
5.4.5 Learning the gating network . 43

5.5 Conclusions . 44

6 Learning Whole-Body Control using Tactile Sensing from Robot Skin (TUD) 46
6.1 Introduction . 46
6.2 Inverse Dynamics . 47

6.2.1 Classical Model-based Approaches for Computing the Inverse Dynamics 48
6.2.2 Learning the Inverse Dynamics . 49

6.3 Control with Tactile Sensing . 50
6.3.1 Learning a Mixture-of-Contacts . 50
6.3.2 Gaussian Processes as Expert Models 51
6.3.3 Controlling the Contacts . 52

6.4 Experimental Results . 52
6.4.1 Experimental Setting . 52
6.4.2 Pushing Obstacles . 53

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

4/60 Contract No. FP7-600716
www.codyco.eu

Chapter 1

Introduction

This deliverable presents results of task T4.3 at the end of the second year. The achieved
results are briefly discussed with respect to the task description from the Technical Annex.

T4.3 Generalizing and Improving Elementary Tasks with Contacts. The architecture
from WP3 requires a variety of tasks in order to be useful in a large number of different
scenarios. T4.3 aims at filling this void by automatically generating new tasks from data.
Using both models and data traces from WP2, elementary tasks are acquired by imitation
learning and transferred to novel situations using dynamic systems. In this case, the well-
known formulation by (Ijspeert et al., 2002) will need to be reformulated to be capable of
taking contact explicitly into account. Using the recently developed relative entropy inverse
reinforcement learning techniques (Boularias et al., 2011), these tasks can be acquired quickly
while at the same time yielding an explanation of the tasks functionality in form of an estimate
of the teacher’s cost function. Subsequently, the robot system will self-improve on its’ current
hardware in order to achieve mastery at the task. The procedural steps of this work package
are the following:

• Data sets from human behavioral experiments are used to generate elementary tasks
such as reaching for objects, pushing, pulling, and standing up.

In collaboration with JSI, TUD investigated weather supporting contacts in human arm
reaching tasks are planed or an effect of a reactive controller. We found that contacts are
task related and thus planed. Further, trunk movements are less affected by feedback
compared to the lighter arms. Based on these findings TUD will develop combined
feedforward and feedback control laws and test them on the iCub robot. A paper is
currently in progress of writing.

• These tasks are used to instantiate an elementary task library by imitation learning,
yielding both functional elementary tasks as well as an associated cost function.

In movement libraries, a controller needs to activate suitable primitives based on contex-
tual cues or external events. TUD has extended their work on probabilistic movement
primitives to simultaneously learn a library of movement primitives and control vari-
ables to activate the primitives. This work was published at an international robotics
conference [69] and is discussed in Chapter 3.

5

Version 1.0, Feb. 28, 2015

As a first step towards understanding the stability of supporting contacts in humanoid
robot control, TUD developed a probabilistic kernel based model to predict the stability
of object configurations. This work was published at an international robotics conference
[45] and is presented in Chapter 4.

• The tasks are refined by reinforcement leaning such that the task will work also on the
iCub despite differences in kinematics and mechanics.

• The task parameters of the local task are passed on to the controller from WP3.

Controller need to be able to compensate for external contact forces to either decelerate
to avoid collisions or to push objects in a controller manner, e.g., through tactile feedback
controller. TUD investigated how the tactile skin of the iCub can be used to learn inverse
dynamics models in the presence of contacts. This work was published an international
robotics conference [8] and a pre-print is presented in Chapter 5. In the subsequent
chapter it is shown how learned inverse dynamics models can be used to improve torque
control of the iCub. This work is currently in progress of writing.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

6/60 Contract No. FP7-600716
www.codyco.eu

Chapter 2

Executive Summary

In this deliverable, four studies relevant for improving and generalizing elementary tasks with
contacts are presented. The first work demonstrates how multiple movement primitives as
well as their activations can be learned from human demonstrations. In a second study, TUD
demonstrates how the stability of object configurations can be modeled and used for predic-
tions. This work will be used in future to search for stable supporting contact configurations in
humanoid robot motions. In the last two chapters, mixtures of experts with Gaussian processes
are used to learn inverse dynamics models from tactile skins in the iCub and how to use these
models for improving the performance of torque controller.

7

Chapter 3

Extracting Low-Dimensional Control
Variables for Movement Primitives
(TUD)

Abstract

Movement primitives (MPs) provide a powerful framework for data driven movement genera-
tion that has been successfully applied for learning from demonstrations and robot reinforce-
ment learning. In robotics we often want to solve a multitude of different, but related tasks.
As the parameters of the primitives are typically high dimensional, a common practice for the
generalization of movement primitives to new tasks is to adapt only a small set of control
variables, also called meta parameters, of the primitive. Yet, for most MP representations,
the encoding of these control variables is pre-coded in the representation and can not be
adapted to the considered tasks. In this paper, we want to learn the encoding of task-specific
control variables also from data instead of relying on fixed meta-parameter representations.
We use hierarchical Bayesian models (HBMs) to estimate a low dimensional latent variable
model for probabilistic movement primitives (ProMPs), which is a recent movement primitive
representation. We show on two real robot datasets that ProMPs based on HBMs outperform
standard ProMPs in terms of generalization and learning from a small amount of data and
also allows for an intuitive analysis of the movement. We also extend our HBM by a mixture
model, such that we can model different movement types in the same dataset.

3.1 Introduction

Movement primitives (MPs) are a compact parametric description of a movement [60, 29,
40, 15]. They provide a powerful framework for data driven movement generation as they
can be learned from demonstrations as well as by reinforcement learning. They can adapt
to a new task by adapting a given set of meta-parameters [79, 42, 50]. For example,
the final joint positions or the execution speed [29] of the movement can be adapted.

8

Version 1.0, Feb. 28, 2015

Figure 3.1: The robot used in the ex-
periments to learn trajectory distribu-
tions.

Yet, for most movement primitive representations, the
set of meta-parameters is pre-coded into the move-
ment primitive representation and can not be adapted.
However, for most tasks, a different encoding of the
meta-parameters might be more appropriate than the
pre-coded parameters of the primitive representation.
We believe that this shortcoming has also hindered the
application of movement primitives for more complex
multi-task learning applications. In this paper we want
to learn the encoding of the meta-parameters also from
data. Our approach extracts a low-dimensional man-
ifold in the MP parameter space. Each point on this
manifold is described by a small set of control variables. Hence, our underlying assumption
is that, while the parametrization of movements might be high-dimensional, useful parameter
vectors for a given set of tasks typically share a lot of structure, i.e. they lie on a lower dimen-
sional manifold. Each demonstration can now be characterized by the corresponding control
variables that can be seen as a compact description of the task considered in this demonstra-
tion. For example, in a table tennis scenario, these control variables could specify the location
of the hitting point or the desired return direction for the ball. Hence, our model can not
only be applied for efficient generalization in multi-task learning with movement primitives
but is also well suited for analyzing the movements of human demonstrators. We represent
the latent manifold model by a hierarchical Bayesian model. The control variables for each
demonstrations are treated as latent variables that are also inferred from the data. The model
is extended by a mixture model such that we can learn the control variables of multiple types
of movements. We will use Probabilistic Movement Primitives (ProMPs) as underlying move-
ment primitive representation as they can be naturally integrated in the Hierarchical Bayesian
Model (HBM) representation. When learning or analyzing movement data, we have to deal
with several challenges, such as high-dimensionality, noise, missing data, partial observations,
and the data can contain multiple modes that represent different types of movements. In order
to deal with all these requirements, we apply a fully Bayesian approach where we integrate out
all the estimated parameters of the model. In our experiments, we will illustrate the improved
generalization properties of our approach compared to the standard ProMP approach in the
case of a small amount of training data and show how demonstrations can be easily analyzed
and characterized by the extracted latent control variables.

3.1.1 Related Work

Movement primitives can be categorized into trajectory-based [29, 68, 60] and state-based
representations [40]. In this paper we will focus on trajectory based approaches as they are
more commonly used and easier to scale up to higher dimensions. A common trajectory-based
approach are the dynamical movement primitives (DMPs). DMPs [29] are represented by a
parametrized dynamical system that is given by a linear point-attractor that is perturbed by
a non-linear time dependent forcing function. The forcing function can be used to encode an
arbitrary shape of the trajectory and the weights of the forcing function can be easily obtained
from demonstrations by linear regression. One of the benefits of the DMP approach is that it

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

9/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

specifies a small set of meta-parameters. These meta-parameters include the final position of
the movement, which is given by the point attractor, the final velocities, the execution speed,
or the amplitude of the movement [41, 63, 29]. In multi-task learning with DMPs [42, 25, 50],
it is a common strategy to only adapt the meta-parameters due to the high dimensionality of
the weights of the forcing function. While DMPs have several more benefits such as stability,
and the ability to represent stroke based and rhythmic movements, DMPs also have several
limitations, such as that they can not represent optimal behavior in stochastic systems and the
adaptation of the trajectory due to the meta-parameters is based on heuristics. These issues
have been addressed by the recently proposed Probabilistic Movement Primitives approach
[60, 61]. ProMPs estimate a distribution of trajectories instead of encoding single trajectories.
The main benefit of the probabilistic representation is that we can use probabilistic operators
such as conditioning for adaptation and a product of distribution for co-activating primitives.
A distribution over trajectories also contains information on which time points are relevant
for the movement, e.g., time points with small variance in the Cartesian end-effector space
could denote task relevant via-points or targets. However, in difference to DMPs, ProMPs are
lacking meta-parameters that can be used to adapt the trajectories with a small amount of
control variables. While it would be easy to pre-specify such control variables by conditioning
the trajectory distribution for a fixed set of time points, such an approach would again require
a lot of manual tuning and is lacking flexibility.

Our approach automatically extracts a small amount of control variables from a given
set of demonstrations in the ProMP framework. We use a hierarchical Bayesian approach
to model prior distributions, which is inspired by techniques from multi-task learning (MTL)
[84, 52, 49, 71]. In MTL the underlying assumption is that multiple tasks (or trajectories) share
a common structure, and, hence, with an increasing number of related tasks that have been
already learned, the number of needed training samples for generalizing to a new task decreases
[1]. This property is highly desired in robotics, where the data is often high dimensional and
obtaining training samples is costly. Different approaches exist to model the shared information
across tasks. They can be roughly separated into two different categories, i.e. methods where
parameters of the model are close to each other in a geometric sense [23, 71] and approaches
where the parameters of the model share a common structure [84, 81, 14, 52, 65, 62]. This
structure can be a clustering assumption [81], a (Gaussian) prior for the parameters of all tasks
[84, 52] or some advanced structure like the Kingman’s coalescent [14], which is a continuous
time, partitioned valued Markov process. Our approach is highly related to the Bayesian MTL
approach presented in [62], where a prior distribution over parameters is learned. The prior
distribution is assumed to have a low-dimensional, latent structure that is represented by a
linear factor model. In order to represent several modes (or non-linearities) in the data, the
model is extended to a mixture model of linear factor models. For both, the number of mixture
components and the number of factors, a non-parametric Dirichlet prior has been used. All
parameters of the model are integrated out by the use of a combination of sampling and
variational inference. We will use a simplification of this model, assuming a fixed number of
mixture components, without the Dirichlet priors, allowing a much more efficient algorithm
without the need for expensive sampling methods. We extend the model of Passos et al. by
an additional hyper-prior and show that this hyper-prior significantly increases the robustness
of the Bayesian model.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

10/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

3.2 Probabilistic Movement Primitives

In this section we will give a brief overview on Probabilistic Movement Primitives (ProMPs)
as they provide the foundation for our hierarchical Bayesian model. ProMPs represent a
movement by a distribution p(τ) over trajectories τ = y1:T , where yt specifies the joint
positions (or any other quantities, such as a Cartesian coordinates of a ball) at time step t.
ProMPs use a linear basis function model with J basis functions to represent a single trajectory,
i.e.

p(yt|w) = N
(
yt

∣∣Ψtw, β
−1I
)

and p(τ) =
T∏
t=1

p (yt|w) ,

where β denotes the precision of the data. The weight vector w is a compact representation
of the trajectory. The basis functions Ψt only depend on the time or, alternatively, on the
phase of the movement. For a single Degree of Freedom (DoF), Ψt is just given by a vector
of normalized Gaussian basis functions φt with

φt,i =
exp (−0.5(t− ci)2)∑J
j=1 exp (−0.5(t− cj)2)

,

where ci denotes the center of the ith basis function (note that to enhance readability we
skipped the bandwidth parameters in this notation).

For multi-dimensional systems with D DoFs, the basis function matrix is represented by a
block-diagonal matrix, i.e,

Ψt =

φT

t 0T . . . 0T

0T φT
t . . . 0T

...
...

. . .
...

0T 0T 0T φT
t

 .
Due to this encoding of the basis function matrix, the trajectories of all DoFs can still be
represented as a single weight vectorwT = [wT

1 ,w
T
2 , . . . ,w

T
D] that is given by a concatenation

of all weight vectors for each degree of freedom.
Still, a single weight vector w only represents a single trajectory τ . In order to represent

a distribution over trajectories p(τ), we can estimate a distribution p(w) over the weight
vectors and, subsequently, integrate out the weight vectors. In the original ProMP approach,
a multivariate Gaussian distribution is used to model the prior distribution

p(w) = N (w|µw,Σw). (3.1)

As such, the distribution over trajectories is also Gaussian and can be computed in closed form

p(τ) =

∫
p(τ |w)p(w)dw,

=

∫
N
(
y1:T

∣∣Ψ1:T w, β
−1I
)
N (w|µw,Σw) dw,

= N
(
y1:T

∣∣Ψ1:T w,Ψ1:TΣwΨT
1:T + β−1I

)
,

where Ψ1:T is a TD×DJ matrix containing the basis function matrices for all time steps and
w is a DJ dimensional column vector.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

11/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

3.2.1 Learning from Demonstrations with ProMPs

A ProMP already defines a simple hierarchical Bayesian model in a similar fashion as a Bayesian
linear regression model. The mean µw and the covariance matrix Σw can be learned from data
by maximum likelihood using the Expectation Maximization (EM) algorithm [20]. A simpler
solution that works well in practice is to compute first the most likely estimate of w[i] for each
trajectory τ [i] independently, where the index i denotes the i-th demonstration1. Subsequently,
mean and covariance of p(w) can be estimated by the sample mean and sample covariance
of the w[i] ’s. One advantage of the EM based approach in comparison to the more direct
approach is that the EM algorithm can also be used for learning from incomplete data where,
e.g., some segments of the trajectories might be missing due to occlusions in vision based
recordings.

However, the training of ProMPs also suffers from a severe disadvantage. As the model has
a lot of parameters due to the high-dimensional covariance matrix, ProMPs suffer from over-
fitting if we have little training data and noisy trajectories. The more sophisticated hierarchical
Bayesian model for ProMPs introduced in this paper alleviates this problem.

3.2.2 Predictions with ProMPs by Conditioning

ProMPs can also be used to predict the behavior of the demonstrator once we have seen an
initial part of a new trajectory. Lets assume that we have observed a human demonstrator at
m = 1, 2, ...,M different time points2 t1 to tM at the positions yt1 to ytM

. Let us further
denote Ψo as the concatenation of the basis function matrices for these time points and o
as concatenation of the ytm vectors. Given these observations, we can obtain a conditioned
distribution p(w|o) over the weight vectors. This distribution is Gaussian with mean and
variance

µw|o = µw+

ΣwΨT
o

(
Σo + ΨoΣwΨT

o

)−1
(o−Ψoµw) , (3.2)

Σw|o = Σw −ΣwΨT
o

(
Σo + ΨoΣwΨT

o

)−1
ΨoΣw. (3.3)

The conditional distribution p(w|o) can be used to predict the behavior of the demonstrator
for future time points t > tM , i.e. we can determine the mean and covariance of y for future
time points. Note that the same procedure can be applied for partial observations, where only
a subset of the quantities in yt is observed. The covariance matrix Σo can be used to control
the importance of different dimensions.

3.3 Extracting Control Variables with Hierarchical Priors

Our goal is to model non-linear prior distributions that can be modulated by low-dimensional
latent control variables. We define a hierarchical prior on the weight vector w using mixture

1Given a trajectory τ i, the corresponding weight vectors w[i] can be estimated by a straight forward least
squares estimate.

2Note that these time points do not need to be sampled in uniform time intervals.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

12/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

models

p(w[i]) =
K∑
k=1

πkN
(
w[i]
∣∣∣bk +M kh

[i]
k , α

−1I
)
. (3.4)

The vector bk denotes an offset term and the projection matrix M k defines the mapping
from the low-dimensional control variables h

[i]
k to the weight vector w[i] of trajectory i. The

parameter α models the precision of the latent manifold priors and πk denotes the mixing
coefficients. The different mixture components can model different movement types, e.g.,
forehand and backhand strokes in a table tennis game. Within a mixture component the
latent control variable h

[i]
k models the adaptation of the movement to the current task.

All parameters of this prior distribution are unknown a priori and are learned from demon-
strations. We follow a fully Bayesian approach, where we treat all parameters as random
variables and introduce conjugate priors for these random variables. We derive variational
update equations for all relevant distributions. We also demonstrate how predictions can be
computed by conditioning with the hierarchical priors.

We will start our discussion for the most simple case, using only a single mixture component.

3.3.1 Control Variables for a Single Movement Type

For a single mixture component the prior in Eq. (3.4) simplifies to

p(w[i]) = N
(
w[i]
∣∣∣b+Mh[i], α−1I

)
.

We introduce conjugate priors for the random variables, i.e. we use p(b) = N (b|0, I) for
the offset vector, p(h[i]) = N (h[i]|0, I) for the control variables h[i], α = Γ(α|a0, b0) for the

precision3 α, and p(M) =
∏

vN (m[v]|0, λ[v]−1I) for the projection matrix M . Here, m[v]

denotes the v-th column of the matrix M = [m[1],m[2], . . . ,m[V]], with V denoting the
dimensionality of the latent variable h[i]. The symbol Γ denotes the Gamma distribution.

To enhance the numerical stability of the variational updates, we also add a gamma prior on
the precision parameters of the projection matrix, i.e. p(λ[v]) = Γ(λ[v]|c0, d0). The influence
of this additional prior is evaluated in the experimental section.

As we use a variational inference approach [3], we assume a complete factorization of the
variational posterior given by

q(ξ) = q(b)q(M)q(λ1:V)q(α)
L∏
i=1

q(w[i])q(h[i]),

where ξ = {w[1:L],h[1:L], b,M , λ1:V , α} and L denotes the total number of demonstrations.
The variational distributions for the weight vector w[i], the latent variable h[i], the offset vector
b, the v-th column of the projection matrixM , are specified as q(w[i]) := N (w[i]|µw[i] ,Σw[i]),
q(h[i]) := N (h[i]|µh[i] ,Σh[i]), q(b) := N (b|µb, σbI), and q(m[v]) := N (m[v]|µm[v] , σm[v]I).
The remaining definitions are listed in the appendix.

3To make this prior non-informative we use a0 = 1e− 5 and b0 = 1e− 5.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

13/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

The most important variational update equations read

µw[i] = Σw[i]

(
βΨ

[i]
1:T

T
y
[i]
1:T + ᾱ

(
µb + M̄µh[i]

))
,

Σw[i] =
(
βΨ

[i]
1:T

T
Ψ

[i]
1:T + ᾱI

)−1
,

µh[i] = ᾱΣh[i] M̄
T

(µw[i] − µb) ,

µb = σbᾱI

(
L∑
i=1

(
µw[i] − M̄µh[i]

))
,

µm[v] = σm[v]ᾱI

(
L∑
i=1

µh[v,i] (µw[i] − µb)

)
,

where M̄ = [µm[1] , . . . ,µm[V]]. The inferred feature precision is denoted by ᾱ and the scalar
µh[v,i] denotes the v-th element in the vector µh[i] = [µh[1,i] , . . . , µh[V,i]]T .

Compared to the prior used in ProMPs in Eq. (3.1), the combination of the latent variable
µh[i] and the projection matrix M̄ implements a more accurate model of the prior distribution.
As we will demonstrate, this hierarchical prior model is less sensitive to overfitting in the case
of noisy observations or incomplete data.

3.3.2 Predictions by Conditioning the Hierarchical Prior

In the hierarchical prior model, predictions are performed by computing the conditioned dis-
tribution over the latent task variable p(h|o). This conditioned distribution can be simply
determined by integrating out the weight vector w

p(h|o) ∝ p(o|h)p(h),

=

∫
w

p (o|Ψo,w) p (w|h) p(h)dw,

=N
(
o
∣∣Ψo

(
µb + M̄h

)
,Σo + ᾱ−1ΨoΨ

T
o

)
p(h),

where p(h) is the Gaussian prior distribution for the latent variable. Now, we can condition
on the control variable h on the demonstrations to obtain a Gaussian over h with mean and
variance

µh|o = M̄
T
ΨT
oA

−1 (o−Ψoµb) , (3.5)

Σh|o = I − M̄T
ΨT
oA

−1ΨoM̄ , (3.6)

where A = Σo + Ψo

(
ᾱ−1I + M̄M̄

T
)

ΨT
o .

Given the distribution over the inferred latent task variable the posterior over feature
weights is given by

µw|o = µb + M̄µh|o, (3.7)

Σw|o = ᾱ−1I + M̄Σh|oM̄
T
. (3.8)

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

14/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

It is illustrative to investigate the differences of the standard conditioning of the ProMPs
in Eq. (3.2) and Eq. (3.3) to the conditioning with the hierarchical prior. The conditioning in
the ProMP case requires a full-rank covariance matrix, which is hard to obtain given a small
amount of training data. In contrast, the latent prior model only requires the projection matrix
M̄ to perform the conditioning. Hence, the predictions of the latent prior model are less prone
to overfitting and are, therefore, also applicable for a small amount of training data.

3.3.3 Extension to Multiple Movement Types (K > 1)

The mixture distribution in Eq. (3.4) adds an additional multinomial variable per demonstra-

tion to our probabilistic model, i.e. z
[i]
k ∈ {0, 1}. We represent this multinomial variable as

binary vector z[i] = {z[i]1 , ..., z
[i]
K}.

To derive variational updates, we specify a multinomial hyper-prior for the mixing indices

p(Z) =
∏L

i=1

∏K
k=1(πk)z

[i]
k .

The variational updates are the same as for the case with only a single component, with
the difference that the trajectories are weighted by the responsibilities of the individual mixture
components µ

z
[i]
k

, i.e.

µw[i] =Σw[i]

(
βΨ

[i]
1:T

T
y
[i]
1:T+

K∑
k=1

ᾱkµz
[i]
k

(
µbk + M̄ kµh[i]

k

))
,

Σw[i] =

(
βΨ

[i]
1:T

T
Ψ

[i]
1:T +

K∑
k=1

ᾱkµz
[i]
k
I

)−1
.

Computing predictions with the mixture model is also straight forward. For each component
we compute the conditioned distribution on the latent control variables as in Eq. (3.5) and in
Eq. (3.6) and the posterior over the feature weights using Eq. (3.7) and Eq. (3.8). Thereafter
the posterior distributions are weighted by the responsibilities of each mixture model

z[k] =
πkN

(
o
∣∣∣µ[k]
w|o,Σ

[k]
w|o

)
∑K

j=1 πjN
(
o
∣∣∣µ[j]
w|o,Σ

[j]
w|o

) ,
Σw|o =

K∑
k=1

z[k]Σ
[k]
w|o,

µw|o =
K∑
k=1

z[k]µ
[k]
w|o.

The remaining updates are listed in the appendix.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

15/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

3.4 Results

We evaluate our method on two real robot tasks. In the first task the robot played a table
tennis game and we recorded the Cartesian coordinates of a racket mounted at its end-effector
and the Cartesian coordinates of the ball. A Barrett WAM anthropomorphic arm was used for
this experiment [54]. The robot provides regular updates about its joint positions at a rate of
1KHz that are used by the forward kinematics to compute the Cartesian position of the racket.
The ball is tracked by a high-speed, multi-camera vision system [51] that provides updates at
a rate of 200Hz. The extracted dataset contains twenty ball and racket trajectories.

In the second task we placed an obstacle in front of a KUKA lightweight arm and demon-
strated by kinesthetic teaching different ways to approach a desired target point in Cartesian
space. During the demonstrations we avoided hitting the obstacle and we bypassed it either
by moving to the left or to the right. The demonstrations are depicted in Fig. 3.5. For this
experiment we recored the Cartesian position and orientation of the end-effector. The state
vector yt for this experiment is seven dimensional, three dimensions for the position and four
for the quaternion based orientation.

3.4.1 Summary of the investigated features

We compare the proposed model, denoted as Latent Manifold ProMPs (LMProMPs) in the
figures, to the standard ProMP approach in the two robotic setups.

In the table tennis scenario we investigate the effect of noise and missing data on predicting
the final ball impact location at the opponent’s side of the table and we demonstrate how the
learned latent variables can be used to semantically analyze the data.

Additionally, we demonstrate the beneficial properties of the mixture model in representing
the bi-modal distribution required to successfully execute the KUKA reaching task. We use the
learned mixture model to generate trajectories to new target locations, not encountered during
training, and execute them on the real robot. We demonstrate that our proposed approach
successfully avoids the obstacle, while the standard ProMPs average over the two modes and
the generalization fails.

In both experiments we used linear regression to compute the feature weights w and we
subsequently applied a principal component analysis. We initialized our model with the first
ten principal components.

3.4.2 The effect of noise and missing data

We use the table tennis setup to predict the final impact location of the ball at the opponent’s
court. We evaluate our prediction by computing the Euclidean distance in the x,y-plane to
the true impact location. The dataset used for learning is shown in Fig. 3.2(A-B). It should
be noted that the colors (red and blue) in Fig. 3.2 are only used for the visualization as no
labels were used for modeling the data.

For a baseline comparison we trained the ProMPs on the same data. The learned dis-
tributions over trajectories for ProMPs are illustrated for three Cartesian coordinates in Fig.
3.2(C-E). We denote the mean of the trajectory distribution with a solid black line and the
standard deviation by the shaded region.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

16/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 3.2: (A-B) Trajectory prediction task in a table tennis setting using 20 end-effector
and ball trajectories. (C-E) Learned distributions over trajectories for three dimensions (out
of six) using ProMPs. The colors (red and blue) are only used to visualize differences in the
movement directions.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

17/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 3.3: The effect of noise (A) and missing data (B) on the prediction performance of
ProMPs (blue lines) and LM-ProMPs (red lines). In (A), from left to right the amount of
applied noise is increased. In (B) four different frame rates of observations (∈ {50, 100, 200,
and 300}ms) are investigated.

In the collected dataset, the robot returns the ball within 550ms to 650ms in advance to
the final ball impact. In our comparison, we analyze the prediction performance with respect
to the time until the impact event, where we focus on the movement phase right after the
stroke, ≈ 625ms before the end. We used leave-one-out cross-validation to compute the test
error.

A fast multi-camera vision setup, good lighting conditions, and access to the opponents
sensor readings are amenities we can not always afford. Therefore, we simulate the effect of
noisy and incomplete observations, and we evaluate their impact on the prediction performance.
First, we add zero-mean Gaussian observation noise to the Cartesian coordinates of the racket
and to the Cartesian coordinates of the ball. The standard deviation of the noise used in our
evaluation is σh ∈ 10−2{0, 2, 4, 6} and σb ∈ 10−2{0, 5, 10, 15} for the racket and the ball,
respectively. The results are illustrated in Fig. 3.3(A), where we show the advantage of the
learned prior distribution using latent variables.

Additionally, we evaluate the effect of sparse observations using different sampling intervals,
{50, 100, 200, and , 300}ms. The proposed model is more robust with respect to sparse
observations, whereas the standard ProMPs overfit to the training data, especially in the early
phase of the movement. The performance comparison of the two approaches is illustrated in
Fig. 3.3(B).

3.4.3 Analyzing the model parameters

As opposed to most movement primitive approaches, our model has only one free parameter
to choose that is the precision of the data denoted by β. For large β values the number of
contributing latent variables in the generative model is increased, and, at some point, the
model will overfit to the training data. To analyze this effect, we approximate the complexity
of the learned model by computing the rank of the linear feature weights denoted by Mh[i]

in Eq. (3.4).

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

18/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 3.4: (A) The data precision parameter β can be used to adapt the model complexity
while avoiding overfitting (shown in the 2nd and 3rd panel for two planning horizons until the
ball impact). (B) The gamma prior on the precision parameters λ to increase the numerical
stability has little effect on the prediction performance (for c0 ≥ 1). (C) Investigation of the
effect of the latent variables, where the first dimension of h describes the slope whereas the
second dimension relates to the waviness (D).

For values of β ∈ {1, 10, 50, 100, 200, 500, 1000, 5000} we compute the training and test
error. The prediction performance is shown in Fig. 3.4(A). The lowest test error was achieved
for β = 10 (for a prediction horizon of 625ms). Note that the test error will not converge to
zero due to noise introduced with σh = 0.02 and σb = 0.05, and the sparse observations at
50ms intervals.

The numerical stability of the LMProMPs can be increased with the addition of a gamma
prior on the λ[v] parameters, discussed in Subsection 3.3.1. To investigate the influence
of this regularization on the test error, we evaluated gamma priors with a constant mean
(c0/d0 = 100) and increasing precision in the interval c0 ∈ [0.05, 500]. For small values of
c0 the prior converges to a uniform distribution. For c0 ≥ 1 the variational updates were
numerically stable and the gamma prior had only little influence on the test error, as shown in
Fig. 3.4(B).

Finally, we semantically analyze the table tennis dataset to evaluate how the latent variable
affect the learned prior distribution. We trained the model with 10-dimensional latent variables
h[i] in Eq. (3.4). The effect of the first two latent dimensions in the generative model is
illustrated in Fig. 3.4(C-D). The two latent dimensions of the model affect the slope and the
waviness of the x-coordinate of the racket trajectories shown in Fig. 3.4(D).

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

19/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 3.5: (A) Experimental setting and two dimensions out of the 7-dimensional dataset
(three end-effector coordinates and the four dimensional quaternions). The colors (red and
blue) denote the movement direction to avoid the obstacle. (B-C) Learned distributions using
ProMPs. The mean is denoted by the black line and the standard deviation by the shaded
region. ProMPs cannot represent the bi-modal distribution in the 2nd panel in (B) and the
conditioning on unseen targets might fail (D).

3.4.4 Learning bi-modal trajectory distributions

To demonstrate that LMProMPs can model multi-modal distributions, we study demonstra-
tions of a bi-modal target-reaching task. A KUKA lightweight arm was used to reach for
different target locations on a table while avoiding an obstacle. We used kinesthetic teaching
and we demonstrated two different ways to approach the target. The setup and demonstrations
are shown in Fig. 3.5(A).

For a comparison, we trained ProMPs to learn from the demonstrations, which were unable
to represent the two modes. As a result, generalization by conditioning to not encountered
target locations may result in trajectories that pass through the obstacle. The learned distri-
butions and example trajectories are shown in Fig. 3.5(B-C).

In contrast, the LMProMPs model is able to capture the two modes of the demonstrations,
as shown in Fig. 3.6. We initialized the experiment with K-means clustering method using
two components. The learned prior distribution and the influence of the first two dimensions
of the latent variable are illustrated in Fig. 3.6(A-B). Each mixture component specializes
on one mode of the data. Using the learned bi-modal prior distribution, our model is able to
generate trajectories to new target locations that avoid the obstacle as shown in Fig. 3.6(C).

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

20/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 3.6: Learned bi-modal distribution (the colors red and blue denote the modes) using the
proposed mixture model with two mixture components (A-B). The latent variable is used to
specialize on subregions within the distribution of the mixture component. This is illustrated
for two dimensions of h, where solid black lines denote the mean. (C) Conditioning result
using LMProMPs. (D) Real robot results.

The inferred trajectories are smooth and can be executed on the real robot using inverse
kinematics to obtain a reference joint trajectory and inverse dynamics control to execute it.
The resulting trajectories of the end-effector of the real robot are illustrated in Fig. 3.6(D).

3.5 Conclusion

A desired feature of motor control approaches is to have a low number of control parameters
that can be used to adapt learned skills to new or changing situations. In existing movement
primitive approaches [60, 29, 40] these control parameters are predefined and can not adapt
to the complexity of the tasks. In this paper we proposed a probabilistic movement primitive
representation with hierarchical priors that learns these control parameters as well as distri-
butions over trajectories from demonstrations. We demonstrated on two kinesthetic teaching
datasets that the control variables can be used to generate new trajectories or to analyze the
data. The model naturally extends to mixture models, where multi-modal distributions can be
represented. In future work we will investigate non-parametric variants using, e.g., Dirichlet
processes on more challenging simulated and real-robot tasks with a larger number of modes.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

21/60 Contract No. FP7-600716
www.codyco.eu

Chapter 4

Predicting Object Interactions from
Contact Distributions (TUD)

Abstract

Contacts between objects play an important role in manipulation tasks. Depending on the
locations of contacts, different manipulations or interactions can be performed with the ob-
ject. By observing the contacts between two objects, a robot can learn to detect potential
interactions between them.

Rather than defining a set of features for modeling the contact distributions, we propose
a kernel-based approach. The contact points are first modeled using a Gaussian distribution.
The similarity between these distributions is computed using a kernel function. The contact
distributions are then classified using kernel logistic regression. The proposed approach was
used to predict stable grasps of an elongated object, as well as to construct towers out of
assorted toy blocks.

4.1 Introduction

Figure 4.1: The Darias
robot performing a
block stacking task.

Manipulation tasks almost always involve direct physical contact be-
tween two or more objects. These contacts can be between different
objects in the robot’s environment, or between an object and the
robot. Depending on the locations of the contacts, different types
of interactions and manipulations can occur. For example, a contact
on the side of an object may allow for pushing and sliding the object,
while a contact on the bottom can be used for lifting or supporting
the object. In order to successfully perform a manipulation task, a
robot must be able to determine the potential interactions between
objects and utilize them to accomplish the task’s goal.

Utilizing contact information in an efficient manner is however
not a trivial task. Analytical approaches tend to require accurate
models of the objects, and rely on simplified contact models [6].
In an effort to make robots more autonomous, learning approaches

22

Version 1.0, Feb. 28, 2015

3-Fingered Grasp 4-Fingered Grasp

Figure 4.2: The two types of grasps that were used during the lifting experiment. The three-
fingered grasp uses the tips of the thumb, middle, and index fingers in order to pinch the object.
The ring and little finger are not touching the box. The four-fingered grasp additionally uses
the back of the ring finger on the top of the box in order to provide additional support.

have become more widely adopted in the field of robot manipulation
[37, 43, 75]. However, representing contacts between objects often relies on hand-crafted
features for the given task.

In this paper, we propose an example-based learning approach to detect interactions be-
tween objects from their contact distributions. We pose the problem of detecting interactions
as a binary classification problem, wherein the robot has to predict whether or not a certain
interaction is occurring based on the geometry and relative poses of the objects. The robot
first computes which regions of the objects are in contact with each other. The resulting cloud
of contact points is subsequently modeled as a Gaussian distribution. A Bhattacharyya kernel
function [34] can then be used to compute the similarities between the contact distributions
and, thus, classify them using kernel logistic regression. In this manner, the robot uses the
similarity between the current contact distribution and previous distributions in order to classify
the potential interaction. The details of the approach are explained in Section 4.2.

The proposed approach was implemented on the real robot shown in Fig. 4.1. In the first
experiment, the robot was given the task of predicting which grasps allow it to steadily pick
up an elongated object. The second experiment required the robot to stack assorted blocks.
The details of the experiments are given in Section 4.3.

4.2 Learning From Contact Distributions

In this section, we first outline related work in interaction detection. In Sections 4.2.2 to 4.2.4,
we explain how contacts between objects are detected and used to create contact distributions.
In Sections 4.2.5 to 4.2.8, we provide a kernel function for computing the similarity between
contact distributions and explain how it is used to classify the distributions using kernel logistic
regression.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

23/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

4.2.1 Related Work

Learning symbolic representations of geometric relations between objects, e.g. object A is
on object B, is an important skill for performing complex manipulation tasks. Rosman and
Ramamoorthy [67] proposed the use of a contact network to learn the spatial relations between
objects. Contact points were detected using a support vector machine to separate the point
clouds of the objects. The vectors between the objects’ contact points were then computed
and used to classify relations such as on and adjacent using a k-nearest neighbors classifier.
Kulick et al. use an active learning approach to efficiently learn a symbolic representation
of the relations between objects [48]. Using features such as the heights of objects and the
relative positions between objects, they train a Gaussian process classifier to learn in which
geometric states the predicate is true.

Classifying interactions between objects is also closely related to learning affordances [27].
If an object allows a robot to perform an action with it, than the object is said to “afford”
that action. Affordances have been widely studied in robotics [72, 44, 53], and especially in
the field of robot grasp synthesis [6]. Recently, several papers have proposed template-based
approaches for detecting where an object can be grasped [28, 21, 46]. These approaches
predict where to grasp an object based on the local shape of the object relative to the hand.
The approach presented by Detry et al. [21] learns both the bounding box of points to consider
when comparing grasps as well as a dictionary of graspable parts.

Contact information can also be represented in the form of tactile sensor readings.
Bekiroglu et al. [2] proposed learning to predict stable grasps of objects using kernel logistic
regression. Their approach used a product of three separate kernels based on the position of
the hand relative to the object, the approach direction of the hand, and moment features of the
tactile sensor arrays’ readings. In the work of Dang et al. [13], the locations of the sensed con-
tact points are defined relative to the palm, and modeled using a bag-of-words representation.
A support vector machine is then trained to classify stable and unstable grasps.

The features used by learning algorithms can also be designed to capture specific aspects
of the contacts between objects. In [75], a classifier was trained on simulated data to predict
interactions, such as support and location control, between pairs of objects. The classifier
was provided with 93 features, such as the total contact patch area, and the vector between
the closest contact point and the other object. Automatic relevance determination was then
used to effectively select a subset of these features. Jiang et al. [37] addressed the problem of
learning to place objects in a scene. The placement of an object was represented by a set of
145 features, including features for modeling supporting contacts and the caging of objects.
A support vector machine with a shared sparsity structure was then used to classify good and
bad placements of objects.

4.2.2 Contact Points

In order to determine the contacts between objects, we first need a suitable representation of
the object and its geometry. Given an object Oi, where i specifies the index of the object, we
define its geometry as a point cloud with ni points at positions pij and corresponding normals
uij for j ∈ {1, . . . , ni}. Point clouds are flexible object representations that are widely used in
robotics [70]. The normals of the points are straightforward to compute using the covariance

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

24/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Failed Lift Successful Lift

Figure 4.3: Examples of failed and successful lifts. A lift was considered a failure if the object
was still touching the table at the end of the trial.

of nearby points and the viewing direction.

The point cloud defines the surface of the object and, hence, also where contacts can
potentially be made with another object. In order to obtain a set of contact points, each
point in the point cloud is classified as either being in contact with the other object or not.
In our experiments, we used logistic regression to classify the points, although other methods
for detecting contacts are also applicable. The probability of a point pic being in contact with
the object Oj is given by

p(contact|pic,uic, Oj) =
(
1 + exp

(
φTρ

))−1
,

where φ is a vector of feature functions and ρ is a vector of corresponding weights. We used
three features, including a density estimation

φ1(pic, Oj) =
∑
k

exp

(
−
∥∥pic − pjk∥∥2

σ2

)

and a surface normal density estimation

φ2(pic,uic, Oj) =
∑
k

(uT
icujk) exp

(
−
∥∥pic − pjk∥∥2

σ2

)

where σ is the length scale of the density. We also include a bias term φ3 = 1.

These three features are well-suited for detecting arbitrary contacts between two objects.
Some interactions however require specific types of contacts, e.g., cutting requires contact
with a sharp edge. The set of features can be easily extended for more specific types of
contacts.

Computing a set of weights ρ that maximizes the likelihood of the training data is a convex
optimization problem, and can be solved using iterative reweighted least squares, as explained
in [4]. A point is classified as a contact point if the probability of contact is greater than 0.5.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

25/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Nr.Training Samples

E
rr

o
r

R
a
te

Lifting

MeanOnly

Pos

Force+Pos

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Nr.Training Samples

E
rr

o
r

R
a
te

Lifting

HandRelative

Normal+Pos

Figure 4.4: The expected error rates for the lifting task. The error bars indicate one standard
deviation. An error rate of 1 indicates that none of the test samples were correctly classified,
and an error rate of 0 is achieved when the classifier evaluates all of the samples correctly.

4.2.3 Object Centers

In addition to the shape of the object, we also define a set of object centers for each object.
Object centers are used to define interaction-relevant coordinate frames for the object. Each
center cik, where k is the index of the center for object Oi, is associated with a position xik

and at least one axis aik. For example, the position of an object’s center of gravity is given
by the mean point of its mass, and an axis pointing down in the direction of gravity. For an
articulated object, such as a hand winch or door handle, the position and axis of rotation of
the revolute joint defines another center. Although an object may have many centers, usually
only one center is used for predicting an interaction. In this paper, we only consider a single
object center ci, and leave automatically selecting the relevant center to future work.

Once the contact points have been found, they need to be defined with respect to the
center’s coordinate frame. If the axes of the center already defines three orthogonal axes ax

i ,
ay
i , and az

i this step is trivial. However, the center of gravity or the center of a revolute joint
only define a single axis ax

i and not a full 3D coordinate frame. In order to define the other
two axes, we first project the contact points into a 2D plane, with the normal of the plane
given by the first axis of the center ax

i . We then compute the matrix of second moments
about the center position for the contact points, and subsequently compute the eigenvectors
of the matrix. The second axis ay

i is defined by the eigenvector with the largest eigenvalue,
such that the mean of the contact points is in the positive direction. Using this approach, the
contact point clouds are aligned according to the radial direction with the largest variance.
The third axis is simply given by the cross product of the first two az

i = ax
i × a

y
i .

The positions of the ñi contact points in the object center’s coordinate frame are denoted
as p̃ij with corresponding normals ũij for j ∈ {1, . . . , ñi}.

4.2.4 Computing Contact Distributions

Having computed a set of contact points, we now want to compare this set of contacts to
previously observed ones. Rather than comparing points individually, we first model the set of

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

26/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

contact points as a distribution. In particular, we model them as a 6D Gaussian distribution,
where the first three dimensions correspond to the positions of points, and the last three model
the normals. In the lifting experiment in Section 4.3, we also investigate replacing the normals
of each point with an estimate of the force. However, the forces are in most cases not known,
especially when the interaction is between two objects and not with the robot.

Given a set of contacts, we now define a distribution over contact points as a Gaussian
distribution. The mean vector µi and variance Σi of the distribution are given as

µi =
1

ñi

ñi∑
k=1

[
p̃ik
ũik

]
,

Σi =
1

ñi

ñi∑
k=1

([
p̃ik
ũik

]
− µi

)([
p̃ik
ũik

]
− µi

)T

.

This model provides a compact representation of the mean contact position and normal ori-
entation, as well as the correlations between the parameters around this mean.

4.2.5 Kernel Between Contact Distributions

Having converted the contact points into a contact distribution, we can now use a kernel to
compute the similarity between distributions. We use the Bhattacharyya kernel [34] which is
given by

k((µi,Σi), (µj,Σj)) =

∫√
N (x|µi,Σi)

√
N (x|µj,Σj)dx.

The computation of the kernel is given in [35], and we include it again here for completeness.
The kernel function is computed as

k((µi,Σi), (µj,Σj)) = C exp (−M/4) ,

where the values of C and M are given by

C = 0.5−d/2 ˆ|Σ|
1/2
|Σi|−1/2 |Σj|−1/2 ,

M = µT
i Σ−1i µi + µT

j Σ−1j µj − µ̂T Σ̂µ̂.

The vector µ̂ is given by µ̂ = Σ−1i µi + Σ−1j µj, and the matrix Σ̂ is computed as Σ̂ =

(Σ−1i + Σ−1j)−1. The parameter d = 6 is the dimensionality of the Gaussians. The kernel
function computes a value from zero to one, where a value of one is achieved if the contact
distributions are identical. As the overlap between the distributions decreases, the kernel
function tends to zero.

4.2.6 Extension to Multiple Gaussians

Although we focus on representing contact distributions using single Gaussians, the proposed
framework is straightforward to extend to multiple Gaussians. By representing the contact
distribution as a mixture of Gaussians, the model can capture more details of the distribution.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

27/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

The resulting kernel can therefore distinguish between different contact distributions more
easily.

However, the Bhattacharyya kernel is not suitable for comparing Gaussian mixture models.
Instead, given that the contact distribution of object Oi has the form

fi(x) =

Hi∑
h=1

νihN (x|µih,Σih),

where νi are the mixture components of the Hi Gaussians, one can compute the kernel function

k(fi(x), fj(x)) =

∫
fi(x)fj(x)dx√∫

fi(x)fi(x)dx
√∫

fj(x)fj(x)dx
,

in closed-form. This kernel function also has a value of 1 when the contact distributions are
the same, and tends to zero as the overlap decreases. The kernel is based on the expected
likelihood kernel [35] and is closely related to the Cauchy-Schwarz divergence [36].

4.2.7 Interaction-Specific Contact Similarity

Although the contact distribution is defined in a 6D space, not all of the dimensions will be
equally relevant for predicting a given interaction. For example, when pushing open a door,
the horizontal distance from the axis of rotation is more relevant than the vertical position
along the axis. As a result, two contacts are more similar if they are offset vertically rather
than horizontally from each other.

We can model this additional similarity by adding interaction-specific Gaussian noise
N (0, Σ̃) to the contact points. Thus, each contact point is represented as a Gaussian distri-
bution N ([p̃Tik ũT

ik]T , Σ̃) instead of just a single point. If the offset between two contact
points corresponds to a direction with a larger variance, then their distributions will overlap
more and they will be considered as more similar. In practice, the interaction-specific covari-
ance matrix Σ̃ is added to the standard covariance matrices Σi and Σj before computing the
kernel value. The experiment in Section 4.3.2 shows that the robot can use this additional
similarity information to increase the sample efficiency of the learning algorithm.

4.2.8 Classifying Contact Distributions

Having defined a kernel between contact distributions, we can now use a wide range of ker-
nel methods from machine learning [73]. In order to classify a contact distribution, we use
kernel logistic regression. Kernel logistic regression uses the similarity to previously observed
distributions, with known labels, to classify new contact distribution. The probability that a
contact distribution N (x|µi,Σi) allows for a certain interaction I is given by

p(I|µi,Σi) = (1 + exp (α))−1 ,

where

α = θ0 +
m∑
j=1

θjk((µi,Σi), (µ
′
j,Σ

′
j)),

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

28/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Positive Example Negative Example

Figure 4.5: Point cloud examples of a stable and an unstable stacking of blocks

and we have m previous examples of contact distributions N (x|µ′j,Σ′j). The weight param-
eters θ can be learned using iterative reweighted least squares. Contact distributions that are
not similar to any previous distributions will have a probability defined by θ0. As kernel logistic
regression is a probabilistic classifier, it can model a contact distribution that only sometimes
allows for the interaction. Previous contact distributions that allowed for the interaction will
generally have more negative weights, which will result in a probability closer to one.

4.3 Experiments

The proposed approach was implemented on a real robot, as shown in Fig. 4.1. The robot
consists of two Kuka lightweight robot arms, each equipped with a DLR five-fingered hand
[12], and a kinect. The robot was evaluated on two tasks: picking up an elongated object,
and stacking assorted toy blocks.

4.3.1 Picking up Elongated Objects

In the first experiment, we applied the framework to the problem of predicting whether a given
grasp allows an elongated object to be steadily lifted.

Experimental Setup

The robot performed 60 randomly selected grasps along the length of a spaghetti box. The
first half of the grasps were performed with a three-fingered grasp and the other 30 were
executed with a four-fingered grasp, as shown in Fig. 4.2. The robot subsequently tried to
lift the box 13 cm above the table. The picking up of the box was considered successful if the
object was no longer in contact with the table, and a failure otherwise, as shown in Fig. 4.3.
Before lifting the box, the robot recorded the state of the scene and computed the contact
distribution. Based on this information, the robot had to predict whether or not the lift would
be successful. In order to detect contact points, we labeled ten points in one scene to train
the contact classifier. The contact distribution is defined relative to the center of gravity.

In addition to evaluating the method explained in Section 4.2, referred to here as nor-
mal+pos, we also evaluated several benchmark approaches. The first benchmark approach,
meanonly, performs the classification using only the mean contact µi. The pos approach
uses only the position distribution of the contact points and not the normals. As a result, the

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

29/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Nr.Training Samples

E
rr

o
r

R
a
te

Block Stacking

Additional Covariance

Standard Covariance

Figure 4.6: The expected error rate for the block stacking task. The red line indicates the
performance when using the standard covariance matrix. The blue line shows the performance
when adding the interaction-specific covariance matrix. The error bars indicate one standard
deviation.

contact distribution is only 3D. Although the fingers do not have tactile sensors, forces can be
roughly approximated using the joint torque sensors of the fingers and the relative positions of
the contact points. The force+pos approach is the same as normal+pos, except that
the normals ui have been replaced by force estimates. The final method handrelative uses
the positions and estimated forces of the contact points, but defines the contact distribution
relative to the hand rather than the object center.

The performance of the various methods were tested for different numbers for training
samples. In each evaluation, ten grasps were selected as test samples. From the remaining
grasp samples, a subset of samples were selected as training data. The classifier was then
trained on the training data and used to classify the test samples. The error rate is given by
the percentage of correctly classified grasps in the test set. This process was repeated 250
times for each classifier and each number of training samples. The results of the evaluation
are shown in Fig. 4.4.

Discussion

Using only the mean contact or the distribution relative to the hand resulted in poor perfor-
mance. The task was especially challenging for the handrelative approach, as the object
has the same shape along its length. Despite this challenge, the approach still obtained an
error rate of 25.04%.

Using only the position of the contact points relative to the object center resulted in an
error rate of 18.36%, which is only marginally better than the performance of handrelative.
In comparison, the normal+pos and the force+pos achieved error rates of 4.88% and
5.28% respectively. The contact normals clearly capture a considerable amount of information,
as they allow side contacts to be differentiated from top contacts.

Both normal+pos and force+pos performed well on the task, and learned to ac-
curately predict steady lifts. However, both approaches also have their limitations. The
normal+pos approach cannot differentiate between the robot gently placing its fingers on

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

30/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 4.7: An example scene with three objects, wherein the green and blue objects are
supporting the triangular red block.

the box and the fingers applying forces at the contacts. This approach can therefore sometimes
only predict whether an interaction is possible, given the contacts, but not if the interaction is
being performed. The force+pos approach can differentiate between these two scenarios,
and using it together with tactile sensing is a promising direction for future research. However,
as the forces between objects will often not be directly observed, the normal+pos approach
is generally more applicable.

4.3.2 Stacking Objects

In the second experiment, the robot was given the task of classifying whether one object was
supporting another. The robot then used the trained classifier to stack assorted toy blocks.

Classifying Stable Block Placements

The robot was provided with 60 example scenes, each containing two interacting toy blocks,
such as the ones shown in Fig. 4.5. For the 30 negative examples, physically impossible static
scenes were created by hand. The models of the blocks were acquired using a turn table
setup and a kinect. The object center is again defined by the center of gravity. To train the
contact point classifier, ten points were hand labelled in one scene. The points of the object
were classified as contacts based on the features described in Section 4.2.2. Using additional
features, such as the position and orientation of the points relative to the object’s center, were
also tested, but had no significant effects on the outcome of the experiment.

The performance of the contact point classifier was evaluated in the same manner as for
the previous experiments. A set of ten test samples were randomly selected and removed
from the pool of 60 samples. A subset of the remaining samples were then used to train the
classifier. The classifier was subsequently applied to the ten test samples, and the error rate
was recorded. The error rate is 1 if all ten samples were incorrectly classified, and 0 if all of
them were correctly classified. The test samples were subsequently put back into the pool of
samples. This process was repeated 250 times for each number of training samples.

In addition to the standard approach, we also evaluated adding an interaction-specific
covariance matrix Σ̃, as explained in Section 4.2.7. The elements of the diagonal matrix were
recomputed for each trial using a basic hill-climbing approach to minimize the leave-one-out
cross-validation error rate on the training set.

The results of this experiment are shown in Fig. 4.6. Starting with error rates close to
50%, the classifiers’ performances gradually improves as more samples are provided. Given 50
samples, the standard classifier achieved an expected error rate of 5.0%, and could accurately

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

31/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 4.8: Two examples of block towers constructed by the robot.

predict when the object was being supported. Using the additional interaction-specific covari-
ance matrix, the classifier achieved an expected error rate of 0.4% for 50 samples, and only
required 20 samples to achieve an expected error rate of 3.84%. The sample efficiency of the
algorithm can therefore be increased by incorporating the interaction-specific covariance. In
many of the trials, the covariance matrix Σ̃ indicated that the vertical position of the support-
ing contacts was less relevant than the horizontal position. The experiment demonstrates the
classifier’s ability to generalize between different object shapes.

Generalization to Multiple Objects

In order to demonstrate the classifier’s ability to generalize to multiple objects, it was applied
to the scene of three objects shown in Fig. 4.7. In this scene, the top object is being supported
by both of the lower objects. When the classifier is applied to the top block and only one of the
bottom blocks, the interaction is classified as not supporting. However, we can also combine
the blue and green point clouds of the bottom objects in order to create one compound object.
When applying the classifier to the top object and this compound object, the top object is
labeled as being supported by the bottom object. Thus, as one would expect, the classifier
detects that the top is being supported by both objects jointly, and by neither one separately.
The classifier was tested on two more similar scenes of three blocks, with the same results.

Building Block Towers

In the final part of the experiment, the real robot used the classifier from the first part
to perform block stacking. The interaction-specific covariance matrix was not used in this
experiment. The robot was provided with a small wooden board, on which to stack the
blocks. In order to avoid all of the blocks being placed directly on the board, the placing
of the blocks was limited to a single strip along the middle of the board. For every block,
the robot observed the current scene using the kinect and used the resulting point cloud as
the supporting object in the interaction. As the focus is not on the planning aspects of the
problem, the sequence of blocks was predefined.

In order to determine a suitable placement for the current block, the robot sampled different
positions in the scene. For each sample, the contact points were estimated and the probability
of the block being supported was computed. The robot then attempted to place the block at
the position with the highest probability.

Randomly sampling positions in the scene led to poor performance. One of the main

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

32/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

challenges for the robot was the noisy partial point cloud of the current scene. The kinect
usually only captured the top and front of the current block stack, but not the back or sides.
The lack of reliable points on the sides of objects resulted in unforeseen collisions between
blocks. This problem could be alleviated by obtaining more views of the scene, completing
the point cloud based on symmetries [5, 47], or applying a penalty for placing the block into
occluded regions.

In order to reduce the number of accidental collisions, we also implemented a sampling
approach that mimics the movement of the block when it is being put down. The robot
sampled 20 horizontal positions at 7.5mm increments across the width of the board. For each
horizontal position, the robot sampled vertical placements at 5mm increments in a top-down
manner until contact was detected between the block and the stack.

In order to evaluate the proposed approach, the robot was given the task of creating
five towers consisting of five blocks each. Using the improved sampling approach, the robot
successfully placed 96% of the blocks without knocking any blocks down. Only one block was
misplaced by a few millimeters and fell down. The robustness of the system could be further
improved by also considering the probability of success of neighboring positions [7].

The robot currently ignores the interactions between blocks further down in the stack. As
a result the robot may select a block placement that causes a supporting block to fall down.
One potential solution to this problem would be to recheck the interactions between objects
further down the stack. For each interaction, the objects higher up in the stack would then
be treated as a single compound object, with a corresponding object center. This approach
would however require the robot to keep a model of the current scene’s geometry.

The results of the experiment show that the robot was able to construct multiple block
towers, such as the ones shown in Fig. 4.8,using the proposed approach. A video of the robot
stacking blocks is avaliable at: http://youtu.be/6S5eJgE28sg

4.4 Conclusions

In this paper, we presented a kernel-based approach to learning object interactions from contact
distributions. The proposed approach is based on modeling the distribution of contact points
as a Gaussian distribution. The Bhattacharyya kernel is then used to compute the similarity
between the contact distributions. In the experiments, we used kernel logistic regression to
predict stable grasps of objects, as well as suitable placements of objects. Using the learned
classifier, the robot was able to build small towers out of assorted blocks.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

33/60 Contract No. FP7-600716
www.codyco.eu

Chapter 5

Learning Inverse Dynamics Models with
Contacts (TUD)

Abstract

In whole-body control, joint torques and external forces need to be estimated accurately.
In principle, this can be done through pervasive joint-torque sensing and accurate system
identification. However, these sensors are expensive and may not be integrated in all links.
Moreover, the exact position of the contact must be known for a precise estimation. If contacts
occur on the whole body, tactile sensors can estimate the contact location, but this requires a
kinematic spatial calibration, which is prone to errors. Accumulating errors may have dramatic
effects on the system identification. As an alternative to classical model-based approaches we
propose a data-driven mixture-of-experts learning approach using Gaussian processes. This
model predicts joint torques directly from raw data of tactile and force/torque sensors. We
compare our approach to an analytical model-based approach on real world data recorded from
the humanoid iCub. We show that the learned model accurately predicts the joint torques
resulting from contact forces, is robust to changes in the environment and outperforms existing
dynamic models that use of force/torque sensor data.

5.1 Introduction

A key challenge for torque-controlled humanoid robots is to accurately estimate their dynamics
in presence of contacts, e.g., during manipulation in clutter [32], whole-body movements [38]
or ground contacts in locomotion [9]. Analytic dynamics models suffer from inaccurate param-
eter estimation, unmodeled dynamics (e.g., friction, couplings, elasticities) and noisy sensor
measurements. With contacts the problem is even more challenging due to discontinuities
and additional non-linearities, which are difficult to model or estimate. Moreover, if contact
locations are not fixed a priori or known with sufficient precision, small errors in the localization
of the external force can substantially deteriorate the inverse dynamics computation [19].

Nevertheless, many modern control strategies like inverse dynamics control [22], computed
torque control [74] or model predictive control [56] rely on accurate dynamic models. With
inaccurate dynamics models they can produce suboptimal policies by not taking external forces

34

Version 1.0, Feb. 28, 2015

into account, which are caused by contacts.

Figure 5.1: The humanoid
robot iCub used in the ex-
periments.

As a first step toward a more informed controller that ex-
plicitly considers the effect of contacts, we propose to learn the
inverse dynamics model from tactile sensor readings and force-
torque sensors. In contrast to classical techniques based on the
identification of dynamics parameters [82, 59, 77], we propose
a fully data-driven machine learning approach based on non-
parametric models, where both the rigid body dynamics as well
as the effect of external forces on the robot structure are learned
directly from data collected on the real robot. The proposed
model makes use of the raw sensor data and does not require
a kinematic/dynamics calibration [82, 59, 77]. In particular, it
does not need a spatially calibrated model of the skin [18]. We
propose to use a mixtures-of-experts based on Gaussian Pro-
cesses (GP) to learn the non-linear system dynamics. Each of
these GP experts models a single contact “type” and can be
learned straightforwardly. By using a gating network that acti-
vates and deactivates the individual GP experts we can switch
between contact models and generalize to more complex en-
vironments. We evaluate our model learning approach on the
arm of the iCub humanoid robot [55] (see Fig. 5.1) and com-
pare to a state-of-the-art model-based approach. The learned
inverse dynamics model outperforms the analytic approach and
we demonstrate that the learned model can generalize to changing contact locations. To the
best of our knowledge this is the first demonstration of how joint torques can be learned on a
humanoid robot equipped with tactile and force/torque sensors in presence of contacts.

5.2 Problem Formulation

The inverse dynamics of a robot with m degrees of freedom can be generally described by

τ = M (q) q̈ + h (q, q̇)︸ ︷︷ ︸
τRBD

+ε (q, q̇, q̈) , (5.1)

where q, q̇ and q̈ are the joint positions, velocities and accelerations, respectively, M (q) is
the inertia matrix and

h (q, q̇) = C(q, q̇)q̇ + g(q) + Fvq̇ + Fs sgn(q̇)

is the matrix combining the contributions from Coriolis and centripetal, friction (viscous and
static) and gravity forces. The term ε(q, q̇, q̈) in (5.1) captures the errors of the model, such
as unmodeled dynamics (e.g., elasticities and Stribeck friction), inaccuracies in the dynamic
parameters (e.g., masses, inertia), vibrations, couplings, and sensor noise. With a set C =
{c1 . . . cn} of contacts ci between the robot and the environment, (5.1) becomes

τ = M (q) q̈ + h (q, q̇)︸ ︷︷ ︸
τRBD

+ε(q, q̇, q̈) +
∑
ci∈C

J>ci(q)γi , (5.2)

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

35/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

where the last term accounts for the additive effect of the external wrenches (forces and
moments) γi applied at contact location ci, and J ci(q) is the contact Jacobian. Note that
the contact location ci is not necessarily fixed as the contacts may occur on the whole robotic
structure and not exclusively at the end-effectors. In such a case, the contact location, if not
known a priori, must be estimated, typically through distributed tactile sensors. To compute
the contact Jacobian, we need the position of the contact point with respect to the reference
frame of the link [26]. Such a knowledge requires a kinematic calibration of the skin as
explained in [18].

5.2.1 Classical model-based approaches for computing the robot dy-
namics

Classical approaches for computing τ or τRBD rely on the dynamics model with known or
identified kinematics and dynamics parameters [31]. The torques τRBD = M (q) q̈+h (q, q̇)
can be computed analytically through the rigid body dynamics model of the robot, a standard
parametric description of the robot [24]. The term ε(q, q̇, q̈) is often neglected, or implicitly
taken into account by considering a perturbation in the dynamics parameters of τRBD, which
need to be identified accurately.

Although parameter identification for industrial robots is relatively easy with exciting tra-
jectories [64], the procedure for floating-base robots, such as humanoids, is not straightforward
because of two main issues: 1) The generation of sufficiently large accelerations for the iden-
tification while maintaining the robot balance and the control of contacts. This issue was well
explained by Yamane [82], who proposed a technique to identify the mass and the local COM
of the links in a humanoid robot with fixed feet at the ground and slow joint trajectories.
2) The measurement of the external forces γi exerted on the robot. Note that it may not
be straightforward to measure the external forces γi as it is not possible to cover the robot
body with 6-axis force/torque sensors to measure the force exerted on every possible contact
location ci. Usually, such sensors are big, heavy and expensive. Thus, they are carefully placed
where the external forces are critical for the main tasks. In such a case, it is possible to iden-
tify the dynamics parameters while balancing and walking without additional contacts [59].
When force/torque sensors are placed proximally, such as in the iCub arms [26], some of the
dynamics parameters can be identified, but in absence of contacts [77].

When multiple contacts are exerted on the robot structure at locations other than the
classical end-effectors, it is still possible to compute a precise inverse dynamics model, but this
requires both pervasive joint torque sensing, such as in Toro [59], and additional force/torque
and tactile sensing, such as in iCub [30]. Moreover, it requires the precise knowledge of the
contact locations detected by the tactile sensors, which necessitates a spatial calibration of
the skin [18]. This procedure is prone to errors, and it has been shown that small errors in the
kinematics calibration of the taxels (i.e., the tactile units) can induce non-negligible errors in
the estimation of the contact forces [19].

Generally, these model-based approaches have three main limitations: 1) It is hard to add
details about couplings, elasticity, friction and other nonlinear dynamics, which are required
for high accuracy; 2) The performance of the data-driven identification strongly depends on
the experimental setting (with/without contacts) and the exciting trajectories [64]; 3) They
make strong assumptions to handle contacts.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

36/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

skin unit

force/torque
sensor

joint torque
sensor

external
force

Figure 5.2: Illustration of the force/torque and tactile sensors during a contact of the robot
arm with the environment.

5.2.2 Learning the inverse dynamics

An alternative and appealing approach to analytic dynamics computation is to use machine
learning methods to learn the dynamics model of a robot [58, 80, 16]. Without the need for
compensating for inaccurate dynamics parameters and accumulated errors, a learned dynam-
ics model can improve the tracking and control performances of a robot, as shown in [57]
for an industrial manipulator. The clear advantage of learning the inverse dynamics is that
we can overcome the limitations of the aforementioned approaches: difficulty in modeling
complex nonlinear dynamics, impossibility to generate suitable exciting trajectories, restrictive
assumptions regarding contacts and sensors, prior accurate kinematics calibration of the tac-
tile sensors. Despite the success of learned dynamics models in robotics, to the best of our
knowledge there are no examples in the literature where dynamic contacts are also learned.
The inclusion of dynamic contact models in the dynamics highlights two main problems: First,
switching from a no-contact model to a contact-model requires to observe the system state
and to model a discontinuous function [76]. Second, switching between different contacts
ci ∈ C must be properly handled.

Here, we provide a first formulation to this problem, and we show that it is possible to learn
the inverse dynamics model of the arm of the iCub robot by means of proximal force/torque
measurements F and distributed tactile sensors S (without requiring a spatially calibrated
model of the skin [18]).

5.3 Learning Inverse Dynamics with Contacts

In this section, we present our proposed approach to learning inverse dynamics with contacts.
We first formalize the problem as learning a mixture-of-experts model. Then we detail how
we implement Gaussian processes as the corresponding experts.

5.3.1 Learning contacts as a mixture-of-experts

When learning inverse dynamics with contacts (5.2), we assume that the (contact-free) inverse
dynamics from (5.1) can be computed precisely, either from an analytical model or from a
learned model [57]. In our experiments, we employ a learned GP model as contact-free inverse

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

37/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Gating
Network

Inverse Dynamics

+Contact models

Figure 5.3: Our approach extends existing inverse dynamics without contacts by learning many
contact models, which serve as correction terms under different contact types. The decision of
which contact model to activate is made by a gating network, which uses skin measurements S,
the force torque sensors F and the current state q, q̇, q̈.

dynamics. The reason for this choice are the unmodeled dynamics ε (q, q̇, q̈), which introduce
substantial errors even without contacts. As a result of the pre-existing contact-free inverse
dynamics, only the model of the residual term of the external forces

∑
ci∈C J

>
ci

(q)γi has to
be separately learned. In this paper, we consider a robot that is provided with skin measure-
ments S from the tactile sensors, force measurements F from the force torque sensors (FTS)
and the ground truth of the torques τ from the joint torque sensors (JTS). An illustration of
these relevant components is shown in Fig. 5.2. Modeling the external forces

∑
ci∈C J

>
ci

(q)γi

can be formalized as the regression task

y = f([q,S]) + w , (5.3)

where y =
∑

ci∈C J
>
ci

(q)γi and w is an i.i.d. Gaussian measurement noise with mean 0 and
variance σ2

w. Contacts with different parts of the body lead to different effects in the dynamics.
Intuitively, it is necessary to consider the skin input S to identify the position of the contact.
Additionally, measurements of the force applied by the contacts are necessary to deal with
a non-static environment. Theoretically, these measurements can be provided by the skin.
However, the artificial skin used in our experiments does not provide a precise six-dimensional
measure of the contact force. Therefore, in the implementation of our model we substitute the
force measurement from the skin with the force/torque measurements F . The corresponding
regression problem (5.3) is complicated due to the high-dimensional space of the input x ∈ X
(the skin measurements S alone account for hundreds of dimensions). Therefore, we rephrase
this regression task as a problem of learning a mixture-of-experts model. With this model, we
decompose (5.3) as ∑

ci∈C
J>ci(q)γi =

∑
j∈J

fj([q,F]) + w , (5.4)

where J is the set of active experts fj. Note that the skin input S is no longer explicitly part of
the inputs of the experts. Therefore, each single expert fj is now sufficiently low-dimensional
to be modeled independently. At the same time the possibility of summing the contribution

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

38/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

of each contact allows to account for complex behaviors. As single expert fj we use Gaussian
processes for the mapping [q,F] 7→ J>j (q)γj. A gating network is used to select the experts
that are currently active and to add their contributions. An illustration of our approach is
shown in Fig. 5.3. In this paper, we implement this gating network as a multi-class classifier
J = g(q,S,F) that selects which contact is currently ongoing. For simple tasks, this gating
network can be designed using heuristics (e.g., using thresholds on the activation of the tactile
sensors). However, for more complex systems an adaptive, data-driven approach may be more
suitable. In the experimental section we evaluate the learning of such gating network.

5.3.2 Gaussian processes as expert models

Gaussian Processes (GPs) [66] are a state-of-the-art regression method. They have been used
in robotics to learn dynamics models [16] and for control [17]. In this paper, a GP is a
distribution over inverse dynamics models f ∼ GP (mf , kf) , fully defined by a prior mean mf

and a covariance function kf . We choose as prior mean mf ≡ τRBD and as covariance
function kf the squared exponential with automatic relevance determination and Gaussian
noise

k(xp,xq) = σ2
f exp

(
−1

2
(xp−xq)

TΛ−1(xp−xq)
)
+σ2

wδpq

where Λ = diag([l21, ..., l
2
D]) and δpq is the Kronecker delta (which is one if p = q and zero

otherwise). Here, li are the length-scales, σ2
f is the variance of the latent function f(·) and

σ2
w the noise variance.

In our experiments, when learning contact models, the input is defined as x = [q,F],
while the output (observations) y = τ are the torques. Hence, given n training inputs X =
[x1, ...,xn] and corresponding training targets y = [y1, ..., yn], we define the training data set
D = {X,y}. Training the GP corresponds to finding good hyperparameters θ = [li, σf , σw],
which is done by the standard procedure of maximizing the marginal likelihood [66].

The GP yields the predictive distribution over torques for a new input x∗ = [q∗,F ∗]

p(y|D,x∗,θ) = N
(
µ(x∗), σ

2(x∗)
)
, (5.5)

where the mean µ(x∗) and the variance σ2(x∗) are

µ(x∗) = kT
∗K

−1y , σ2(x∗) = k∗∗ − kT
∗K

−1k∗ , (5.6)

respectively. The entries of the matrix K are Kij = k(xi,xj), and we define k∗∗ = k(x,x)
and k∗ = k(X,x).

5.4 Experimental Set-up and Evaluation

In this section, we describe the experimental setting and the humanoid robot iCub used in
the experiments. We present four different experiments where we demonstrate that 1) Our
approach can learn single contact models; 2) A single learned model (i.e., an expert) is robust
to small changes in the position of the contact; 3) Our approach extends to multiple contacts
by combining models of single contacts; 4) The gating network activating the experts can be
learned to reduce the complexity of manually design it.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

39/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Time [s]

P
os

iti
on

 [d
eg

]

0 5 10 15 20
15

20

25

30

35

40

45
No contact

Contact

(a) Task space

Time [s]

To
rq

ue
 [N

m
]

0 5 10 15 20
0

1

2

3

4
No contact

Contact

(b) Torque

Figure 5.4: Learning a single contact: Effects of a contact (green curve) compared to
the free movement without obstacle (blue curve). These effects are visible in the task space
position (a) and in the torque measured by the joint torque sensor (b).

Method Shoulder 1 [Nm] Shoulder 2 [Nm] Elbow [Nm]

Full trajectory
iDyn 0.09± 1.1× 10−3 0.16± 1.8× 10−3 0.05± 7.4× 10−4

Our model 0.04± 5.6× 10−4 0.07± 9.8× 10−4 0.02± 3.1× 10−4

Contact only
iDyn 0.07± 3.1× 10−3 0.13± 5.7× 10−3 0.08± 3.0× 10−3

Our model 0.03± 1.5× 10−3 0.12± 5.9× 10−3 0.03± 1.3× 10−3

Table 5.1: Learning a single contact: Mean and standard deviation of the mean for the
RMSE of the test set for ground truth, predictions with the iDyn and our learned model. The
learned model predicts the torque more accurately than iDyn for both the full trajectory and
during the only contact phase.

5.4.1 Experimental set-up

The experiments were conducted on the iCub [55], a humanoid robot with 53 degrees of
freedom, sized as a child (104 cm tall, 24 kg of weight). This robot is equipped with several
sensors: an inertial sensor in the head, four 6-axis force/torque sensors placed proximally in the
middle of legs and arms, and an artificial skin consisting of many distributed tactile elements
(taxels) mounted on the robot covers [10]. The information from these three types of sensors
is used to estimate the joint torques and the external contact forces by the iDyn library [30].
In the following, τ IDYN denotes the joint torques estimated by the iDyn library, which we
use as analytical model for comparison. For more detail on its contact detection and taxels
calibration we refer to [18, 19].

The iCub used in the experiments is equipped with three additional Joint Torque Sensors
(JTSs), two in the shoulder and one in the elbow. The JTSs are calibrated by computing
the offset and gain trough least-square regression with respect to the output of iDyn. We
consider these calibrated JTSs as ground truth measurements of the joint torques τ . In our
experiments, we used the iCub torso and arms (3 and 7 degrees of freedom, respectively) and
the skin input S from the forearm, which consists of 270 sensor measurements.

5.4.2 Learning a single contact

In this experiment, we consider the iCub making contact with a single obstacle. The evaluation
is performed on a simple tracking task with the iCub’s end-effector moving along a circular

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

40/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Time [s]

To
rq

ue
 [N

m
]

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6
JTS

IDYN
Learned Model

(a) Real data.

Time [s]

To
rq

ue
 [N

m
]

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6
JTS

IDYN
Learned Model

(b) Filtered visualization.

Figure 5.5: Learning a single contact: Comparison of the torque measured at the elbow
(with contact) by the JTS, estimated by iDyn and our learned model (shown as mean±2 std).
Our learned model better predict the torque measured by JTS (a). Additionally, due to the
identification of the noise in the model, its prediction is smoother compared to both the noisy
JTS measurements and the prediction from iDyn. For visualization purposes we also show the
predictions when filtering JTS and iDyn (b).

trajectory. We repeat the task twice: first without any contact and then with a contact at a
fixed position. Fig. 5.4 shows the effects of the contact in terms of position and torque during
the tracking task. When the contact occurs the position error increases considerably. As a
result, the torque is increased to compensate for the obstacle. We collected 10 repetitions
of the trajectory with the contact and used 8 of them to train the model. The remaining
trajectories are used as test set to evaluate the predictive performances of our learned model.
For this experiment we consider a single expert (the gating network still decides whether to
activate the expert).

We compare the baseline joint torque (measured by the JTS) to the joint torque estimated
by the analytic model iDyn and the joint torque τ IDM predicted by our learned model. In
Table 5.1, we report the root mean square error (RMSE) and the standard deviation of the
mean of iDyn and our learned model for all the three joints. Additionally, we report both the
error of the learned models (learned RBD plus learned contact model) during the full trajectory
and exclusively during the contact. In five out of six cases, the learned model performs better
than the analytic model. In the sixth case (contact only, shoulder 2), the performance of the
learned model is similar to the analytic model. However, increasing the amount of data used
for training may further increase the performance of the learned model. A visual representation
of the predictions of the test set for the elbow joints is shown in Fig. 5.5.

This experiment provides evidence that the classical rigid-body dynamics model
τRBD(q, q̇, q̈) and the iDyn estimation (that also exploits proximal force/torque sensing) fail
to accurately estimate the joint torques when the robot is in contact with the environment.
Moreover, we show that the learned contact model, when combined with the RBD model,
provides a better approximation of the joint torque.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

41/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Position X [cm]

P
os

iti
on

 Y
 [c

m
]

0 5 10 15 20
0

5

10

15
Far Contact
Close Contact
Medium Contact

(a) Task space

Time [s]

To
rq

ue
 [N

m
]

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3
Far Contact

Medium Contact
Close Contact

(b) Torque

Figure 5.6: Robustness of the single contact model: Effects of the contact on the task
space and the torque for the three different contact types: contact 1 (far), contact 2 (medium)
and contact 3 (close). The task in absence of contact is displayed as reference (black dashed
curve).

(a) Contact 1 (b) Contact 2 (c) Contact 3

Figure 5.7: Robustness of the single contact model. The different contact locations
detected by the forearm skin respectively for the three contacts: contact 1 (far), contact 2
(medium) and contact 3 (close).

5.4.3 Robustness of the single contact model

In the following, we show that the prediction performance of each GP expert is robust to small
variations in the position of the contact. This is important since the exact position of the
obstacle does not need to be known in advance (within a single expert fj). As in the previous
experiment we consider a tracking task along a circular trajectory. However, this time the
obstacle is placed at one of three different positions along the trajectory: close, medium and
far. Each of these obstacles is shifted 2 cm along the horizontal axis. Obstacles at different
positions along the trajectory lead to different effects in terms of both joint position and torque
signal, as clearly visible in Fig. 5.6. Note that the skin input S will also be affected, as shown
in Fig. 5.7. Hence, we could potentially learn a separate expert for each contact. However,
we only consider a single expert as we want to demonstrate the robustness of a single expert,
not of the gating network.

The contact model is learned using the data collected from contact 1 and contact 3 (far and
close contacts) and as validation the data set generated from the unseen contact 2 (medium)
is used. In Table 5.2, the RMSE for all three contacts are reported for iDyn and our learned
model, respectively. The results show that the learned model is robust to unseen contacts and
performs equally well or better than the analytic model iDyn.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

42/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Method Shoulder 1 [Nm] Shoulder 2 [Nm] Elbow [Nm]

Far contact
iDyn 0.13± 3.9× 10−3 0.40± 9.7× 10−3 0.06± 1.9× 10−3

Our model 0.06± 1.9× 10−3 0.08± 2.9× 10−3 0.03± 8.0× 10−4

Close contact
iDyn 0.09± 2.2× 10−3 0.22± 4.5× 10−3 0.04± 0.9× 10−3

Our model 0.06± 1.4× 10−3 0.06± 1.4× 10−3 0.02± 6.3× 10−4

Medium contact
iDyn 0.10± 2.8× 10−3 0.32± 6.7× 10−3 0.05± 1.3× 10−3

Our model 0.06± 1.7× 10−3 0.12± 4.7× 10−3 0.05± 1.7× 10−3

Table 5.2: Robustness of the single contact model: Errors between the ground truth (JTS)
and the predictions with either the iDyn and our learned model on the test set. A single expert
is robust to small variations of the contact.

Method Shoulder 1 [Nm] Shoulder 2 [Nm] Elbow [Nm]

Right contact
iDyn 0.10± 1.3× 10−3 0.13± 1.6× 10−3 0.06± 8.1× 10−4

Our model 0.04± 6.3× 10−4 0.07± 1.2× 10−3 0.02± 2.7× 10−4

Left contact
iDyn 0.08± 1.2× 10−3 0.16± 2.0× 10−3 0.05± 8.2× 10−4

Our model 0.03± 5.7× 10−4 0.07± 9.6× 10−4 0.02± 2.8× 10−4

Both contacts
iDyn 0.10± 1.3× 10−3 0.11± 1.4× 10−3 0.07± 8.4× 10−4

Our model 0.05± 8.3× 10−4 0.10± 1.6× 10−3 0.03± 4.0× 10−4

Table 5.3: Learning multiple contacts: Root mean square error between the ground
truth (JTS) and the predictions with the iDyn and our learned model on the test set. Our
learned model predicts the torque more accurately than iDyn.

5.4.4 Learning multiple contacts

After learning single contacts, we now show how to combine the learned models to adapt to
unseen and more complex environments with multiple contacts. We consider a scenario having
the iCub performing a circular motion with its left arm. We initially performed two experiments
with an obstacle either on the left and on the right of the reference trajectory (see Fig. 5.8).
With the data collected in these two contact cases, we trained two independent expert models
f1, f2, one for each contact. We repeated the experiment, but this time with both left and
right contacts and used this last unseen case to validate our models. Fig. 5.9 shows an example
of the prediction and the corresponding activation of the two contact models. During both
the right and the left contact, the corresponding experts are activated by the gating network.
Therefore, we can successfully combine the contributions of the single contact models learned
to generalize to unseen cases with multiple contacts. Table 5.3 reports the RMSE for the
predictions. We notice that even in this experiment the experts accurately learn the effects of
single contacts. Moreover, the gating network allows us to combine the experts to generalize
to unseen environments, such as in the case of both contacts.

5.4.5 Learning the gating network

So far, we assumed a heuristic gating network to select the active experts. In this experiment
we show that a learned gating network achieves a comparable accuracy as a manually devised
heuristic. As ground truth to evaluate the performances, as well as for training the classifier,

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

43/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Figure 5.8: Learning multi-
ple contacts: The robot per-
forms a circle with its left arm.
The forearm collides alterna-
tively with the left, the right
or both contacts.

A
ct

iv
at

io
n

Time [s]
0 2 4 6 8 10

Right contact
Left contact

Time [s]

To
rq

ue
 [N

m
]

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

JTS

IDYN

Learned model

Figure 5.9: Learning multiple contacts: Pre-
diction of torques with multiple contacts and the
corresponding activation of the gating network.
Our mixture-of-experts model combines single-
contact models to a multiple-contact model.

we labeled the data with one of the following labels: no contact, left contact, right contact.
The heuristic is based on thresholds of the activation of the skin input S and the force
torque sensors F . We train a Support Vector Machine (SVM) classifier (using the library
LIBSVM [11]) having as input q,S,F and as output the contact labels (none, left, right).

We evaluated the performance of the trained classifier on an unseen test set. Fig. 5.10
shows that the learned SVM achieved a classification accuracy that is similar to the heuristic
gating network. Equivalent results are obtained in terms of RMSE of the inverse dynamics
when comparing the experts models learned by the gating networks. However, training the
gating network (i.e., training the SVM classifier) requires considerably less expert knowledge
compared to designing a heuristic. As there is no visible performance difference, we conclude
that training the gating network is generally preferable. Increasing the number of training data
may further increase the accuracy of the gating network.

5.5 Conclusions

Whole-body control strategies that exploit contacts need accurate models of the system dy-
namics. This is crucial for balance and stabilization, and to increase the number of potential
actions that the robot is able to execute, e.g., creating a contact to reach for distant ob-
jects. We introduced a data-driven mixture-of-experts approach based on Gaussian processes
for learning inverse dynamics models with contacts. We evaluated our model on the iCub
humanoid robot using tactile sensors and force/torque sensors as model inputs. We showed
that the model accurately predicts contact forces and outperforms a state-of-the-art analytical
approach used to estimate the joint torques in iCub. The estimation from the learned model

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

44/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

A
cc

u
ra

cy
 [

%
]

No contact Contact left Contact right

Learned gating

Heuristic0

50

100

Figure 5.10: Learning the gating network: Classification accuracy for the heuristic and
learned SVM gating networks.

does not rely on dynamic parameters, but it is completely data-driven and based on tactile
sensors and force/torque sensors. As a result, our approach does not require a spatially cal-
ibrated model of the skin [18, 19]. This is a promising feature for robust control strategies
that explicitly takes contacts into account.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

45/60 Contract No. FP7-600716
www.codyco.eu

Chapter 6

Learning Whole-Body Control using
Tactile Sensing from Robot Skin (TUD)

Abstract

Whole-body control in presence of unknown obstacles is a challenging task. Unforeseen con-
tacts with such obstacles can lead to poor tracking performance and potential physical dam-
ages. Hence, a whole-body control approach for future humanoid robots in unmodeled en-
vironments needs to take contact sensing into account. However, converting contact sensed
with skin into physically well-understood quantities can be problematic as the exact position
and strength of the contact would have to be converted into torque.

In this paper, we suggest an alternative approach that directly learns the mapping from
both skin and joint state to the required torques needed for controlling the desired trajectory.
We propose to learn such an inverse dynamics models with contacts using a “mixture of
contacts” approach that exploits the linear superimposibility of contact forces. The learned
model can accurately predict torques needed to compensate for the contact. As a result,
trajectories with tactile contact can be executed more accurately even with low feedback gains
and reduced risk of physical damage to both robot and environment.

We demonstrate on two different tasks on the humanoid robot iCub that this controller
has a lower tracking error than classical alternatives.

6.1 Introduction

A fundamental problem for torque-controlled humanoid robots is to accurately model their
dynamics in presence of contacts, e.g., during manipulation in clutter [33], whole-body move-
ments [39] or ground contacts in locomotion [9]. Analytic models suffer from inaccurate
dynamic parameters, unmodeled dynamics (e.g., friction, couplings, elasticities) and noisy
sensor measurements. With contacts, the problem is even more challenging, because of dis-
continuities and additional non-linearities, which are difficult to model or estimate. Moreover,
if contact locations are not fixed a priori or known with sufficient precision, small errors in
the localization of the external force can substantially deteriorate the quality of the inverse
dynamics [19].

46

Version 1.0, Feb. 28, 2015

Nevertheless, many modern control strategies like inverse dynamics control [22], computed
torque control [74] or model predictive control approaches [56] rely on accurate dynamic
models. With inaccurate dynamics models these control strategies can produce suboptimal
policies, by not taking the external forces (caused by contacts) into account, and even damages
to the hardware.

Figure 6.1: The humanoid
robot iCub used in the ex-
periments.

In contrast to classical techniques based on the identifica-
tion of dynamics parameters [82, 59, 78], we propose a fully
data-driven machine learning approach based on non-parametric
models, where both the rigid body dynamics as well as the ef-
fect of external forces on the robot structure are learned directly
from data collected on the real robot. The proposed model
makes use of the raw sensory data and does not require a kine-
matic/dynamics calibration [82, 59, 78]: in particular, it does
not need a spatially calibrated model of the skin [18]. As a
non-linear model for the inverse dynamics we propose to learn
a “mixtures of contacts” based on Gaussian Processes (GP).

We evaluate our model learning approach on two differ-
ent tasks using the arm of the iCub humanoid robot [55] (see
Fig. 6.1) and compare against a state-of-the-art analytic mod-
eling approach. In the first task, the learned inverse dynamics
is used to compensate for an unexpected obstruction and min-
imize the tracking error. In the second task, we use the learned
model on a controller designed to slide along an obstruction.
The purpose of the sliding controller is to minimize the contact
forces and therefore avoid to break the motors or the artificial tendons that actuate the joints
in the case of unexpected contacts.

6.2 Inverse Dynamics

Without external contacts, the inverse dynamics of a robot with m degrees of freedom can be
generally described by

τ = M (q) q̈ + h (q, q̇)︸ ︷︷ ︸
τRBD

+ε (q, q̇, q̈) , (6.1)

where q ∈ Rm, q̇ ∈ Rm and q̈ ∈ Rm are the joint positions, velocities and accelerations,
respectively, M (q) ∈ Rm×m is the inertia matrix, and h (q, q̇) ∈ Rm×m is the matrix com-
bining the contributions from Coriolis and centripetal, friction (viscous and static) and gravity
forces:

h (q, q̇) = C(q, q̇)q̇ + g(q) + Fvq̇ + Fs sgn(q̇) . (6.2)

The term ε(q, q̇, q̈) in (6.1) captures the errors of the model, such as unmodeled dynamics
(e.g., elasticities and Stribeck friction), inaccuracies in the dynamic parameters (e.g., masses,
inertia), vibrations, couplings, and sensor noise.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

47/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

In presence of a set C = {c1 . . . cn} of contacts ci between the robot and the environment,
(6.1) becomes

τ = M (q) q̈ + h (q, q̇)︸ ︷︷ ︸
τRBD

+ε(q, q̇, q̈) +
∑
ci∈C

J>ci(q)γi , (6.3)

where the last term accounts for the effect of the external wrenches (forces and moments) γi

applied at the contact location ci, and J ci(q) is the contact Jacobian1.

6.2.1 Classical Model-based Approaches for Computing the Inverse
Dynamics

Classical approaches for computing τ or τRBD rely on the dynamics model with known or
identified kinematics and dynamics parameters [30]. The torques τRBD = M (q) q̈+h (q, q̇)
can be computed analytically through the rigid body dynamics model of the robot, a standard
parametric description of the robot [24]. Conversely, the term ε(q, q̇, q̈) is often neglected,
or implicitly taken into account by considering a perturbation in the dynamics parameters of
τRBD, which need to be identified accurately.

Although the parameter identification for industrial robots is relatively easy with exciting
trajectories [64], the procedure for floating-base robots, such as humanoids, is not straight-
forward because of two main issues: The first issue is the generation of sufficiently large
accelerations for the identification while maintaining the robot balance and the control of con-
tacts. This issue was well explained by Yamane [83], who proposed a technique to identify the
mass and the local COM of the links in a humanoid robot with fixed feet at the ground and
slow joint trajectories. The second issue is the measurement of the external forces γi exerted
on the robot. Note that it may not be straightforward to measure the external forces γi, as
it is not possible to cover the robot body with 6-axis force/torque sensors to measure the
force exerted on every possible contact location ci. Usually, such sensors are big, heavy and
expensive, thus they are carefully placed where the external forces are critical for the main
tasks, for example at the end-effectors for manipulation and at the feet for balancing. In such
a case, it is possible to identify the dynamics parameters while balancing and walking without
additional contacts [59]. When force/torque sensors are placed proximally, such as in the iCub
arms [26], some of the dynamics parameters can be identified, but in absence of contacts [78].

When multiple contacts are exerted on the robot structure at locations other than the
classical end-effectors, it is still possible to compute a precise inverse dynamics model, but this
requires both pervasive joint torque sensing, such as in Toro [59], and additional force/torque
and tactile sensing, such as in iCub [30]. Moreover, it requires the precise knowledge of the
contact locations detected by the tactile sensors, which necessitates a spatial calibration of
the skin [18]. This procedure is prone to errors, and it has been shown that small errors in the
kinematics calibration of the taxels (i.e., the tactile units) can induce non-negligible errors in
the estimation of the contact forces [19].

1The contact location ci is not necessarily fixed, as the contacts may occur on the whole robotic structure
and not exclusively at the end-effectors. In such a case, the contact location, if not known a priori, must
be estimated, typically through distributed tactile sensors. To compute the contact Jacobian, we need the
position of the contact point with respect to the reference frame of the link [26]. Such a knowledge requires
a kinematic calibration of the skin, as explained in [18].

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

48/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Skin unit

Force/torque
sensor

External
force

Figure 6.2: Illustration of the force/torque and tactile sensors involved during a contact of the
robot arm with the environment.

Overall, these approaches have three main limitations: First, since they are model-based,
it is difficult to add details about couplings, elasticity, friction and other nonlinear dynam-
ics, which would be required for high accuracy; Second, the performance of the data-driven
identification strongly depends on the experimental setting (with/without contacts) and the
exciting trajectories [64]; Third, they make strong assumptions in order to handle contacts.

6.2.2 Learning the Inverse Dynamics

An alternative and appealing approach to model-based dynamics computation is to use ma-
chine learning methods to learn the dynamics model of a robot [58, 80, 16]. Without the
need to compensate for inaccurate dynamics parameters and accumulated errors, a learned
dynamics model can improve the tracking and control performance of a robot, as shown in [57]
for an industrial manipulator. The clear advantage of learning the inverse dynamics is that
we can overcome the limitations of the aforementioned approaches: difficulty in modeling
complex nonlinear dynamics, impossibility to generate suitable exciting trajectories, restrictive
assumptions regarding contacts and sensors, prior accurate kinematics calibration of the tactile
sensors.

The inclusion of multiple contact models in the dynamics highlights two main problems:
First, switching from a no-contact model to a contact-model requires to observe the system
state and to model a discontinuous function [76]. Second, switching between different contacts
ci ∈ C must be properly handled.

Here, we provide a formulation to this problem, and we show that it is possible to learn
the inverse dynamics model of the robot by means of proximal force/torque measurements F
and distributed tactile sensors S such that:

τ = τ IDM(q, q̇, q̈,S,F) . (6.4)

This solution enables a fast and accurate prediction of joint torques in situations when
the robot is in contact with no, one or even multiple simultaneous contacts, detected by a
tactile skin. The estimation does not rely on dynamic parameters or parametric models, but
it is completely data driven: Tactile sensors provide information about the contact locations
(without requiring a spatially calibrated model of the skin [18]), while force/torque sensors
provide information about the wrenches perceived by the robotic structure.

We detail our proposed model and its learning procedure in the following section.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

49/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

6.3 Control with Tactile Sensing

In this section, we present our proposed approach to learning inverse dynamics with contacts.
We first formalize the problem as learning a mixture-of-experts model. Then we detail how to
implement Gaussian processes as the corresponding experts.

6.3.1 Learning a Mixture-of-Contacts

When learning the inverse dynamics with contacts ((6.3)), we assume that the (contact-free)
inverse dynamics from (6.1) can be computed precisely, either from an analytical model or from
a learned model [57]. In our experiments, we employ a learned GP model for this purpose.
The reason for this choice are the unmodeled dynamics ε (q, q̇, q̈), which introduce substantial
errors even in absence of contacts. As a result of this contact-free inverse dynamics, only the
model of the additional term of the external forces

∑
i∈C J i(q)>γi has to be learned. In this

paper, we consider a robot that is provided with skin measurements S from the tactile sensors,
force measurements F from the force torque sensors (FTS) and the applied torques τ . A visual
representation of these relevant components is shown in Fig. 6.2. Predicting the external forces∑

i∈C J i(q)>γi can be formalized as the regression task

y = f(x) + ε , (6.5)

where y =
∑

i∈C J i(q)>γi and x = [q,S,F] are the inputs. Additionally, ε is an i.i.d.
Gaussian measurement noise with mean 0 and variance σn. Therefore, our regression problem
is phrased as

y =
∑
i∈C

J i(q)>γi = f([q,S,F]) + ε . (6.6)

It is necessary to consider the skin as an input S since contacts with different parts of the
body lead to different effects in the dynamics. Intuitively, S is required to identify the position
of the contact. The force/torque measurements F could be avoided if we were interested in
learning contacts that do not change between training and test time, which would restrict us
to dealing with static objects, such as a rigid floor, walls or stationary obstacles. However, as
this assumption is limiting, we include the force/torque measurements F in our model.

The resulting regression of (6.6) is a highly complex task, due to the extremely high-
dimensional space of the input x ∈ X (the skin measurements S alone account for hundreds
of dimensions) and nonlinearity. We tackle this problem by rephrasing it as a problem of
learning a mixture-of-experts model (“mixture of contacts” in our case). With this model, we
decompose (6.6) as ∑

i∈C

J i(q)>γi =
∑
j∈J

fj([q,F]) + ε , (6.7)

where J is the set of active experts fj. Note that the skin input S is no longer explicitly part
of the inputs of the experts. Hence, each single expert fj is now sufficiently low-dimensional
to be modeled independently, but at the same time the possibility of summing the contribution
of each contact allows to account for complex behaviors. As single expert fj we propose to

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

50/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

Gating
Network

Inverse Dynamics

+Contact models

Figure 6.3: Our approach extends existing inverse dynamics without contacts by learning
many contact models which serve as correction terms under different contacts type. The
decision of which contact model to activate is taken by a gating network based on the skin
measurements S, the force torque sensors F and the current state q, q̇, q̈.

use Gaussian processes mapping [q,F] 7→ J j(q)>γj. Detailed information regarding the GP
models and their training are given in the next subsection. The purpose of the gating network
is then to select the experts that are currently active and to add their contributions. An
illustration of our approach is shown in Fig. 6.3. For mixture-of-experts models it is required
to design a suitable gating network that activates the relevant experts. In our case, this gating
network can be considered a classifier J = g(q,S,F) that selects which contact is currently
ongoing. For simple tasks, this gating network can be designed using heuristics (e.g., using
thresholds on the activation of the tactile sensors). Alternatively, for more complex systems
an approach based on machine learning is more suitable.

6.3.2 Gaussian Processes as Expert Models

Gaussian Processes [66] are a state-of-the-art regression method. They have been used in
robotics to learn dynamics models [16] and for control [17]. In the context of this paper, a
GP is a distribution over inverse dynamics models

f ∼ GP (mf , kf) , (6.8)

fully defined by a prior mean mf and a covariance function kf . In our experiments, we
choose as prior mean mf ≡ τRBD and as covariance function kf the squared exponential with
automatic relevance determination and Gaussian noise:

k(xp,xq) = σ2
f exp

(
−1

2
(xp−xq)

TΛ−1(xp−xq)
)
+σ2

wδpq (6.9)

where Λ = diag([l21, ..., l
2
D]) and δpq is the Kronecker delta (which is one if p = q and zero

otherwise). Here, li are the characteristic length-scales, σ2
f is the variance of the latent function

f(·) and σ2
w the noise variance. In our experiments, when learning contact models, the input

is defined as x = [q,F] and the output (observations) is y = τ are the torques. Hence,
given n training inputs X = [x1, ...,xn] and corresponding training targets y = [y1, ..., yn],
we define the training data set D = {X,y}. Training the GP corresponds to finding good
hyperparameters x = [li, σf , σw], which is done by the standard procedure of maximizing the
marginal likelihood [66].

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

51/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

The GP yields the predictive distribution over torques for a new input x∗ = [q∗,F ∗]

p(y|D,x∗) = N
(
µ(x∗), σ

2(x∗)
)
,

where the mean µ(x∗) and the variance σ2(x∗) are

µ(x∗) = kT
∗K

−1y , σ2(x∗) = k∗∗ − kT
∗K

−1k∗ .

The entries of the matrix K are Kij = k(xi,xj), and we define k∗∗ = k(x,x) and k∗ =
k(X,x).

6.3.3 Controlling the Contacts

In the case of no contacts C = {0} we can define the Task-space Nonlinear Feedforward
Control:

u = τRBD , (6.10)

where the τRBD is computed from the rigid body inverse dynamics (or a learned model of it).
Often an additional PD feedback controller is added to compensate for noise and inaccuracies
in the dynamics, such that

u = τRBD +KP

(
qdes − q

)
+KD

(
q̇des − q̇

)︸ ︷︷ ︸
τPD

. (6.11)

Intuitively, the magnitude of the torques contribution from the PD controller τPD can be used
to measure the goodness of our inverse dynamics model. Accurate inverse dynamics model will
only need small corrections by the feedback controller, while inaccurate models will rely more
heavily on it. In case of inaccurate models increasing the PD gains can still lead to acceptable
tracking performance at the expense of safety. However, with unforeseen obstacles, high gains
can lead to both damages to the robot’s hardware and the obstacle itself.

6.4 Experimental Results

In this section we present the experiments we will conduct. Two different tracking tasks in
presence of external contacts will be investigated. First, we will demonstrate that a controller
using a learned inverse dynamics model can be used to compensate for contact forces and that
the tracking performance of a tracking controller will be improved. In a second experiment, we
will demonstrate that the same inverse dynamics model can also be used to avoid an obstacle
and gently slide along it.

6.4.1 Experimental Setting

Both experimental evaluations are performed on a real iCub humanoid robot [55]. The iCub
possess 53 degrees of freedom and is 104 cm tall for 24 kg of weight. Four 6-axis force/torque
sensors placed are proximally in the middle of legs and arms. Additionally, artificial skin

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

52/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

consisting of more than 2000 tactile sensors are mounted on the robot covers [10]. In our
experiments, we control 5 DoF of the iCub arm: shoulder pitch, roll and jaw, elbow and wrist
pronosupination. Therefore q ∈ R5, q̇ ∈ R5, q̈ ∈ R5, τ ∈ R5 and F ∈ R3 resulting in
learning the mapping x ∈ R18 7→ y ∈ R5. The skin input S from the forearm consists of 270
sensors.

6.4.2 Pushing Obstacles

Figure 6.4: Push-
ing Obstacles.

For classical controllers, when an obstruction occur, the rigid body inverse
dynamics does not account for this variation. As a result, the tracking
error increase and the contribution of the PD feedback controller increases
to compensate for this tracking error. In this scenario we demonstrate
that it is possible to use a learned model to improve the tracking accuracy
when unforeseen and unknown obstruction are encountered along the
path. Additionally, we show that such learned dynamics allows to reduce
the PD gains to achieve an increased safety, without loss in tracking
accuracy.

We first consider the iCub following a pre-defined trajectory with the
left arm. Following, we repeat the same trajectory, but this time with an
unforeseen obstruction.

To compare the performance of our learned inverse dynamics we first
analyze the tracking error introduced by the obstruction.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

53/60 Contract No. FP7-600716
www.codyco.eu

Bibliography

[1] Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence
Research, 12:149–198, 2000.

[2] Yasemin Bekiroglu, Renaud Detry, and Danica Kragic. Learning tactile characterizations
of object- and pose-specific grasps. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
USA, 2006.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, N. Bergström, D. Kragic,
and A. Morales. Mind the gap - robotic grasping under incomplete observation. In
proceedings of International Conference on Robotics and Automation, pages 686–693,
2011.

[6] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis - a survey.
IEEE Transactions on Robotics, accepted.

[7] A. Boularias, O. Kroemer, and J. Peters. Learning robot grasping from 3d images with
markov random fields. In IEEE/RSJ International Conference on Intelligent Robot Sys-
tems (IROS), 2011.

[8] R. Calandra, S. Ivaldi, M. Deisenroth, E. Rueckert, and J. Peters. Learning inverse dy-
namics models with contacts. In Proceedings of the International Conference on Robotics
and Automation (ICRA), Seattle, USA, 2015.

[9] Roberto Calandra, Nakul Gopalan, André Seyfarth, Jan Peters, and Marc Peter Deisen-
roth. Bayesian gait optimization for bipedal locomotion. In LION8, 2014.

[10] Giorgio Cannata, M. Maggiali, G. Metta, and G. Sandini. An embedded artificial skin for
humanoid robots. In MFI, 2008.

[11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines.
ACM Trans. Intell. Syst. Technol., 2(3):27:1–27, 2011.

54

Version 1.0, Feb. 28, 2015

[12] Zhaopeng Chen, Neal Y. Lii, Thomas Wimboeck, Shaowei Fan, Minghe Jin, Christoph
Borst, and Hong Liu. Experimental study on impedance control for the five-finger dex-
terous robot hand dlr-hit ii. In IROS, pages 5867–5874. IEEE, 2010.

[13] Hao Dang and Peter K. Allen. Learning grasp stability. In ICRA, pages 2392–2397. IEEE,
2012.

[14] Hal Daume. Bayesian multitask learning with latent hierarchies. In Proc. Conf. on
Uncertainty in Artificial Intelligence, 2009.

[15] Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi. Combinations of Muscle Synergies in
the Construction of a Natural Motor Behavior. Nature, 6(3):300–308, March 2003.

[16] Marc Peter Deisenroth, Roberto Calandra, André Seyfarth, and Jan Peters. Toward fast
policy search for learning legged locomotion. In IROS, 2012.

[17] M.P. Deisenroth, D. Fox, and C. Rasmussen. Gaussian Processes for Data-Efficient
Learning in Robotics and Control. IEEE TPAMI, 37(2):408–423, 2015.

[18] Andrea Del Prete, Simone Denei, Lorenzo Natale, Fulvio Mastrogiovanni, Francesco Nori,
Giorgio Cannata, and Giorgio Metta. Skin spatial calibration using force/torque measure-
ments. In IROS, 2011.

[19] Andrea Del Prete, Francesco Nori, Giorgio Metta, and Lorenzo Natale. Control of contact
forces: The role of tactile feedback for contact localization. In IROS, 2012.

[20] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[21] Renaud Detry, Carl Henrik Ek, Marianna Madry, Justus Piater, and Danica Kragic. Gener-
alizing grasps across partly similar objects. In IEEE International Conference on Robotics
and Automation, 2012.

[22] Tom Erez and Emanuel Todorov. Trajectory optimization for domains with contacts using
inverse dynamics. In IROS, 2012.

[23] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi-task learning. In Pro-
ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2004.

[24] Roy Featherstone and D.E. Orin. Dynamics. In Springer Handbook of Robotics, pages
35–65. Springer Berlin Heidelberg, 2008.

[25] Denis Forte, Andrej Gams, Jun Morimoto, and Aleš Ude. On-line motion synthesis and
adaptation using a trajectory database. Robotics and Autonomous Systems, 60(10):1327–
1339, 2012.

[26] M. Fumagalli, S. Ivaldi, M. Randazzo, L. Natale, G. Metta, G. Sandini, and F. Nori. Force
feedback exploiting tactile and proximal force/torque sensing - theory and implementation
on the humanoid robot icub. Autonomous Robots, 33(4):381–398, 2012.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

55/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

[27] James J. Gibson. The Ecological Approach To Visual Perception. Lawrence Erlbaum
Associates, new edition edition, September 1986.

[28] Alexander Herzog, Peter Pastor, Mrinal Kalakrishnan, Ludovic Righetti, Jeannette Bohg,
Tamim Asfour, and Stefan Schaal. Learning of grasp selection based on shape-templates.
Autonomous Robots, 36(1-2):51–65, 2014.

[29] A. Ijspeert and S. Schaal. Learning Attractor Landscapes for Learning Motor Primitives. In
Advances in Neural Information Processing Systems 15, (NIPS). MIT Press, Cambridge,
MA, 2003.

[30] S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta, and G. Sandini. Computing
robot internal/external wrenches by means of inertial, tactile and F/T sensors: theory
and implementation on the iCub. In HUMANOIDS, 2011.

[31] S. Ivaldi, J. Peters, V. Padois, and F. Nori. Tools for simulating humanoid robot dynamics:
a survey based on user feedback. In HUMANOIDS, 2014.

[32] A. Jain, M.D. Killpack, A. Edsinger, and C.C. Kemp. Reaching in clutter with whole-arm
tactile sensing. IJRR, 32(4):458–482, 2013.

[33] A. Jain, M.D. Killpack, A. Edsinger, and C.C. Kemp. Reaching in clutter with whole-arm
tactile sensing. The Int. Journ. of Robotics Research, 32(4):458–482, 2013.

[34] Tony Jebara and Risi Kondor. Bhattacharyya expected likelihood kernels. In COLT,
volume 2777 of Lecture Notes in Computer Science, pages 57–71. Springer, 2003.

[35] Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels. J. Mach.
Learn. Res., 5:819–844, December 2004.

[36] Robert Jenssen, Jose C. Principe, Deniz Erdogmus, and Torbjorn Eltoft. The cauchy-
schwarz divergence and parzen windowing: Connections to graph theory and mercer
kernels. Journal of the Franklin Institute, 343(6):614–629, 2006.

[37] Yun Jiang, Marcus Lim, Changxi Zheng, and Ashutosh Saxena. Learning to place new
objects in a scene. I. J. Robotic Res., 31(9):1021–1043, 2012.

[38] Shuuji Kajita and Bernard Espiau. Legged robots. In Handbook of Robotics, pages
361–389. Springer, 2008.

[39] Shuuji Kajita and Bernard Espiau. Legged robots. In Bruno Siciliano and Oussama Khatib,
editors, Springer Handbook of Robotics, pages 361–389. Springer Berlin Heidelberg, 2008.

[40] M. Khansari-Zadeh and A. Billard. Learning Stable Non-Linear Dynamical Systems with
Gaussian Mixture Models. IEEE Transaction on Robotics, 2011.

[41] J. Kober, E. Oztop, and J. Peters. Reinforcement Learning to adjust Robot Movements
to New Situations. In Proceedings of the Robotics: Science and Systems Conference
(RSS), 2010.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

56/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

[42] J. Kober and J. Peters. Policy Search for Motor Primitives in Robotics. Machine Learning,
pages 1–33, 2010.

[43] Marek Sewer Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas Morwald, and Jeremy L.
Wyatt. Learning to predict how rigid objects behave under simple manipulation. In ICRA,
pages 5722–5729. IEEE, 2011.

[44] Hema Koppula and Ashutosh Saxena. Anticipating human activities using object affor-
dances for reactive robotic response. In RSS, 2013.

[45] O. Kroemer and J. Peters. Predicting object interactions from contact distributions. In
Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS),
2014.

[46] O. Kroemer, E. Ugur, E. Oztop, and J. Peters. A kernel-based approach to direct action
perception. In International Conference on Robotics and Automation (ICRA), 2012.

[47] Oliver Kroemer, H Ben Amor, Marco Ewerton, and Jan Peters. Point cloud completion
using extrusions. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International
Conference on, pages 680–685. IEEE, 2012.

[48] Johannes Kulick, Tobias Lang, Marc Toussaint, and Manuel Lopes. Active Learning for
Teaching a Robot Grounded Relational Symbols. In International Joint Conference on
Artificial Intelligence, Beijing, China, 2013.

[49] Abhishek Kumar and Hal Daume. Learning task grouping and overlap in multi-task
learning. In Proceedings of the 29th international conference on Machine Learning, 2012.

[50] A. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann. Data-Efficient Contextual
Policy Search for Robot Movement Skills. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2013.

[51] C.H. Lampert and J. Peters. Real-time detection of colored objects in multiple camera
streams with off-the-shelf hardware components. Journal of Real-Time Image Processing,
2012.

[52] Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement
learning. In ICML ’10 Proceedings of the 27th international conference on Machine
Learning, 2010.

[53] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Modeling affordances
using bayesian networks. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 4102–4107, Oct 2007.

[54] K. Mülling, J. Kober, and J. Peters. A Biomimetic Approach to Robot Table Tennis.
Adaptive Behavior Journal, (5), 2011.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

57/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

[55] L. Natale, F. Nori, G. Metta, M. Fumagalli, S. Ivaldi, U. Pattacini, M. Randazzo,
A. Schmitz, and G. G. Sandini. The iCub platform: a tool for studying intrinsically
motivated learning. In Intrinsically motivated learning in natural and artificial systems.
Springer, 2013.

[56] M. Naveau, J. Carpentier, S. Barthelemy, O. Stasse, and P. Soueres. METAPOD -
Template META-PrOgramming applied to Dynamics: CoP-CoM trajectories filtering. In
HUMANOIDS, 2014.

[57] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey. Cognitive
processing, 12(4):319–340, 2011.

[58] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. Local Gaussian process regression
for real time online model learning. In NIPS, 2008.

[59] Y. Ogawa, G. Venture, and C. Ott. Dynamic parameters identification of a humanoid
robot using joint torque sensors and/or contact forces. In HUMANOIDS, 2014.

[60] A. Paraschos, C. Daniel, J. Peters, and G Neumann. Probabilistic movement primitives.
In Advances in Neural Information Processing Systems (NIPS), Cambridge, MA: MIT
Press., 2013.

[61] A. Paraschos, G Neumann, and J. Peters. A probabilistic approach to robot trajectory
generation. In Proceedings of the International Conference on Humanoid Robots (HU-
MANOIDS), 2013.

[62] Alexandre Passos, Piyush Rai, Jacques Wainer, and Hal Daume. Flexible modeling of
latent task structures in multitask learning. In In Proceedings of International Conference
on Machine Learning, 2012.

[63] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and Generalization of Motor
Skills by Learning from Demonstration. In International Conference on Robotics and
Automation (ICRA), 2009.

[64] N. Pedrocchi, E. Villagrossi, F. Vicentini, and L. Tosatti. Robot-dyanmic calibration
improvement by local identification. In ICRA, 2014.

[65] P. Rai and H. Daume. Infinite predictor subspace models for multitask learning. In Int.
Conf. on Artificial Intelligence and Statistics, 2010.

[66] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[67] Benjamin Rosman and Subramanian Ramamoorthy. Learning spatial relationships be-
tween objects. I. J. Robotic Res., 30(11):1328–1342, 2011.

[68] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras. Learning collaborative
impedance-based robot behaviors. In AAAI Conference on Artificial Intelligence, 2013.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

58/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

[69] E. Rueckert, J. Mundo, A. Paraschos, J. Peters, and G. Neumann. Extracting low-
dimensional control variables for movement primitives. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages 1–9, Seattle, USA, May 26-30
2015.

[70] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, May
9-13 2011.

[71] Paul Ruvolo and Eric Eaton. Online multi-task learning via sparse dictionary optimization.
In Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14), July 2014.

[72] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk. To afford or not to afford:
A new formalization of affordances toward affordance-based robot control. Adaptive
Behavior, 15(4):447–472, December 2007.

[73] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. The MIT Press, 1st edition, 2001.

[74] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and
Control. Springer, 2009.

[75] K. Sjoo and P. Jensfelt. Learning spatial relations from functional simulation. In Intelligent
Robots and Systems (IROS), pages 1513–1519, Sept 2011.

[76] Marc Toussaint and Sethu Vijayakumar. Learning discontinuities with products-of-
sigmoids for switching between local models. In ICML, 2005.

[77] Silvio Traversaro, Andrea Del Prete, Riccardo Muradore, Lorenzo Natale, and Francesco
Nori. Inertial parameter identification including friction and motor dynamics. HU-
MANOIDS, 2013.

[78] Silvio Traversaro, Andrea Del Prete, Riccardo Muradore, Lorenzo Natale, and Francesco
Nori. Inertial parameter identification including friction and motor dynamics. IEEE-RAS
International Conference on Humanoid Robots (Humanoid13), Atlanta, USA, 2013.

[79] A. Ude, A. Gams, T. Asfour, and J. Morimoto. Task-specific generalization of discrete
and periodic dynamic movement primitives. Trans. Rob., (5), 2010.

[80] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: Incremen-
tal real time learning in high dimensional space. In ICML, 2000.

[81] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for
classification with dirichlet process priors. Journal of Machine Learning Research, 8:2007,
2007.

[82] K. Yamane. Practical kinematic and dynamic calibration methods for force-controlled
humanoid robots. In HUMANOIDS, 2011.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

59/60 Contract No. FP7-600716
www.codyco.eu

Version 1.0, Feb. 28, 2015

[83] K. Yamane. Practical kinematic and dynamic calibration methods for force-controlled
humanoid robots. In HUMANOIDS, 2011.

[84] Kai Yu, Voker Tresp, and Anton Schwaighofer. Learning gaussian processes from multi-
ple tasks. In ICML 2005 Proceedings of the 22nd international conference on Machine
learning, pages 1012 – 1019, 2005.

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

60/60 Contract No. FP7-600716
www.codyco.eu

