SEVENTH FRAMEWORK
PROGRAMME

—\1

ODYGJO

FP7-600716

Whole-Body Compliant Dynamical Contacts in Cognitive Humanoids

Learning of the prioritization policies.

D4.3

Editor(s) Jan Peters™? and Elmar Rueckert!
Responsible Partner TUDA
Affiliations ! Intelligent Autonomous Systems Lab, Technische

Universitat Darmstadt, 64289 Darmstadt, Germany.
2 Robot Learning Group, Max-Planck Institute for
Intelligent Systems, Tuebingen, Germany.

Status-Version:

Draft-1.0

Date: Feb. 28, 2017
EC Distribution: Consortium
Project Number: 600716

Project Title:

Whole-Body Compliant Dynamical Contacts in Cog-
nitive Humanoids

Title of Deliverable:

Learning of the prioritization policies.

Date of delivery to the
EC:

28/2/2017

Version 1.0, Feb. 28, 2017

Workpackage responsible | WP4
for the Deliverable
Editor(s): Jan Peters and Elmar Rueckert

Contributor(s): Ryan Lober, Vincent Padois, Olivier Sigaud, Vale-
rio Modugno, Gerhard Neumann, Elmar Rueckert,
Giuseppe Oriolo, Jan Peters, Serena lvaldi, Alex
Paraschos, Ugo Chervet

Reviewer(s):

Approved by: All Partners

Abstract The scope of the current deliverable is to present
the results on the learning of the task prioritization
policies.

Keyword List: contacts, inverse dynamics model learning, prob-
abilistic movement representations, reinforcement
learning

Project Title: CoDyCo 1/33 Contract No. FP7-600716

Project Coordinator: Istituto Italiano di Tecnologia www.codyco.eu

Version 1.0, Feb. 28, 2017

Document Revision History

Version Date Description Author

v. 0.1 Feb. 07 Initial Draft Elmar Rueckert

v. 0.2 Feb. 20 Draft Elmar Rueckert

v. 1.0 Feb. 21 Final Elmar Rueckert
Project Title: CoDyCo 2/33 Contract No. FP7-600716

Project Coordinator: Istituto Italiano di Tecnologia

www.codyco.eu

Table of Contents

1 Introduction 4
1.1 Task description from the Technical Annex. 4
1.2 Contributions within the CoDyCo consortium. 4

2 Multiple Task Learning for Whole-Body Reactive Control (UPMC) 6

3 Learning soft task priorities for control of redundant robots (INRIA & TUDA) 8

4 Learning soft task priorities for safe control of humanoid robots with con-
strained stochastic optimization (INRIA) 15

5 Probabilistic Prioritization of Movement Primitives (TUDA) 24

Chapter 1

Introduction

This deliverable presents results of task T4.4. In total four articles were presented at inter-
national robotics conferences (HUMANOIDS, ICRA and IROS) and two articles are currently
under review. Below, we discuss the achievements with respect to the task description from
the Technical Annex.

1.1 Task description from the Technical Annex.

The core element of WP3 is the intelligent combination of prioritized tasks, which allows
covering a large variety of possible scenarios while only requiring a small number of elements.
Nevertheless, WP3s architecture requires a meaningful prioritization scheme that tells the
systems which tasks to activate and how certain tasks can overrule each other. While it
is possible to devise such prioritizations for complex tasks manually (see, e.g., Sentis et al.,
2008), the automatic generation from data is much more desirable. Hence, in this task, we will
investigate how a prioritization can be obtained from observing tasks, similar as in imitation
learning, and how it can be self-improved. The relative importance of the tasks imposed by
the prioritization can be changed during execution by the learned prioritization based on the
current context. First, T4.4 will only help reproduce behavior from WP2 on the iCub but
subsequently, it will allow for generalization to novel situations. Expected task outcomes are
the following:

e Objective 1: A learned importance weighting for elementary tasks; weighting will allows
appropriate combinations to generate solutions for new, more complex scenarios.

e Objective 2: A learned prioritization policy using both imitation and reinforcement learn-
ing (see tasks from WP2); demonstration and generalization to novel situations.

1.2 Contributions within the CoDyCo consortium.

We developed learning approaches that avoid task interferences prior to the task execution,
that can be trained through reinforcement learning from a general task objective and from
imitation learning in a probabilistic model.

Version 1.0, Feb. 28, 2017

e To objective 1: At UPMC, efficient whole-body control strategies have been developed
that avoid interferences of multiple task objectives prior to a task execution. Two articles
were published at international conferences and are summarized in Chapter 2. A detailed
description can be found in Deliverable D3.3.

e To objective 2: In a collaboration, INRIA and TUDA studied the learning of task priority
profiles for whole-body control. We optimized the parameters of priority profiles with
respect to a general task objective through reinforcement learning [4]. This work is
presented in Chapter 3.

In a followup study, INRIA investigated different stochastic search implementations for
reinforcement learning [5]. An article on the approach is listed in Chapter 4.

In another study, TUDA investigated how task such priority profiles can be obtained
from imitation learning. A research article of this study is currently under review [6]. In
Chapter 5, we present a draft of this contribution.

Project Title: CoDyCo 5/33 Contract No. FP7-600716
Project Coordinator: Istituto Italiano di Tecnologia www.codyco.eu

Chapter 2

Multiple Task Learning for Whole-Body
Reactive Control (UPMC)

In the following three paragraphs, we summarize the work of Ryan Lober, Vincent Padois and
Olivier Sigaud on learning the task prioritization of multiple tasks. For a detailed report on
these two articles we refer to Deliverable D3.3.

Multiple Task Optimization using Dynamical Movement Primitives for Whole-Body
Reactive Control. Whole-body controllers provide the tools to execute multiple simultane-
ous tasks on humanoid robots, but given the robots internal and external constraints, interfer-
ences are often generated which impede task completion. Priorities can be assigned to each
task to manage these interferences, unfortunately, this is often done at the detriment of one
or more tasks. In this paper we present a novel framework for defining and optimizing multiple
tasks in order to resolve potential interferences prior to task execution and remove the need
for prioritization. Our framework parameterizes tasks with Dynamical Movement Primitives,
simulates and evaluates their execution, and optimizes their parameters based on a general
compatibility principle, which is independent of the robots topology, tasks or environment.
Two test cases on a simulation of a humanoid robot are used to demonstrate the successful
optimization of initially interfering tasks using this framework.
This work was presented at the international conference on humanoid robots [1].

Variance Modulated Task Prioritization in Whole-Body Control. Whole-Body Control
methods offer the potential to execute several tasks on highly redundant robots, such as
humanoids. Unfortunately, task combinations often result in incompatibilities which generate
undesirable behaviors. Prioritization techniques can prevent tasks from perturbing one another
but often to the detriment of the lower precedence tasks. For many tasks, static prioritization
is not necessary or even appropriate because tasks can often be achieved in variable ways, as
in reaching. In this paper, we show that such task variability can be used to modulate task
priorities during execution, to temporarily deviate certain tasks as needed, in the presence of
incompatibilities. We first present a method for mapping from task variance to task priority
and then provide an approach for computing task variance. Through three common conflict
scenarios, we demonstrate that mapping from task variance to priorities reactively solves a
number of task incompatibilities.

Version 1.0, Feb. 28, 2017

This work was presented at the international conference on intelligent robots and sys-
tems [2].

Task compatibility optimization. Highly redundant robots, such as humanoids, can ex-
ecute multiple simultaneous tasks allowing them to perform complex whole-body behaviors.
Unfortunately, tasks are generally planned without close consideration for the underlying con-
troller being used, or the other tasks being executed. Because of this, tasks are often incom-
patible with one another and/or the system constraints, and cannot always be accomplished
simultaneously. These incompatibilities can be managed using prioritization and gains, but
tuning them is tedious. In this work, we take an alternative approach and develop a task
compatibility optimization loop which automatically improves task compatibility by modifying
their trajectories using reinforcement learning. To do so, the tasks are iteratively optimized by
minimizing a compatibility cost, which measures the compatibility between one or more tasks,
and the system constraints. Using two common scenarios, we show that task compatibility
optimization results in whole-body behaviors which better match the original intent of the task
combination without the need for manual tuning of task/controller parameters, heuristics, or
re-planning.
This work was submitted for presentation at a robotics journal [3].

Project Title: CoDyCo 7/33 Contract No. FP7-600716
Project Coordinator: Istituto Italiano di Tecnologia www.codyco.eu

Chapter 3

Learning soft task priorities for control
of redundant robots (INRIA & TUDA)

Learning soft task priorities for control of redundant robots

Valerio Modugnolv“, Gerard Neumann?, Elmar Rueckert?, Giuseppe Oriolo!, Jan Peters?3, Serena Ivaldi

Abstract— One of the key problems in planning and control
of redundant robots is the fast generation of controls when
multiple tasks and constraints need to be satisfied. In the
literature, this problem is classically solved by multi-task
prioritized approaches, where the priority of each task is
determined by a weight function, describing the task strict/soft
priority. In this paper, we propose to leverage machine learning
techniques to learn the temporal profiles of the task priorities,
represented as parametrized weight functions: we automatically
determine their parameters through a stochastic optimization
procedure. We show the effectiveness of the proposed method
on a simulated 7 DOF Kuka LWR and both a simulated and
a real Kinova Jaco arm. We compare the performance of
our approach to a state-of-the-art method based on soft task
prioritization, where the task weights are typically hand-tuned.

I. INTRODUCTION

Exploiting the redundancy in robotic systems to simul-
taneously fulfil a set of tasks is a classical problem for
complex manipulators and humanoid robots [1], [2]. Several
controllers have been proposed in the literature, where the
tasks combination is determined by the relative importance
of the tasks, expressed by the task priorities. There are two
main approaches for prioritized multi-task controllers. The
first is based on strict task priorities, where a hierarchical
ordering of the tasks is defined: critical tasks (or tasks that
are considered as more important) are fulfilled with higher
priorities, and the low-priority tasks are solved in the null-
space of the higher priority tasks [3], [4]. The second is based
on soft task priorities, where the solution is typically given
by a combination of weighted tasks [5]. The importance or
“soft priority” of each individual task is represented by a
scalar weight function, which evolves in time depending on
the sequencing of the robot actions. By tuning the time-
dependent vector of scalar weights, the global robot motion
can be optimized. In simulation studies, it was shown that
adapting these weights may result in a seamless transition
between tasks (i.e., reaching for an object, staying close to
a resting posture and avoiding an obstacle), as well as in
continuous task sequencing [6].

When complex robots, such as humanoids, need to per-
form manipulations while fulfilling many tasks and con-
straints (e.g., tracking a desired trajectory, avoiding obstacles,

*This paper was supported by the FP7 EU projects CoDyCo (No. 600716
ICT 2011.2.1 Cognitive Systems and Robotics).

! Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Universita di Roma, via Ariosto 25, 00185 Roma, Italy.
modugno@diag.uniromal.it

2 Intelligent Autonomous Systems Lab., TU Darmstadt, Germany.

3 Max Planck Institute for Intelligent Systems.

4 Inria, Villers-1és-Nancy, F-54600, France; CNRS, Loria, UMR n.7503
and Université de Lorraine, Loria, UMR n.7503, Vandoeuvre-lés-Nancy, F-
54500, France. serena.ivaldi@inria.fr

2,4

task priorities

manual tuning

og =
o4
04
04 '
g Ta—

obstacle

¥

learning

0% g 70 7

¥

better fitness/performance

Fig. 1. The Jaco arm must reach a goal behind a wall (obstacle) while
fulfilling a pose task on joint 4 and a full posture task. The initial sequencing
of task priorities is not efficient. Our method allows the automatic learning
of the temporal profiles of the task priorities from scratch.

controlling the interaction forces), the strict task priorities
approaches typically require a priori a definition of the task
hierarchy. For instance, Sentis and Khatib [7] defined three
levels of hard priorities i.e., constraints of utter importance
(such as contacts, near-body objects, joint-limits and self-
collisions), operational tasks demands (i.e., manipulation
and locomotion) and adaptable postures (i.e., the residual
motion). However, in many contexts, it is difficult to organize
the tasks in a stack and pre-define their relative importance
in forms of priorities. When priorities are strict, a higher-
priority task can completely block lower-priority tasks, which
can result in movements that are not satisfactory for the robot
mission (i.e., its “global” task). Another issue concerns the
occurrence of discontinuities in the control law due to sudden
changes in the prioritization [8].

Soft task priorities provide an appealing alternative so-
lution. However, the simultaneous execution of different
elementary tasks with variable soft priorities can lead to
incompatibilities that might generate undesired movements
or prevent the execution of some tasks. These issues are
well explained in [9], where the authors modulate the task
weights based on the movement variance to handle incompat-
ibilities during online execution. Finally, when the number
of tasks increases, for example in whole-body control of
humanoid robots, and some tasks related to safety (e.g.,
balance) are given high priority, it is generally difficult to
define suitable task activations. In this case the priorities
and their transitions are manually tuned by expert users [10]
or defined before-hand [11]. Among the methods based on

soft priorities, recently Liu et al. [6] proposed a generalized
projector (GHC) that handles strict and non-strict priorities
with smooth transitions when tasks priorities are swapped.
Despite the elegant framework, their controller needs again
a lot of manual tuning. The evolution of the tasks priorities
in time, the timing and the tasks transitions need to be
designed by hand. While this approach could still be easy
for few tasks and simple robotic arms, it quickly becomes
unfeasible for complex robots such as humanoids performing
whole-body movements that usually require a dozen of tasks
and constraints (e.g., control balance, posture, end-effectors,
stabilize head gaze, prevent slipping, control the interaction
forces etc.). With the increasing abilities of humanoid robots,
the number of tasks increases, together with their weights or
priorities: their manual tuning through a sequence of complex
manipulations becomes a major bottleneck.

In this paper, we propose a framework that addresses
the issue of automatically optimising the task priorities by
means of a learning algorithm. The proposed concept of
learning the soft priorities can be applied to existing multi-
task frameworks, such as the GHC [10]. However, we use
here a simpler controller based on a regularized version
of the Unified Framework for Robot Control (UF) [13]
proposed by Peters et al. In our framework, the task weight
functions are parametrized functional approximators that
can be automatically learned by state-of-the-art stochastic
optimization algorithms. The temporal profiles of the task
weights can be learned by optimizing a given fitness function,
used to evaluate the performance of candidate task priorities.
In contrast to many cost functions used in whole-body
optimisation frameworks, here we do not require the fitness
to be a linear or quadratic function.

We show the effectiveness of our approach on both a
simulated and a real 6 degrees of freedom (DOF) Kinova
Jaco arm, on a goal reaching problem with several elemen-
tary tasks. Furthermore, we compare the performance of our
controller with the state-of-the-art method GHC proposed by
Liu et al. [10] on a simulated 7 DOF Kuka LWR arm.

The paper is organized as follows. Section II presents
the proposed approach, describing the structure of the con-
trollers, the task weight functions and the learning procedure.
We present the experimental results in Section III, draw
conclusions and discuss future work in Section IV.

II. METHODS

Let us consider a “global task” or a “mission” for a
redundant robot: for example, fo reach a goal point behind
a wall while avoiding an obstacle. The overall movement
can be entirely planned by exploring all the possible joint
configurations, or it can be generated by a combination of
a set of controllers solving simpler elementary tasks (for
example: control the end-effector, control the pose of a
particular link, efc.). We assume that the set of elementary
tasks is known, and that each task can be executed by a given
torque controller. The global movement can be evaluated by
a fitness function ¢ that can be used as a measure of the
ability of the robot to fulfil its mission. Our method aims

elementary task weight functions controller
tasks (soft priorities) "global" robot
robot mission
\ performance
joi]
joints |
|
torques © S
. joints positions stochastic
a9 & velocities PP
optimization
learning | updated parameters of the task weight functions |
Fig. 2. Overview of the proposed method. The controller consists of

a weighted combination of elementary tasks, where the weight functions
represent the soft task priorities. An outer learning loop enables the
optimization of the task weights parameters.

at automatically learning the task priorities (or task weight
functions) to maximize the robot performance.

An overview of the proposed approach is illustrated in Fig.
2. In Section II-A we describe the controller u; for each ele-
mentary task: a regularized version of the Unified Framework
[13]. In Section II-B we describe the multi-task controller
with learned task priorities. In Section II-C we describe the
parametrized task weight functions ¢; used by our multi-
task controller, and discuss the parameters optimization. As
a learning algorithm, we propose the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [14], a derivative-
free stochastic optimization algorithm, in view of its good
exploration properties and ease of use.

A. Controller for a single elementary task

We hereby describe the torque controller for the i-th ele-
mentary task. To simplify the controller design, we decided
to adopt the Unified Framework (UF) [13]. We consider the
well-known rigid-body dynamics of a robot with n DOF, i.e.,

where q, q, ¢ € R" are, respectively, the joints positions,
velocities and accelerations, M(q) € R"*" is the generalized
inertia matrix, f(q,q) € R” accounts for Coriolis, centrifugal
and gravitational forces and w;(q,q) € R" is the vector of
the commanded torques of the i-th task. Using the same
notation as in [13], we describe the task as a constraint,
given by h;(q,q,7) =0 , where h; € R" is at least a twice
differentiable function, where m is the task dimension. By
differentiating the constraint with respect to time, we obtain:

Ai(anaI)q:bi(qaq7t)7 (2)

where A;(q,q,7) is a known m x n matrix and b;(q,q,?) is a
m x 1 vector. For example, given a simple tracking control
task with h;(q,q,7) = q — q¥*, where q?** corresponds to a
desired trajectory. By computing the second order derivative
in t we obtain § = §¢¢*, where b= q9** and A; =1I (with I the
identity matrix). Applying Gauss’s principle, it is possible to
derive a controller that fulfils the constraints by minimizing
the cost function §;(¢) = u; N;(¢)u;, where N;(¢) is a positive
semidefinite matrix. The optimization problem is defined by

u; = argmin §;(¢) = argmin [uiTN[(t)u[] , 3)

u; u;

subject to Eq. 1 and 2. The solution to this optimization
problem is given by

_1 _1
u =N 2(AM N 2)#(b; - AM'f), (4)

where (-)* is the Moore-Penrose pseudoinverse and the
1

upper script in N, 2 denotes the inverse of the matrix
square root. Controllers derived from UF are sensitive to
kinematic singularities, due to the matrix inversion [15]. To
overcome this problem, we reformulate the UF controller in
a regularized fashion, as classically done at the kinematic
level, for instance in [16]. The objective function of UF
can be reformulated in such a way that the solutions of
the optimization problem naturally exhibit a damped least
squares structure (at the price of a loss of precision in
the execution of the elementary task). Given the dynamical
model of the robot (Eq. 1) and the constraint that describes
the task (Eq. 2), we define the regularized optimal control
problem:

N,'(t)
Ai

argmin §;(t) = argmin | (A;g—b;)* +u) —=w|, (5

u;
where ; is the regularizing factor with a [>-weighted norm
for the regularization term. In the simplest case, A; can be a
manually-tuned constant value, or automatically determined
by more sophisticated methods, as done in [17], based on
the smallest singular value of the matrix to invert. To derive
the closed form solution of the optimization problem, we
substitute q in Eq. 5 with the expression obtained by solving
the dynamical constraint for . The resulting closed form
solution of the controller for a single elementary task is then:

w=N"M; (T4 VNIV) (b + M), (6)
with Ml‘ = AZ'M_l .

B. Controller for multiple elementary tasks with soft task
priorities

With reference to the scheme of Fig. 2, we consider a num-
ber n; of elementary tasks, that can be combined by the robot
to accomplish a given “global” mission. The solution of the i-
th task is provided by the torque controller u; described in the
previous section. Each task is modulated by a task priority

constitutes the activation policy that determines the overall
robot movement. The robot controller is therefore given by

u(q,q,1) =Y o(r)wi(q,q) , 7
i=1

where ¢ is the time, and q and are the robot joint positions
and velocities. The task priorities @;(¢) are scalar functions
and their time profile can be optimized. We automatically
tune the task priorities with a learning algorithm. We seek
the best task weight functions that maximize a defined
performance measure, or fitness, evaluating the execution
of the global task. As finding the optimal functions o (¢)
is an intractable problem, we turn the functional optimiza-
tion problem into a numerical optimization problem by

representing the task priorities with parametrized functional
approximators, o;(t) — &;(m;,t), where 7; is the set of
parameters that shape the temporal profile of the i-th task
weight function. The controller then becomes:

u(q,q,1) =Y 0(m;,1)ui(q,q) ®)
i=1

Finding the optimal task priorities consists therefore in find-
ing the optimal parameters 7}, which can be done applying
a learning method to maximize the fitness ¢.

C. Learning the task priorities

We model the task priorities by a weighted sum of
normalized Radial Basis Functions (RBF):

. er—lnikll’k(ﬂkao'kat)>
0;(m;,t) =S 5)
() < Zk;] V’k(nukao-bt)
where Wi (i, 0, 1) = exp(—1/2[(t—w)/04]?), with

(U, 0x) being mean and variance of the basis functions, n,
is the number of RBFs and &; = (7;1,..., Wy,) is the set of
parameters of each task priority. S(-) is a sigmoid function
that squashes the output to the range [0, 1]. When the task
priority is 1, the task is fully activated; when its value is O,
the task is not active.

In our method, learning the task priorities is implemented
by learning the free parameters f; of the weight functions
(Eq. 9). We optimize the parameters with respect to a known
fitness function ¢ = ¢(q=1 . 7,w=1_ . 1,t), given T time
steps. ¢ describes the performance of the controller in fulfill-
ing its global mission. The fitness function could be a simple
measure of success in case of goal reaching, the time duration
of a movement, the energy consumption etc. More criteria for
optimizing robot motions in optimal control frameworks are
reported in [18]. If the fitness function ¢ is differentiable with
respect to the controls and the parameters (which requires
the function approximators to be differentiable as well with
respect to the controls [17]), then gradient methods can
be used. If the fitness is not differentiable with respect to
the parameters, then a derivative-free method can be used.
Thus, derivative-free methods are appealing, since they do
not constrain the design of the fitness function. Furthermore,
recent results showed that it is possible to achieve very fast
performances in trial-and-error learning with derivative-free
methods [19].

As optimization algorithm, we use CMA-ES [14], which is
a stochastic derivative-free optimization strategy that is suit-
able for non-linear and non-convex objective functions. This
method belongs to the class of evolutionary algorithms. At
each iteration of the algorithm, new candidate solutions are
generated from a population of candidates through stochastic
sampling. The fitness function is then used to evaluate the
candidates. In our case, each candidate is a possible set
of parameters for the task priorities x = {®y,..., %, } (Eq.
9). At each iteration of the algorithm (called generation),
a new population of candidates is generated by sampling
a multivariate normal distribution ./"(m,Q), where m and

Q represent respectively mean and covariance of the dis-
tribution. A fitness value is computed for each candidate
in the current population and, according to the fitness,
only the most promising candidates are kept to update the
search distribution. Given the n. candidates {xi,...,Xp.},
the algorithm selects the n;, < n. best ones according to
their ordered fitness values {%1,...,%,, }. It uses the selectec
candidates to compute the mean of the sampling distributio:
at the next iteration: m") = Y @;&;, with ¥1* | &; = 1.
Then the covariance matrix is updated as:

Q) = (1 —¢ — 2)Q+c1papd +c2 Xk, @i (¥i
with y; = (%, —m), ¢; and ¢, two predefined parameter
(see [14] for more details). The symbol pg is a tern
measuring the correlation among successive generations. The
covariance is related to the exploration rate of the algorithm
a scalar value between [0,1] and the only parameter of the
algorithm that needs to be tuned. This version of CMA-E!
does not support constrained optimization, which means that
the optimized solutions that are not physically feasible on
the real robot must be dropped and the learning algorithm
restarted. In the follow-up of this work, we will use a version
that supports constraints [20].

)T

III. EXPERIMENTS

In this section we discuss our experiments on learning the
task priorities. We start showing on a simulated Kinova Jaco
arm that the our learning method improves the performance
of the movement in terms of fitness values, over existing
task priorities that have been manually tuned. We also show
that the optimized trajectories are robust with respect to the
initialization of the learning process. We compare on a real
Jaco arm some typical learned policies with the manually
tuned one, showing that our method improves the real robot
motion. Finally, we compare on a simulated Kuka LWR
the performance of our method with the state-of-art GHC
controller [6] . We show that our method is not only better
in terms of performance, but also computationally 10 times
faster.

A. Learning the task priorities for the Kinova Jaco arm

The setting for the first experiment is shown in Figure 1.
The Kinova Jaco arm (6 DOF), starting from its zero
configuration, must reach a desired position behind a wall
with its end-effector. The goal position is difficult to reach,
and the robot kinematics is such that it is not straightforward
to manually design a trajectory that does not collide with the
obstacle and brings the hand to the goal.

There are 3 given elementary tasks. The first is about
reaching the Cartesian position p* =[0, -0.63, 0.7] with
the end-effector (goal). The second is about reaching the
Cartesian pose [-0.31, -0.47, 0.58] with the 4th link. The
third is about keeping the joint configuration [120, 116, 90,
0, 0, 0] (degrees).We design the following fitness function

¢ €[-1,0]:
()

1

Y pi—pll | X (w3
5 +

Smax

.,T)=
’) Umax

fitness

where T is the number of control steps (the task
duration is 20 seconds, and we control at 10ms),
p; describes the end-effector position at time i and
p* is the goal position, || -||3 is the square of the
¢> norm and g} and u,l are two scaling factors.
The first term of ¢
penalizes the cumulated

-0.04 —our method
—manual tuning| distance from the
w008 goal that enforces a
~0.08 minimum time transfer
' o trajectory for the robot
arm, while the second
-0.12¢ term penalizes the
ota global control effort.
To ensure that the
0% fo 20 30 40 50 60 70 80 generated controls
generations are feasible for the
real Jaco robot, we

Fig. 3. Average fitness value for the task
priorities learned with our method, for
the 3-tasks experiment with the simulated
Jaco arm. The horizontal line indicates
the fitness of the manually tuned solu-
tion. The mean and standard deviation

set the fitness to -1
whenever the generated
policy violates one of
the robot constraints:

of the fitness for the learned policies is a collision with the
computed over 100 restarts of CMA-ES, environment, joints
each with 80 generations and random position ranges and

initialization of the parameters. We only
retained the fitness for the experiments
that provided solutions satisfying the real
robot constraints.

maximum joint torques.
This ad-hoc solution is
also a consequence of
the learning algorithm.
Fig. 3 shows the average fitness value computed over the
eleven optimized trajectories satisfying the constraints,
found on 100 restarts of CMA-ES.

1 15

=)

o

cartesian position [m]
joint torques [Nm]

!
&

10 15 20

time [s]

o
time [s]

Fig. 4. Mean and variance of the Cartesian trajectory of the end-effector
and the joints torques of the simulated Jaco arm, generated by learned task
priorities over 100 trials of the 3-tasks experiment (see text in Section III-
B). Even starting from random initialization of the task weight parameters,
the learning process is eventually able to produce similar optimized motions
of the robot that fulfil its ‘global’ task.

B. Robustness of the learning process

Different profiles of the task priorities can yield similar
movements of the robot. It is however important to show
that the learning process is able to optimize the task priorities
in a robust way, that is providing similar optimal solutions.
We therefore execute N=100 replicates of the experiment in
Section III-A, with a simulated Jaco arm and three tasks. In
each experiment, CMA-ES runs for 100 generations with
an exploration rate of 0.5. The parameters are randomly

Manual Tuning Learning

&
wn wn
g g
=08 o =08
- -
0. 204
2 .=
— —-
204 204
= 4
2@ 0.2] % 0.2]
+ 0 + 0
0% 15 20 0% 5 15 20

10 10
time [s] time [s]

(a) The task priorities evolving in time.

task 1 ¢l
8 8 —task2”
—task 3"
B4 B¢ task 1 c2
=) o) —-task 2
<] [
vy vy
%) 7]
< <\
=2 B
00 5 10 15 20 G0 5 10 15 20

time [s]

(b) The task errors.

=l ; X 8
e |
—z

£ g
Eos Zo.
: :

0 0
=) =]
5 -
Los| [
g g]
S o0 510 15 0 & o0 510 15 20

time [s] time [s]

(c) The end-effector trajectory in the Cartesian space.

Ny
3

"ep" o
: &
—=150| —=150
g =]

o =]

<5 100) -3 100
= =

8 z

R, 50 R, 50
2 8
= =
.= =

o]
2 2

0 5 10 15 20 0 5 15 20

10
time [g] time [s]

(d) The joints trajectories.

joint torques [Nm]

N
=

(e) The measured joints torques (estimated by the motor currents).
~0.06,

S|
A
08/ WATN\H
0.08 V4
7 _01/\/\ \j\\
g —fixed init
£-0.12 —random init
—manual tuning
-0.14 f
|

0 40

10 20 .30
generations
(f) The fitness values.

Fig. 5. Comparison between a manually tuned (left side) and two typical
learned (right side) policies for the 3-tasks experiment performed with the
real Kinova Jaco arm. On the right, a solid line corresponds to a policy
optimized starting from a fixed/known initial value of the priorities (fixed
init), in this case the priorities found by manual tuning; the dashed line
corresponds to a policy optimized starting from random values (random
init). The final fitness values are: —0.1431 (manual tuning), —0.0585 (fixed
init) and —0.0644 (random init).

initialized. We compute the average and standard deviation
of the solutions that satisfy the robot and task constraints.
Figure 4 shows the average end-effector trajectory in the
Cartesian space and the corresponding joint torques. Despite
the redundancy of the robot and the one of the task priorities,
the final robot movements are smooth and quite consistent
with each other. Their average fitness is —0.0874 +0.0213.
Overall, this result indicates that learning the soft task
priorities starting from scratch (i.e., where an initial guess for
the activation of the task priorities in time is not available)
is a viable and robust option for generating the motion of
redundant robots.

C. Experiment on the real Kinova Jaco arm

We compare in Fig. 5 the effect of three different task
prioritizations on the real Jaco arm. In the left column, we
show the robot movement generated by task priorities that
were manually tuned by an expert user of the Kinova arm;
on the right column, we show two typical robot movements
generated by learned task priorities, which were optimized
with CMA-ES starting from a known initial value (the
manually tuned task weight functions) and a random value.
We set the exploration rate in CMA-ES to 0.5 and perform
40 generations. Learning the priorities has a beneficial effect
on the smoothness of the trajectories, which becomes evident
when comparing the plots of the end-effector (Fig. 5c), joints
positions (Fig. 5d) and torques (Fig. Se) and the task errors
(Fig. 5b). We evaluate the fitness using the commanded joint
torques u; and the kinematics and dynamics model of the
Jaco arm to compute p;. The fitness value for the manually
tuned task priorities is —0.1431. The fitness values for the
two optimized solutions are better: —0.0585 and —0.0644
initializing the parameters with fixed and random values
respectively. Overall, this experiment illustrates that learning
the task priorities improves the real robot motion with respect
to an existing manually tuned solution.

D. Comparison with the state-of-the-art GHC

In this experiment we compare the performance of the task
priorities learning applied to our method and to the state-of-
the-art multi-task controller GHC [6].

In the GHC, each task is associated to a null space
projector of the extended Jacobian that contains the analytical
description of all the task objectives. Soft task prioritization
is achieved because the null space projector depends on a
set of manually designed weight functions ranging from 0
to 1, that control if each task is fully or partially projected
in the null spaces of the other tasks with higher priority.
The controller is the solution to a quadratic optimal control
problem subject to the robot and task constraints — see [6].
The soft task priorities are introdu/ced as a further constraints,
formulated by § =Y, Pi(A;)q; , where P;(-) is the null
space projector associated to the i-th task, A; is a matrix
that depends on the task priorities, q; are intermediate joint
accelerations associated to each task and ¢ are the joints
accelerations. To enable the comparison with our method,

-0.3-

?
0.35- ooaw.:wm
.
“f'y Lot W
» -0.4- ~d"
3 K
C -0.45- o
=
= *
-0.5- *— our method
+— GHC + learning
-0.55
0 10 20 30 40 50 60 70 80

generations

Fig. 6. Comparison between our method and the GHC modified to learn
the task priorities with CMA-ES. The plot shows the mean and the standard
deviation of the fitness in R = 20 trials of the experiment with the simulated
KUKA LWR arm (see Section III-D). For both controllers, the learning is
initialized with random parameters. Our method shows a faster convergence
and better optimization of the fitness. The average fitness is is —0.0373 £
0.0320 for our method and —0.0735 £ 0.0946 for the GHC+learning. The
two distributions are statistically different (p < 0.01 with the K-S test).

we parametrized the task priority matrix A; for each task i
in the same way as described in Section II-B.

We compare the two methods on a reaching task with a
simulated 7 DOF Kuka LWR, which was originally used in
[6]. In this scenario, the robot must reach a goal point be-
neath a rectangular surface parallel to the ground (z = 0.25m),
without collision. The are 2 elementary tasks. The first is
about reaching the Cartesian position p* =[0.6, 0, 0.15] with
the end-effector (goal). The second is about keeping the joint
configuration [0, 90, 0, -90, 0, 90, 0] (degrees). We design
the following fitness function ¢ € [—1,0]:

1 (Z?pip* N

max(|[u;—;

o(qi,..r,01,..17)= 5

6max

where || - ||« is the infinity norm. We set the fitness to —1 in
case of collision. We run 20 experiments from random initial
parameters for both methods, with an exploration rate of 0.1
for CMA-ES and 80 generations.

Our method generated solutions that satisfy the collision
constraint in 90% of the cases, while the GHC succeeded
only in 75%. Figure 6 shows the mean and standard deviation
of the fitness: our method is faster in convergence and
improves the final optimized fitness. The average fitness at
the end of the learning process is —0.0373 +0.0320 for our
method and —0.0735+0.0946 for the GHC+learning. The
two distributions of the fitness are statistically different (p =
0.0073 < 0.01, obtained with the two-sample Kolmogorov-
Smirnov test). Our method is also 10 times faster in terms of
computational time: on a standard i7 machine, the average
time for the optimization process to find a solution with 80
generations (average over 20 trials) is 3.7 x 10° 4 2.4 x 10?
seconds for our method and 3.9 x 10* + 2.2 x 10° seconds
for the GHC+learning approach.

IV. CONCLUSION AND FUTURE WORK

In this paper we address an important issue for prioritized
multi-task controllers, that is the automatic and optimal
generation of task priorities through parametrized weight

7...7T||oo)>
Umax

functions. As a first step towards an automatically tuned
controller for redundant robots, we propose a novel frame-
work with a multi-task controller where the task priorities
can be learned via stochastic optimization. We show the
effectiveness of our approach by comparing to GHC [10], a
state-of-the-art multi-task prioritized controller. We present
several results performed on a simulated 7 DOF Kuka LWR
arm and both a simulated and a real 6 DOF Kinova Jaco
arm. Ongoing work is focused on improving the current
framework from different points of view: addressing gen-
eralization, using constraints inside the optimization, and
scaling up the method to handle robots with several DOF,
e.g., humanoid robots.

REFERENCES

[1]1 Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” IJRR, vol. 6, no. 2, pp.
3-15, 1987.

[2] B. Siciliano and J.-J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Int. Conf.
Advanced Robotics, 1991, pp. 1211-1216.

[3] L. Saab, O. Ramos, F. Keith, N. Mansard, P. Soueres, and J.-
Y. Fourquet, “Dynamic whole-body motion generation under rigid
contacts and other unilateral constraints,” IEEE Trans. on Robotics,
vol. 29, pp. 346-362, Jan 2013.

[4] A. Del Prete, E. Nori, G. Metta, and L. Natale, “Prioritized motion-
force control of constrained fully-actuated robots: Task space inverse
dynamics,” Robotics and Autonomous Systems, vol. 63, pp. 150-157,
Jan 2015.

[51 J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in ICRA, 2011, pp. 1283-1290.

[6] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,”
Autonomous Robots, pp. 1-15, 2015.

[71 L. Sentis and O. Khatib, “Synthesis of whole body behaviours
through hierarchical control of behavioral primitives,” Int. Journal of
Humanoid Robotics, pp. 505-518, 2005.

[8] C. Ott, A. Dietrich, and A. Albu-Schffer, “Prioritized multi-task
compliance control of redundant manipulators,” Automatica, vol. 53,
pp. 416 — 423, 2015.

[9]1 R. Lober, V. Padois, and O. Sigaud, “Variance modulated task priori-
tization in whole-body control,” in IROS, 2015, pp. 1-6.

[10] M. Liu, S. Hak, and V. Padois, “Generalized projector for task priority
transitions during hierarchical control,” in ICRA, 2015, pp. 768-773.

[11] S.-I. An and D. Lee, “Prioritized inverse kinematics with multiple task
definitions,” ICRA, pp. 1423-1430, 2015.

[12] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” IJRR, vol. 11, pp. 1238-1274, 2013.

[13] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, “A uni-
fying framework for robot control with redundant dofs,” Autonomous
Robots, vol. 24, pp. 1-12, Jan 2008.

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies.” Evolutionary Computation, vol. 9,
pp. 159195, Jan 2001.

[15] S. Chiaverini, B. Siciliano, and O. Egeland, “Redundancy resolution
for the human-arm-like manipulator,” Robotics and Autonomous Sys-
tems, vol. 8(3), pp. 239-250, Jan 1991.

[16] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” J. Dyn. Sys.,
Meas., Control, vol. 108 (3), pp. 163-171, 1986.

[17] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and
G. Sandini, “Approximate optimal control for reaching and trajectory
planning in a humanoid robot,” in IROS, 2010, pp. 1290-1296.

[18] S. Ivaldi, O. Sigaud, B. Berret, and F. Nori, “From humans to
humanoids: the optimal control framework,” Paladyn Journal of Be-
havioral Robotics, vol. 3, no. 2, pp. 75-91, 2012.

[19] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503-507, 2015.

[20] D. V. Amold and N. Hansen, “A (I+ 1)-cma-es for constrained
optimisation,” in GECCO, 2012, pp. 297-304.

Chapter 4

Learning soft task priorities for safe
control of humanoid robots with

constrained stochastic optimization
(INRIA)

15

Learning soft task priorities for safe control of humanoid robots with
constrained stochastic optimization

Valerio Modugno!2, Ugo Chervet?, Giuseppe Oriolo', Serena Ivaldi’

Abstract— Multi-task prioritized controllers are able to gen-
erate complex robot behaviors that concurrently satisfy several
tasks and constraints. To perform, they often require a human
expert to define the evolution of the task priorities in time. In
a previous paper [1] we proposed a framework to automati-
cally learn the task priorities using a stochastic optimization
algorithm (CMA-ES), maximizing the robot performance for
a certain behavior. Here, we learn the task priorities that
maximize the robot performance, ensuring that the optimized
priorities lead to safe behaviors that never violate any of the
robot and problem constraints. We compare three constrained
variants of CMA-ES on several benchmarks, among which two
are new robotics benchmarks of our design using the KUKA
LWR. We retain (1+1)-CMA-ES with covariance constrained
adaptation [2] as the best candidate to solve our problems, and
we show its effectiveness on two whole-body experiments with
the iCub humanoid robot.

I. INTRODUCTION

Fulfilling multiple operational tasks to achieve a complex
behavior while satisfying constraints is one of the challenges
of whole-body control of redundant manipulators and hu-
manoid robots. For example, let us consider the humanoid
iCub (Fig.1) that must fulfil a “global task” by reaching
its hands towards two goal positions behind a wall while
avoiding collisions. The global task can be decomposed as
a combination of simpler elementary tasks (for example:
control the end-effector, control the pose of a particular link,
etc.) and constraints that guarantee a condition of feasibility
over the generated motions (for example: torque and joint
limits, collisions, external forces etc.).

More generally, elementary tasks can include tracking
desired trajectories, regulating contact forces, controlling
the center of mass for balancing etc. Constraints range
from mechanical limitations (e.g., joint and torque limits) to
safety specifications (e.g., collision avoidance, limiting the
exchange of mechanical forces with the environment) and
balance keeping for floating base platforms.

In the literature, this constrained control problem is usually
solved with prioritized controllers, where a set of operational
tasks are organized according to strict priorities in a hierarchy
or “stack” [3], [4], or combined with weighting functions,
also known as soft task priorities [5], [6]. Constraints are
either formulated as high-priority tasks or taken into account

*This paper was supported by the EU FP7 project CoDyCo (n.600716)
and by the EU H2020 project COMANOID (n.645097).

! Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Universita di Roma, via Ariosto 25, 00185 Roma, Italy.
modugno@diag.uniromal.it

2 Tnria, Villers-1és-Nancy, F-54600, France; CNRS, Loria, UMR n.7503
and Université de Lorraine. serena.ivaldi@inria. fr

The authors would like to thank the anonymous reviewers.

learn the task priorities

" S\

that optimize the robot
motion w.r.t. a fitness

0
_/—

to ensure that they never
violate constraints

>
>

0

; Lasks -

Fig. 1. The humanoid robot iCub performing a bimanual task with
several tasks and constraints. In this paper we optimize the task priorities
guaranteeing that the global robot behavior is safe: it never violates any of
the constraints.

by quadratic programming solvers. The task priorities and
their evolution in time are usually defined a priori and
frequently manually tuned by experts.

A new line of research is now focused on the automatic
optimization of task priorities [1], [7], [8], [9]. Most of
these approaches are based on an iterative policy learning
technique that needs many repetitions (rollouts) of the same
experiment to find a viable solution. These frameworks
poorly address the problem of constraints satisfaction when
optimizing the task priorities. For example, in [7], torques
are saturated for safety, and joint and velocity limits are
introduced as tasks. However, satisfaction of constraints for-
mulated as tasks cannot be ensured, especially in the case of
soft tasks prioritization. In [8] the balance constraint is added
as an objective to the fitness function, but this is a relaxation
of the constraint that does not ensure its satisfaction either. In
[1] we used the Covariance Matrix Adaptation-Evolutionary
Strategy (CMA-ES) [10], a derivative-free stochastic opti-
mization method that solves non-linear, non-differentiable
optimization problems, with death penalties to enforce con-
straint satisfaction on the solutions. This choice was not
efficient in terms of searching for the optimum solution,
since the exploration could easily get stuck in a constrained
region where the fitness landscape was turned into a plateau.
Furthermore, many solutions had to be dropped because of
constraints violation.

Ensuring that the optimization process yields a safe solu-
tion — where safety means not violating any constraints —
becomes mandatory if we want to successfully apply these
solutions to a real robot [11].

To approach the safety issue, in this paper we investigate
constrained stochastic optimization algorithms, and we focus
on three variants of CMA-ES: one with vanilla constraints,

one with adaptive constraints [12] and the (1+1)-CMA-ES
with covariance constrained adaptation [2]. We compare
these methods with a baseline constrained optimization al-
gorithm, (the finincon function in Matlab). To compare the
algorithms, we explicitly look for methods that can find good
solutions while ensuring zero constraint violations within a
reasonable computation time.

There exist standard benchmarks for constrained optimiza-
tion, consisting in analytic problems with several variables
and constraints and known optimal solutions. For example
Arnold & Hansen [2] tested (1+1)-CMA-ES on seven differ-
ent problems with a number of variables ranging from 2 to
10, and a number of constraints between 1 to 9. However,
in robotics the number of constraints usually grows with
the number of degrees of freedom (DOF) of the robot: for
example, with a 7-DOF robot, the joint position range (7 x 2)
and the torque limits (7 x 2) already introduce 28 constraints.
In humanoids and highly articulated systems, the number
of DOF is higher (e.g., 32 DOF for the iCub) and so is
the number of constraints. Furthermore, the number of tasks
increases with the complexity of the action, especially for
bimanual or whole-body movements. It is therefore necessary
to design new benchmarks tailored for robotics applications
to make a pondered decision about the algorithm that is
most suited to solve our problem while ensuring that the
constraints are never violated.

The contribution of this paper is twofold: first, we compare
the performance of three constrained variants of CMA-ES
with finincon on analytic and robotic benchmarks, the latter
(RB1,RB2) being new and designed ad hoc; second, we
extend the framework for learning task priorities, which we
proposed in [1], to ensure that the optimized priorities lead to
safe behaviours that never violate the constraints. We show
the effectiveness of our approach by generating optimized
and safe (zero constraints violations) whole-body movements
on the humanoid robot iCub.

The paper is organized as follows: Section II outlines
the framework for learning task priorities for controlling
redundant robots; Section III describes the constrained opti-
mization algorithms retained for the study; Section IV and
V illustrate the benchmarks comparison and the experiments
with the iCub humanoid robot respectively.

II. MULTITASK CONTROLLER WITH LEARNT PRIORITIES

Our method aims at automatically learning the task pri-
orities (or task weight functions) to maximize the robot
performance ensuring that the optimized priorities lead to
behaviours that always satisfy the constraints. The global
robot movement is evaluated by a fitness function ¢ that
is used as a measure of the ability of the robot to fulfil
its mission without violating the constraints. Our proposed
method outlined in Fig. 2 extends the framework that was
introduced in [1]. In this section we recall the multi-tasks
controller and the structure of the parametrized task weight
functions ¢, while the optimization procedure is described
in Section III, where we analyze some recent extensions of
the basic CMA-ES method that deal with constraints.

controller "global” robot

elementary task ngh} fer}ctlons mission
tasks (soft priorities) performance
robot
| fitness ¢

joints
torques

q,9

constraints

joints positions constrained

& velocities stochastic
optimization
learning updated parameters of the task weight functions
Fig. 2. Overview of the proposed method. The controller consists of

a weighted combination of elementary tasks, where the weight functions
represent the soft task priorities. An outer learning loop enables the
optimization of the task weight parameters, taking into account the constraint
violations in an explicit way.

A. Controller for a single elementary task

Here, we briefly describe the torque controller for the i-th
elementary task, which is presented in more detail in [1]. Fol-
lowing our previous work, we use a regularized closed-form
solution of a controller derived from the Unified Framework
(UF) [13]. Let us consider the rigid-body dynamics of a robot
with n DOF, i.e.:

where q, q, 4 € R" are, respectively, the joints positions,
velocities, and accelerations; M(q) € R™*" is the gener-
alized inertia matrix, f(q,q) € R" accounts for Coriolis,
centrifugal and gravitational forces; and w;(q,q) € R" is
the vector of the commanded torques of the i-th task.
Following tlhe UF formllllation, the general torque controller
is w; =N, 2(AM'N; 2)"(b; + A,M~'f), where the matrix
Ai(q,q,1) € R™" and the vector b;(q,q,7) € R™*! incorpo-
rate the information about the m-dimensional task; N; is a
weighting matrix that can be changed to achieve different
control strategies; ()" is the Moore-Penrose pseudoinverse;

and the upper script in N, & denotes the inverse of the
matrix square root. Controllers derived from UF are sensi-
tive to kinematic singularities, due to the matrix inversion
[14]. To overcome this problem, we reformulate the UF
controller in a regularized fashion, as classically done at the
kinematic level, for instance in [15]. The resulting closed-
form solution of the controller for a si Tgle elementary task is
then: u; = 1M (I, -+ MUNTIMG)~ (b + Mf) |, with
M; = A, M 7L isa regularlzmg factor (we refer to [1] for
a more accurate description of the regularization problem
leading to this closed-form solution).

B. Controller for multiple elementary tasks with soft task
priorities

Each elementary task is modulated by a task priority or
task weight function ¢;(¢). To automatically find the optimal
n task priorities {;(¢)}i1,...,,,» we transform the functional
optimization problem into a numerical optimization problem
by representing the task priorities with parametrized func-
tional approximators o;(t) — &;(&;,t), where f; is the set
of parameters that shape the temporal profile of the i-th task

weight function. Following the scheme of Fig. 2, given n;
elementary tasks the final controller is given by:

u(q,q,0) =Y 0;(%;,1)ui(q.q) -)
i=1

C. Learning the task priorities

We model the task priorities as a weighted sum of nor-
malized Radial Basis Functions (RBFs):

neooa
0i(Zit) =S <ani mky,k(uk’ckvt)>
Yl Vi (L, O,)

where Wi (i, Ok, 1) = exp (—1/2[(t — w)/0x]?), with fixed
mean U and variance oy of the basis functions, n, is the
number of RBFs and &; = (#;,..., %,) C R is the set of
parameters for each task priority. S(-) is a sigmoid function
that squashes the output to the range [0, 1]. The elementary
task is fully activated when the task priority is equal to 1,
otherwise the control action fades out until a full deactivation
occurs when the priority goes to 0. The free parameters &;
of each task weight function (Eq. 2) constitute the current
parameters set to optimize: T = (&y,..., 7y,).

To optimize the free parameters #, we introduce two
elements, the fitness function ¢ and the set of inequality
and equality constraints g, h:

o the fitness function ¢ = ¢(q/=1,..7,W=1,..7,1) com-
putes a performance measure of the global task exe-
cuted by the robot over 7 time steps with the current
parameters . The fitness function can contain different
criteria ranging from energy consumption arguments to
specific properties of the desired trajectories (e.g. speed
and smoothness).

« the constraints g,/# determine the admissible controls
to be applied to the robot. They can be dependent
on the robot structure (e.g. maximum joint torques
and joint ranges), on the environment (e.g. obstacles
and collisions), on the tasks (e.g. safety limits and
couplings), efc.

2

The objective of the next section is to formalize the
problem of optimizing the parameters & that maximize the
fitness ¢, ensuring that the constraints g,/ are satisfied.

ITII. CONSTRAINED BLACK-BOX OPTIMIZATION OF TASK
PARAMETERS

Learning the parameters & € I C R"” is a constrained opti-
mization problem, as we need to find the optimal parameters
7° that maximize the objective function J(&) : R"”? — R (by
default, equivalent to the fitness ¢):

7° = argmaxy J(7)
under the inequality and equality constraints g,A:
gi(ﬂ:) <0,i=1,...,n1; /’lj(ﬂ:) =0,j=1,...,ngc .

Following our approach in [1], we do not constrain the fitness
structure nor its differentiability properties, hence we keep
solving the problem with derivative-free methods. In [1] we
used CMA-ES [10] for the known advantage of having to
tune few parameters. To find feasible solutions that satisfy
the constraints, we adopted a death penalty approach. This

was clearly not efficient; the constant penalty applied to
the fitness has a pathological effect on the exploration of
the algorithm, possibly causing the search to get stuck in
infeasible regions.

In this paper, we adopt a different strategy and look
explicitly for variants of CMA-ES that take into account
the constraints in the exploration procedure. Our goals are:
1) to improve the efficiency of the optimization procedure
exploiting the constraint information, and 2) to guarantee that
every solution found by the stochastic optimization process
lies in a region of the parameter space that satisfies all the
constraints. Interestingly, we are not interested in algorithms
that permit constraints relaxation (hence violation) to find
a solution: this is typically the case of real-time quadratic
solvers (e.g. quadprog and qpOASES).

Among the multitude of constrained black-box optimiza-
tion algorithms, we focused on three variants of CMA-ES: a
vanilla penalty CMA-ES, the CMA-ES with adaptive penalty
approach proposed in [12] and the (1+1)-CMA-ES with
covariance constrained adaptation proposed in [2]. The first
is a baseline CMA-ES that applies a penalty to the fitness
that is proportional to the constraint violation. The second
method is similar in principle, but the penalty weights are
changed following a heuristic that depends on the constraint
violation The third does not rely on penalties but updates
the covariance whenever a constraint is violated, to drive the
exploration away from infeasible regions.

In the rest of this section, we outline the three methods
explaining their differences with respect to CMA-ES. In the
presentation, we will use the following symbols:

o J(-): objective function

« nyc: number of inequality constraints g;(-)

o ngc: number of equality constraints #;(+)

e nc = njc +ngc: total number of constraints

o IT C R": parameter space

o ;. € IT: k-th candidate at the current generation

o K: total number of candidates for each generation

o K,.: number of best candidates or elites

e T, best candidates of the current generation

o A (@,X): Gaussian distribution with mean & and co-

variance ¥

o o7 step size

o [(m;): penalty factor

o J(my) =J(my) +1(m;): penalized objective function

A. Stochastic optimization with CMA-ES (no constraints)

A single iteration (called generation) of CMA-ES [10]
consists of several steps. A set of K samples 7y is drawn
from a multivariate Gaussian distribution .4 (%, 6>E) with a
o2 step size; for each sample 7, we perform the evaluation
of the objective function J, called fitness. The samples are
sorted using a ranking procedure based on the fitness and an
update of the Gaussian distribution is performed according
to the best K, candidates 7.k, called elites.

The update step affects the mean, covariance, and step size
of the search distribution .4 (&, 6>E). The evolution of the
mean is influenced by the probability weights P, of each elite

CMA-ES without constraints

function CMA-ES
for each gen = 1, ..., NGENERATIONS do
for each k=1,... K do
Xy ~ N (%, 62E)
Ji =J (@)
end for
Tk, = SORT(My=1.x,Jk=1:k)
B = Y&, Py with Tpe Po=1
" = UPDCOV(Z"", Pe=1:k,)
" = UPDSIGMA(0)
7‘: j— ﬁnew Z — znew o= Gn(’W
end for
end function

> samples
> evaluation

> sorting

Fig. 3. Pseudo-code for the basic CMA-ES without constraints.

candidate. A common choice is P, =1n (0.5(K, + 1)) —In (k).
In CMA-ES, premature convergence is avoided by tuning the
step size 62. Both 62 and X are updated by combining the
information from the last generation and all the previous
ones. For the update of the stepsize o> and more detail
about the algorithm, we refer the reader to [10]. To initialize
CMA-ES the user has to specify the exploration rate, a
scalar value between [0,1] that controls the starting value
of the covariance matrix. Fig. 3 shows the pseudo-code of
the algorithm.

B. CMA-ES with Vanilla Constraints

The vanilla penalty functions method relies on adding a
penalty term to the fitness of a candidate that depends on the
constraints violation of the candidate. The method employs a
penalized objective function J(7;) = J(m;) +1(m;) with the
penalty factor /(7)) defined as:

[(m) = X7 rimax(0,8:(mx))* + L35 ¢l (me) |
where r; and ¢; are positive constant values. In Fig. 4 we
present a pseudo-code for this variant where we refer to the
penalization routine with PENALTY(+).

C. CMA-ES with Adaptive Constraints

The previous method is by far the simplest and the most
intuitive, as it applies a penalty that depends on the candidate
m;,. However, one may want to make the penalty term
variable, for example depending on the exploration path.

Collange et al. [12] proposed a penalty function approach
where a set of adaptive weights are tuned to prevent the
search process from getting stuck in a local minima of
the penalized fitness function J(-). A penalized objective
function J(7;) is therefore used. The key idea is that the
penalty factor /() is built to consider the number of feasi-
ble solutions per each generation and the activation of each
constraint, determined by a heuristic tuned by a user-defined
&. In particular, one assigns /(%) = Y1, w;[¥;" (m)]?, where
wi, i =1,...,nc is the set of adaptive weights, and % (-)
is the positive part of the so-called €-normalized constraint
values 7;, which are used to identify the active constraints.
The e-normalized constraint values 7; are defined as:

- lgi(m) +&l /&
"= { Ii() | /&

for inequality constraints
for equality constraints

3

The user can tune the definition of the constraint violations
and the relaxation of the constraints through the parameters
€ >0,i=1,...,nc. For equality constraints /;(-), a candidate
solution m; is labelled “feasible” if 0 <7, <1 and “infeasi-
ble” otherwise. For inequality constraints g;(-), a candidate
solution m is labelled “feasible” if 3 <1 and “infeasible”
otherwise (Fig. 5).

The weights update is driven by the ratio of feasible
solutions for all the constraints:

r/"eas
i

7_f eas
i

If all the samples @, with k = 1,...,K satisfy the i-th
constraint, then rlf ¢ — 1 otherwise rlf “ < 1. So 7{6‘” =1
only when all the samples satisfy the i-th constraint for np+2
generations. Once this condition is met, the weight w; related
to the i-th constraint is decreased almost surely (in a statis-
tical sense). The adaptation rule for the weight w; after each
generation is defined as: w; = w; exp(Prarger — rlf), where
Prarger 18 @ value that changes at each iteration according
0 Prarger = (1 /Knp)l/ 7 where 9 represents the cardinality
of the elements’ set that satisfies i = 1,...,n¢ : 7{6‘” <1
and K is the number of samples. As a rule of thumb,
when rlf ““> Prarger the weight w; decreases, otherwise it
increases. In Fig. 4 we provide a pseudo-code for this
variant, where we refer to the weight computation routine
as UPDATEWEIGHT(-). For more detail on the method we
refer to [12].

This method is more interesting since the penalty fac-
tor applied to the objective function changes during the
optimization process depending on the number of feasible
solutions that do not violate the constraints, considering the
relaxation acting on the equality constraints. With respect to
the vanilla method, the penalty factor here is not constant
over the parameter space and depends on the exploration
path in the parameter space. This decreases the possibility
of getting stuck in local minima or flat areas of the fitness.

_ # feasible solutions for the i-th constraint in the curr. generation
- K
= average of r,f ““ over the last np +2 generation

D. (1+1)-CMA-ES with Covariance Constrained Adapta-
tion

The third method, proposed by Arnold et al. [2], is an
extension of (1+1)-CMA-ES with active covariance adapta-
tion [16]. As opposed to the other two methods, here we
do not have a penalty factor, i.e., the objective function is
unchanged, but there is a different exploration strategy that
exploits the constraints information to change the covariance
and keep the optimization in a feasible region.

A notable difference with the classical CMA-ES is the fact
that there is only one sample per generation (7, therefore
K = 1), that is generated according to the following rule:

my =mn+oDz “

where D is the Cholesky factor of the covariance matrix
L =D'D and z is a standard normal distributed vector
z ~ A(0,I). The algorithm stores the information about
the successful steps in a search path s € R"?. Each time a

CMA-ES with vanilla constraints

function CMA-ES function CMA-ES

CMA-ES with adaptive constraints

(1+1)-CMA-ES with Cov. Const. Adapt.

function (1+1)-CMA-ES
Tt = FINDFEASIBLESTARTINGPOINT()

for each gen=1,...,nGenEraTIONS O for each gen =1,...,nGeneRATIONS dO
for k=1,....K do for k=1,...,K do
ny ~ N (®,6%E) m, ~ N (®,0%X)
end for end for
for k=1,...,K do for k=1,...,K do
S =J(m) Ji = J(®)
if CONSTRVIOLATION(7;) then end for

Ji = PENALTY (7., Ji)
end if

end for
Tk, = S?RT(”k:]:KaJk:KI:K)
7’.'"‘:‘”' = Zkil V2% 7% Wlth Zk;1 P=1
2””". = UPDCOV(IL’"PW,P](:] :](F)
6" = UPDSIGMA(C
7_: — irVIEW Z — ZVIL’W 6 — o.new

[I,r,7] = COLLECTVIOLATION(T;, €)
w"" = UPDATEWEIGHT(w, 1,T)
Jix = WEIGHTPENALTY (w"?"])
Tk, = S,(()RT(”k:]:Kajk:,é:K)

new e 1 e j—
”m»w = zk:l V2% 7% Wl)th zk:l P=1
X" = UPDCOV(Z"", P—1:k,)
6" = UPDSIGMA (0O
I_L' — iznew Z — Znew o= o-llEW

for each gen = l,. - wNGENERATIONS do
7, =&+ oDz (Eq.4)
if CONSTRVIOLATION(7¢) then
D" = UpPCOVCONSTR(); D = D"
else
Jnew — J(Il-'1)
if /" > J then
D" = UpCovSucc()
6" = UPDSIGMA(0)
” — 75|§ D — DIZ(’W; o= an'w
else if /" > J°! then
D" = UPCOVACTIVE(); D = D"
end if
end if

end for
end function

end for
end function

Fig. 4.

end for
end function

Pseudocode for the three variants of constrained CMA-ES: the first is with vanilla penalty (Section III-B), the second is the adaptive penalties

method of [12] (Section III-C) and the third is a (1+1)-CMA-ES with covariance constrained adaptation as in [2] (Section III-D).

equalities

inequalities

feasible infeasible

Fig. 5. This illustration shows the relation between & and ¥ for inequality
and equality constraints as in Eq. 3. As described in Section III-C, the green
and red regions identify the constraint values that are respectively labeled
as “feasible” and “infeasible”. One may notice that & induces a relaxation
for the equality constraint: therefore it could be possible to label as feasible
a solution that violates the constraint (how much depends on €). On the
contrary, it is noticeable that 7,-* in the inequality constraint also includes a
boundary region determined by & where the constraint is satisfied.

candidate outperforms the current best, s and D are updated
(UpCovSucc in Fig. 4):

" =(1-c¢)sy/c(2—c)Dz

\/1—ch + 2
D — /1—63'_0\,])4- ZCOV 1+Ccov‘|vj'r|| -1 SWT
||WH l_ccuv

where ¢, and ¢ are both factors that control the update

rate of s and D respectively, while w = D !s. Instead, if the
current candidate is feasible but its performance is lower than
the predecessors, the Cholesky factor D is actively updated
(UPCOVACTIVE in Fig. 4):

L CanlldP)
1+ ceov

Dnew: /1+CCTOVD+ V 1+C;V

22

where c_,, is again a constant that determines the update rate.
In this case s is not updated because the current candidate
is not better in terms of fitness.

To handle constraints, the key idea is to update the

covariance matrix, by reducing the components of Dz in

the direction that is orthogonal to the constraint whenever
a constraint is violated, as illustrated in Fig. 6. Each time
the j-th constraint is violated, we update the corresponding
constraint vector vj € R" and the matrix D (UPCOVCONSTR
in Fig. 4):

Vi = (1—c.)vj+cDz

J
B & 1 Viw
ch 1 Z gj(m>0) wlw
j=1"gj(m>0) j=1

T
D™ =D —

where ¢, and f are constants that tune the update step
respectively for v; and D, w; = D’lvj and lgj(,,1>0) is equal
to one when g;(7;) > 0 and zero otherwise.

In summary, the method searches for the optimal solution
by testing one sample at the time and accounting for the
constraints in the covariance adaptation to stay away from
infeasible regions. The algorithm is designed in such a
way that the mean of the search distribution is updated
only if the fitness improves and the candidate is a feasible
solution; these two elements ensure that the solution of
the optimization problem always satisfies the constraints.
However, unlike the other methods, this requires a feasible!
starting candidate to work, otherwise the exploration process
quickly gets stuck. Hence, this method cannot be started from
scratch or random values, but needs the pre-computation
of a feasible starting point. This is not an issue, since we
can always find a feasible starting point that satisfies all the
constraints, even if it does not enable the robot to achieve
the global task goal (a quick solution is to set the robot in a
feasible posture and keep this position by setting the posture
task priority to 1 and the others to 0).

IV. BENCHMARKING THE ALGORITHMS

In this section we test the algorithms described in Section
III to decide which one better suits our problem. We compare
their performances on five different benchmarks:

A candidate solution is feasible if it satisfies all the constraints.

constraint
violation

constraint

4+

i

.,
.

\

Fig. 6. This illustration shows the effect of the covariance adaptation with
constraints, as described in Section III-D. A linear inequality constraint,
represented by the vertical thick line, divides the parameter space into a
region where the constraint is not violated (light grey) and a region where the
constraint is violated (dark grey). The covariance D of the search distribution
is updated in such a way that the successor samples will not fall into the
region where the constraint is active: the updated covariance D"¢" is directed
orthogonally with respect to the constraint.

— 907 np =10,njc =8, ngc =0

- 909 np="Tnc=4ngc=0

— HB: np = 5,!11@ = 6,nEc =3

— RB1: np = 15,}’11C = 32,"EC =0

— RB2: np =]5,711(‘ = SO,HEC =0
The first three are classical benchmarks for constrained op-
timization [2], that is analytic problems with known optimal
solutions; the last two are new benchmarks that we designed
ad hoc to evaluate the performance of the algorithms on
robotic problems with growing complexity. RB1 is a problem
inspired by our previous work [1] where a KUKA LWR
(7DOF) has to reach a goal position with its end-effector
behind an obstacle, while satisfying constraints of joint
position limits, joint torque limits and obstacle avoidance.
RB2 has a similar setting with the addition of a second
obstacle to avoid and another set of constraints coming from
joint velocity limits. To compare the performance of the
algorithms on these benchmarks, we define the following
metrics:

o my: distance from the optimal solution, defined as m; =
[— 7*||, where ®° is the optimal solution (known)
and 7* the best solution found by the constrained
optimization algorithm;

e my. constraint violations, defined as mp =

Yic le(i,m*)|, where &(i,®) = 1y z)-08i(m) for
the inequality constraints and é(i,) = 1, ()0 (%)
for the equality constraints — basically it sums all the
constraints that are violated;

e m3: number of steps to converge, or settling time,
defined as m3 = ny(8), the number of steps after which
the fitness function reaches a steady state condition, i.e.,
its value is bounded between +6% of the steady state
value — here, we set 6 = 2.5;

o my: best fitness, defined as my = J(7*), i.e., the fitness of
the best solution found by the constrained optimization
algorithm.

To provide a baseline, we use the (deterministic) con-
strained optimization function fmincon in Matlab, using the
SQP method. This is a suitable choice because it does not
require the gradient of the objective function for non-linear
constrained optimization problem with nonlinear constraints.

Since (1+1)-CMA-ES with covariance constrained adap-
tation (Section III-D) needs a feasible candidate solution
as a starting point, in order to make a fair comparison
all the algorithms start from the same initial position. We
perform 40 repetitions of the optimization process per each
test problem for each algorithm with an exploration rate of
0.1 and a 5000 samples to assure the convergence of the
methods.

Fig. 7 shows the results of the numerical experiments with
the five benchmarks. The top row reports on the results for
g07, g09 and HB with metrics m, m;, m3, while the bottom
row reports on the results for the robotics benchmarks RB1
and RB2, with metrics my, msz, m4 (m; cannot be used in this
case because the optimal solution &° is not known). We also
compared the four algorithms in terms of computational time,
and did not find significant differences (for example, the
optimal solution for RB2 is found on average in &=1.7e+04
s for the CMA-ES variants and 1.9e+04 s for finincon on a
i5 laptop with Matlab).

(1+1)-CMA-ES with covariance constrained adaptation of-
fers the best trade-off between performance and constraints’
satisfaction both on the analytic and the robotic benchmarks.
It always ensures full satisfaction of the constraints while the
other methods sometimes fail. Its settling time is comparable
to the other stochastic algorithms, while finincon converges
faster. fimincon could seem more appealing, but on the robotic
benchmarks its best fitness is lower and actually quite close
to the fitness of the starting point (meaning that the algorithm
does not really “explore”). Therefore finincon does not seem
a suitable candidate for solving robotic problems with a lot
of constraints.

The different performances of the algorithms in the ana-
Iytic and robotic benchmarks confirm the benefit gained by
designing two new robotics benchmarks RB1,RB2. Overall,
considering the zero constraint violations and the capability
of finding a good solution, we choose to use (1+1)-CMA-ES
with covariance constrained adaptation for our experiments
with the iCub robot.

V. ROBOTIC EXPERIMENTS

In this section, we apply (1+1)-CMA-ES with covariance
constrained adaptation to our multi-task control framework
(Section II). We use it to optimize the task priorities and
to obtain a solution that never violates the constraints. In
the following, we report on the experiments performed to
optimize the whole-body movements of the iCub humanoid
robot.

We designed two experiments using the 17 DOF of the
upper-body of the robot (arms and torso). In the experimental
scenario, a rectangular obstacle similar to a wall, that is as
large as the robot’s chest and 2 cm thick, is placed about 20
c¢m in front of the robot.

The first experiment is aimed at reaching a goal Cartesian
position behind the wall with one hand. There are three ele-
mentary tasks. The first is about reaching the desired Carte-
sian position p} = [0.35,—0.15,0.7] (m) with the right hand
frame of the robot. The second task is reaching a desired

Distance from the optimal solution () Constraints violations (mz) Settling time (mg)
20 T T
T [: T 140[_ = (1+1)CMAES ad. cov.
(LF)CMAES ad. cov. + | 3 (1+1)CMAES ad. cov. | i El ! . I CMAES vanilla
[CMATS vanilla | * I CMAES vanilla 1208 | H ' Bl CMAES adaptive
15 CMAES adaptive i | 25 CMAES adaptive L0t -fn'nincon
| fmincon T 7 fmincon + 100 . +
I .
, 80
10 B 15 E :
} | 60
+ 1- ' -E- -
5 - N M T 40 . i
Lo L 05 E . 20 . |
= . ;s + i g+
0;.:.7_ ey S 0 — - = . - = 0 - - = =
g07 g09 HB go7 go9 HB go7 g09 HB
Best fitness (n.4) Constraints violations (m2) Settling time (1m3)
! (1+1)CMAES ad. cov.
01 — (1+1)CMAES ad. cov. 04 - (I HCMAES ad. cov. 40 [CMAES .
| . . ! CMAES vanilla
CMAES vanilla 035 i [0 CMAES vanilla B CMAES adaptive
0.2 =I(_’MAP‘5 adaptive ' i CMAES adaptive 35 | fmincon
mincon H fmi — =
- . 03 g M fincon sl [= = T - .
0.3 | i : = .
g T 0.25 25 ’* .
0.4 T B —
L = = T = 0.2 200 | |
05 | A T+ |
i - . 015 15 i
0.6 _— 01 10
0.05 5 i i
-0.7 i - i
Of = T - — —_— e 0l o= T —
RB1 RB2 RB1 RB2 RB1 RB2

Fig. 7. Performance comparison of the three constrained CMA-ES algorithms and the baseline finincon algorithm from Matlab using the SQD method.
The top row reports on the results on three standard analytical constrained optimization benchmarks (g07, g09, HB - see [2]). The bottom row reports on
the results on two robotics benchmarks (RB1, RB2) that we designed ad hoc to evaluate the performance of the algorithms on robotics problems.

Fitness and constraints violations Tasks priorities

o1 Joint torques [N*m]

03 fitness

— constraints violations ? ; u,
| | g —u,
04 . | .
—
05 { y | Uy
-6/ 1 Uiy
— \//\ ~ — Uy
0.6 1
f . ="\ :
: !

0 50 100 150 200 250 300 350 400 0 5 1[0]
generations C t[s)
&

»

i
!

Fitness and constraints violations Joint torques [N*m]

A i B
Tasks Priorities — i =
— "
1 i
0
—u
08 /\5 / —u
0.1 1
A B

fitness 06
o2 —constraints violations |

0.4 —_— -
03/) h

.
:

. — s

B —— —%

r_- £ QAL & i

n_/ / | —,

-0.52" 1

0 50 100 150 200 250 300 350 400
generations

o

5 10 5) 5 0
C t[s] D time [s]

Fig. 8. Two experiments with the iCub, about reaching a goal behind the wall with one or two hands. A) The robot’s movement visualized by the
mex model. B) The median constraint violation and fitness optimized by (1+1)-CMA-ES with covariance constrained adaptation (over 25 experiments) the
constraints are never violated C-D. The task priorities and joint torques of the best solution. The experiments are also shown in the attached video.

Cartesian position p},, = [0.24,—0.23,0.7] (m) with the uration q* = [0,45,0,0,—20,30,0,0,45,0,0,0,30,0,0,0,0]
elbow frame. The third task is keeping the initial joint config- (deg). In sum, the goal is hidden behind the wall, and to

reach it with the hand the robot must bend its elbow around
the wall corner; the third task should prevent the robot from
moving the right arm and the torso. The task priorities are
approximated by RBFs with n, =5, therefore np =5 x3 =
15. There are nc = njc = 73 inequality constraints: joint
position limits, joint torque limits and distance constraints to
avoid collisions between the robot and the obstacle. Precisely,
a minimal distance of 3 cm is required between the obstacle
and a set of pre-defined collision check points (located at
the origin of the frames of right shoulder, elbow, wrist, hand
and head). For this experiment we use the following fitness
function:

1{X p—pill xlw?
> +
2 Emax

¢:7

(5)
Umax

where ¢ € [—1,0], T is the number of control steps (the task
duration is 20 s, and we control at 1 ms), p,; is the right
hand frame position at time i, p; the goal position for the
hand frame and €, = 120 and u,, = 3.5 * 10° are two
scaling factors. The first term of ¢ penalizes the cumulative
distance from the goal, while the second term penalizes the
global control effort.

The second experiment complicates the first by adding 2
more tasks. The aim is to reach a Cartesian goal position
with both robot hands. Two Cartesian goal tasks for each
hand and elbow are set symmetrically with respect to iCub’s
sagittal plane. A fifth posture task is set as to keep the torso
as straight as possible during the movement.

e Task I : pi=10.35,—-0.15,0.68] (m)

o Task 2 : p},, =[0.21,—0.25,0.68] (m)

o Task 3 : p; =[0.3,0.0248,0.68] (m)

o Task 4 : p},; =[0.21,0.1138,0.68] (m)

« Task 5 : q* = [0,45,0,0,—20,30,0,0,45,0,0,0,30,0,

0,0,0] (deg)
The task priorities are approximated by RBFs with n, =5,
therefore np =5 x 5 = 25. The optimization is carried out
under the same constraints as in the first experiment with
the addition of the left arm collision checks. This means we
have nc = njc = 77 inequality constraints. The fitness is:

o— _L(Xilea il Xl p—pill | X uf

2 Smax

(6)

Emax Umax

where p;; is the left hand frame position at time i, p; the
goal position for the left hand frame.

In all the experiments, we seek the best solutions that do
not violate any of the constraints. We employ (1+1)-CMA-
ES as described in Section III-D with the exploration rate
set to 0.1 (this is the only parameter to tune and this is the
default value!).

Fig. 8 shows the median fitness and constraint violation
obtained by 25 experiments. The fitness grows nicely (¢ =0
would be the optimum). Most importantly, the constraints
are never violated, which is exactly what we wanted to
obtain. We also show the task priorities and the joint torques
from one of the best solutions; they are both smooth, and
it is clear that optimizing the task priorities manually would

be very difficult if these solutions were to be achieved. The
video attachment shows the robot movements in the two
experiments and the activation of the tasks priorities evolving
in time.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed to optimize the task priorities of
multi-task controllers by a stochastic constrained optimiza-
tion algorithm that ensures that the constraints are never
violated. We benchmarked four constrained optimization
algorithms in robotics applications and found that (1+1)-
CMA-ES with covariance constrained adaptation meets our
requirements in terms of fitness of the solution and con-
straint satisfaction. Our framework can be used to generate
optimized whole-body movements that always comply with
safety requirements, as shown in two bimanual experiments
with the iCub. Our current limit is the computation time,
therefore the method is suited at this time only for offline
synthesis of whole-body behaviors of humanoid robots.
Ongoing work is aimed at applying the method for safe
trajectory optimization (complementary to task priority opti-
mization) and speeding up the computation.

REFERENCES

[1] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and
S. Ivaldi, “Learning soft task priorities for control of redundant robots,”
in ICRA, 2016.

[2] D. V. Arnold and N. Hansen, “A (1+1)-CMA-ES for constrained
optimisation,” in GECCO, 2012, pp. 297-304.

[3] L. Saab, O. Ramos, F. Keith, and N. Mansard et al, “Dynamic whole-
body motion generation under rigid contacts and other unilateral
constraints,” IEEE Trans. on Robotics, vol. 29, pp. 346-362, 2013.

[4] A. Del Prete, E. Nori, G. Metta, and L. Natale, “Prioritized motion-
force control of constrained fully-actuated robots: Task space inverse
dynamics,” Robotics and Auton. Systems, vol. 63, pp. 150-157, 2015.

[5] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in ICRA, 2011, pp. 1283-1290.

[6] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,”
Autonomous Robots, vol. 40, pp. 17-31, 2016.

[71 N. Dehio, R. F. Reinhart, and J. J. Steil, “Multiple task optimization
with a mixture of controllers for motion generation,” in IROS, 2015.

[8] S.Haand C. Liu, “Evolutionary optimization for parameterized whole-
body dynamic motor skills,” in /CRA, 2016.

[9]1 R. Lober, V. Padois, and O. Sigaud, “Variance modulated task priori-
tization in whole-body control,” in IROS, 2015.

[10] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies.” Evolutionary Computation, vol. 9,
pp. 159195, Jan 2001.

[11] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with Gaussian processes,” in ICRA, 2016.

[12] G. Collange, N. Delattre, N. Hansen, I. Quinquis, and M. Schoe-
nauer, “Multidisciplinary optimization in the design of future space
launchers,” in Multidisciplinary Design Optimization in Computational
Mechanics. Wiley-Blackwell, 2013, pp. 459-468.

[13] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, “A uni-
fying framework for robot control with redundant DOFs,” Autonomous
Robots, vol. 24, pp. 1-12, Jan 2008.

[14] S. Chiaverini, B. Siciliano, and O. Egeland, “Redundancy resolution
for the human-arm-like manipulator,” Robotics and Autonomous Sys-
tems, vol. 8(3), pp. 239-250, Jan 1991.

[15] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” J. Dyn. Sys.,
Meas., Control, vol. 108 (3), pp. 163-171, 1986.

[16] C. Igel, T. Suttorp, and N. Hansen, “A computational efficient co-
variance matrix update and a (1+1)-CMA for evolution strategies,” in
GECCO, 2006.

Chapter 5

Probabilistic Prioritization of
Movement Primitives (TUDA)

24

Probabilistic Prioritization of Movement Primitives

Alexandros Paraschos!, Jan Peters!2 and Gerhard Neumann

Abstract— Movement prioritization is a common approach
to combine controllers of different tasks for redundant robots.
Each task is assigned a priority, where either strict or “soft”
priorities can be used. While movement prioritization is an
important concept in the control of whole body movements, it
has been less considered in learning-based approaches, where
prioritization allows us to learn different tasks for different
end-effectors, and subsequently reproduce an arbitrary, unseen
combination of these tasks. This paper combines Bayesian task
prioritization, a ‘“‘soft” prioritization technique, with probabilis-
tic movement primitives to prioritize full motion sequences.
Probabilistic movement primitives can encode distributions of
movements over full motion sequences and provide control
laws to exactly follow these distributions. The probabilistic
formulation allows for a natural application of Bayesian task
prioritization. We demonstrate how the ‘soft” priorities can
be obtained from imitation learning and that our prioritized
learning architecture can reproduce unseen task-combinations.
Moreover, we require less data to learn a combination of tasks
than the traditional approach that directly models each task in
joint space. We evaluate our approach on reaching movements
under constraints with a redundant bi-manual planar robot
and the humanoid robot iCub.

I. INTRODUCTION

Complex robots with redundant degrees of freedom have
increased manipulation capabilities and, can in principle per-
form multiple tasks at the same time. For example, possible
task combinations are reaching an object with a humanoid
robot while balancing or reaching an object with a robotic
arm while the “elbow” avoids an obstacle.

Performing multiple tasks simultaneously is not trivial, as
it often requires to simultaneously control the same joints
with different control laws, that leads to conflicting control
signals. Many control schemes that can combine these signals
were developed. We focus on approaches that resolve the
control combination problem by prioritizing the tasks. Task
prioritization can be either strict, where a lower priority
task is not allowed to interfere with higher priority tasks,
or “soft”, where the aforementioned assumption can be
violated. Movement prioritization is an established concept
for controlling whole body movements, however, prioritized
task combination is also a powerful concept for learning-
based approaches, where such concepts have not yet been
explored so far. For example, prioritization allows us to learn
different tasks for different end-effectors and subsequently
reproduce an arbitrary, unseen combination of these tasks.

*The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreements #600716 (CoDyCo) and #270327 (CompLACS)

1Intc;—:lligent Autonomous Systems, TU Darmstadt, 64289 Darmstadt,
Germany {paraschos,neumann}@ias.tu-darmstadt.de

2 Robot Learning Group, Max Planck Institute for Intelligent Systems,
Germany mail@jan-peters.net

1

Fig. 1. The iCub robot performing a bi-manual reaching task. With the left
end-effecotr, the robot initiates a supportive contact with the environment,
while it performs a reaching task with the right end-effector. We illustrated
our setup if the first picture. The robot stands on the floor and had the
choice of three supporting contact locations, shown in blue, green, and red.
With the right end-effector the robot can reach for grasping three different
objects, a pen, a ball, and a piece of cake. In the remaining pictures we
present our results for learning and generalizing to new task combinations
of reaching and contact support locations.

In this paper, we propose a new imitation learning ar-
chitecture that learns a prioritized skill representation. We
combine Bayesian task prioritization [1], a “soft” prior-
itization method, with Probabilistic Movement Primitives
(ProMPs) [2], [3] to prioritize motion sequences that are
learned from demonstrations. Bayesian task prioritization has
been introduced in [1] but gained little attention in that paper
and follow up work. We provide a more general derivation
for torque control and show that existing prioritization tech-
niques are a special case of the Bayesian approach.

Our prioritization is data-driven, i.e. it employs demon-
strations to the robot to extract the relative prioritization
from imitation data. The demonstrations can be acquired by
several imitation learning techniques, including kinesthetic
teach-in and tele-operation. We use multiple demonstrations
for every task to accurately extract the variance of its move-
ment, where different tasks can be learned for different end-
effectors. In contrast to other approaches, we present a closed
form solution for setting each task’s “soft” priority from the
variance of the task in its operational space. Furthermore,
we compute the output control, still in closed form. We
represent the variance of a task at each state using ProMPs.
ProMPs encode a trajectory distribution and, thus, represent

the time-varying variance of each task. The primitives can be
trained using imitation learning, and, generate probabilistic
controllers that follow exactly the encoded task distribution.
The variances of the probabilistic controllers can be used
naturally for Bayesian task prioritization.

We can learn multiple primitives for a single end-effector,
where each primitives solves a specific task with the cor-
responding end-effector. The primitives of different end-
effectors can now be seamlessly combined in order to achieve
a new, unseen combination of tasks of the end-effectors.
Another advantage of ProMPs is that we can adapt the
distribution by conditioning on reaching different via-points.
Using the prioritization of ProMPs, conditioning can now be
done also for task space variables instead of simply in joint
space. We demonstrate that our data-driven prioritization
approach can be used for conditioning in task-space as
well as the improved multi-task learning capabilities or our
approach in simulation and on a reaching and stabilizing task
with the iCub.

II. RELATED WORK

A common resolution for combining different control
signals is to prioritize the tasks, under the assumption that
this prioritization is not allowed to be violated. We refer
to such schemes as a strict prioritization schemes. In these
schemes, a higher priority task does not get disturbed by the
control signals of the lower priority ones [4], [5], [6], [7], [8],
[9], [10], [11], [12]. A lower priority task is always projected
in the null-space of the high priority task. Although these
approaches provide guarantees on the system performance,
they are often over-constraining and therefore limit its useful-
ness in real-word applications. Moreover, strict prioritization
approaches might get numerically instable when the robot
enters a singular kinematic configuration. Proposed solutions
to the numerical stability problem exist [13], [14], but also
have a side-effect: they relax to some extent the assumption
that a low priority task does not interfere with a higher
priority task.

For some tasks, such a prioritization scheme is natural,
for example, a humanoid robot should not tip over and,
therefore, the balancing controller should always have the
highest priority. However, defining a strict priority can be
problematic in general. For example, for reaching an object
with one hand of a humanoid robot, while simultaneously
reaching for a different object with the other hand, it is not
clear these tasks can be prioritized. Both tasks could have
the same importance, i.e. priority, or, the importance of each
tasks could vary in time and depending on, e.g., the desired
execution accuracy at that time point. For such scenarios,
the relative importance between the tasks is easier to set
and requires less hand-tuning. These problems are partially
addressed in [15], [16], [17], where a “soft” prioritization
scheme was introduced. In our approach, we step further
and propose to learn the relative priorities from data and,
therefore, minimize the amount of parameters that require
expert knowledge to be tuned.

“Soft” prioritization approaches do not assume a priori a
hierarchy of tasks but they use the relative priorities between
the tasks. In this scheme, every task contributes to the
control signal. The degree of contribution depends on its
relative priority. “Soft” prioritization approaches demonstrate
promising results where strict approaches fail [15], [18], [19]
to successfully perform multiple tasks due to the relaxation of
the initial problem. Intuitively, “soft” prioritization schemes
could be thought as violating the hierarchy of priorities.
They are often formulated as multi-objective optimization
problems [15], [18], [19]. Each task is formulated as a
quadratic cost function and uses the relative priority as
weight. The result of the optimization yields the controls that
minimize the total cost and, therefore, allows lower priority
tasks to perturb higher priority ones as long as the total cost
is decreased.

Both strict and “soft” prioritization approaches often as-
sume a static prioritization or weighting scheme, where
the importance of each task remains constant during the
execution of the movement [6], [17]. However, modulating
the importance of the tasks during the movement can be
beneficial. First, tasks that are no longer desired to be
executed can be faded-out and new tasks can be smoothly
introduced, without torque jumps. Salini et al. [15] proposed
to dynamically adjust the priorities for achieving move-
ment sequencing and tasks transitions. Second, and more
importantly, the modulation of the priorities can be related
to the desired accuracy of the task. During the time-steps
with low task-priority, the robot can focus on executing
other tasks. Therefore, setting the relative priorities can be a
simpler problem then specifying the strict task hierarchy, as
the expert has to specify only the time points that require
higher accuracy. Lober et al. [19] demonstrated that this
approach increases the flexibility of the system and decreases
“lock-ups” where a more important movement prohibits the
execution of less important tasks, while it requires less expert
knowledge. Modugno et al. [20] proposed the use of an
optimization algorithm to find suitable “soft” priorities that
further decreases expert knowledge.

Movement primitives are a well established concept
for imitation learning and generalization of movements in
robotics [21], [22], [23], [2], however, no primitive repre-
sentation has so far taken leverage from introducing task
priorities. In this paper, we introduce for the first time task-
priorities for movement primitives. We use the Probabilistic
Movement Primitive approach as it can be naturally com-
bined with Bayesian task prioritization in a single prob-
abilistic framework. However, other stochastic movement
representations could also be used instead [22], [24].

III. PROBABILISTIC PRIORITIZATION OF
STOCHASTIC CONTROLLERS

In this section, we develop a generic probabilistic frame-
work for simultaneously combining multiple tasks. We as-
sume that each tasks has a different degree of accuracy and
that the accuracy changes over time. We associate the task
accuracy with its importance for the task combination.

First, we show how the time-varying task accuracy can
be encoded in an efficient representation and, importantly,
how this accuracy, which is learned from imitation data,
can be translated to the task priority. Second, we develop
our stochastic combination approach using the task accuracy
as relative priorities. Third, we show that both strict and
“soft” prioritization approaches are special cases of our
prioritization approach where some uncertainty parameters
are set to zero.

To better illustrate our approach, we begin our description
by prioritizing two controllers; an operational-space con-
troller which has the highest priority and a low priority
joint-space controller. Subsequently, we extend our approach
to multiple operational-space controllers in Sec. III-C. We
use operation-space prioritization as an illustration of our
approach, but in Sec. IV we show that our stochastic pri-
oritizing scheme can be generalized to a wider class of
controllers.

A. Encoding Task Accuracy from Demonstrations

Representing the desired task accuracy throughout the
duration of the task is critical for our approach. A measure
for the task accuracy is the task variance that is be obtained
over multiple executions of the task. Stochastic movement
primitive representations can not only represent the task
variance but also enable training from demonstration data.
To this end, we use the Probabilistic Movement Primitives
(ProMPs) approach [2], [3] as our representation.

ProMPs represent a single trajectory as a weighed linear
combination of Gaussian basis functions ®, and the respec-
tive weights w, i.e.,

Yy = Pw, ey

where y; = [z, %]? represents the state of the task, i.e.,
positions and velocities, at time ¢. The task state y; is a vector
that contains the variables that define the state of the tasks,
e.g., the joint or end-effector positions and velocities. Each
task demonstration is used to estimate the weights w for that
execution using a maximum likelihood approach [2]. From
the set of estimated weights, ProMPs estimate a distribution
over the weights, i.e.,

p(w) = N (w|pte, Zy) , 2)

which is assumed to be approximated well by a Gaussian,
or a mixture of Gaussian [25], [26]. Thus, ProMPs offer
a compact representation of the trajectory distribution in
task space, that is, the mean movement in task space, the
correlation between the task’s variables, and their variance.
With ProMPs, we can evaluate the distribution of the state
p(y:) at every time-step

p(ye) = / p(ye|w)p(w)dw = N gy, Sy) 3)

in closed form. ProMPs also provide a stochastic linear
controller, which is also derived in closed form. The con-
troller can follow the encoded task distribution exactly, i.e.,
it matches mean and variance of the distribution. In [2],

[3], ProMPs are used to control the joints of the robot and,
therefore, the controller outputs are joint torques. In our
approach, we generalize ProMPs to model and control task
variables, e.g. the robot end-effector. To do so, we adjust the
ProMP controller’s output to the acceleration of task space
variables. The stochastic controller is, therefore, given by

p(Ely:) = N (€| Kry; + ke, 3z) - “4)

The mean of the controller is given by a linear feedback
control law. The controller additionally contains the covari-
ance of the task in the acceleration space. The later plays
an important part in our approach as it specifies the required
accuracy of the control, see Sec. III-B. In summary, ProMPs
are capable of representing and learning the task covariance
Xy, and transforming it to the acceleration covariance 3.

B. Probabilistic Combination of Tasks

We begin our derivation given two tasks, a joint-space task
and an operational-space task. For each task, a stochastic
controller is obtained from the corresponding ProMP that
has been trained from demonstrations. Each controller is
normally distributed, i.e., the probability of each controller
is given by

pi(d) ~ N (Glug 2g), p2(&) ~ N (&[ps, Bz) . (5)

The vector g denotes the joint acceleration, for all of the
joints of the robot and the vector & the operational-space
acceleration. Equation (5) is true for every time-step, how-
ever, we dropped the time-index for simplicity.

The operational-space controller and the joint-space con-
troller can not be used simultaneously without accounting
for the kinematics of the system. The system kinematics
introduce a constraint between the operational and the joint
space acceleration. The constraint is commonly defined in the
velocity space by © = Jq, where J denotes the Jacobian
from a base-frame to the operational-space. Equivalently, by
differentiation over time, we obtain the acceleration-space
formulation & = Jq + .fq of the constraint. The term
J denotes the time derivative of the Jacobian'. Given the
constraint in the acceleration-space, the operational-space
controller depends on the current joint-acceleration . The
probability of the operational-space acceleration & given the
joint acceleration ¢ is given by the conditional

Paia(@ld) ~ N (&[Jd+ 74, 5s) ©)

where the mean of the conditional distribution is given by
the constraint and the variance is given by the desired task
accuracy. We can now use the joint space ProMP as prior
distribution and the desired task-space mapping pyg(Z =
ps]d) as likelihood to obtain the posterior distribution for
the joint space controller using Bayes theorem, i.e.,

IThe time derivative of the Jacobian J can be obtained by applying the
chain-rule, i.e.,

j— 949
dq Ot

pQ\Ij(d: = pz|g)p1(q)
p2(Z)
:N(d|ﬂ7 Z)) @)

where, since both the prior distribution p(§) and the con-
ditional p(&|g) are Gaussian distributions, the posterior is
also a Gaussian distribution. The control law for the joint
accelerations ¢ is then obtained by computing the marginal
distribution

P112(4) :/Pu:b(dﬁ);”z(fi)di =N (4|p525), @

that is a Gaussian as well. The mean uij and the covariance
Eij are computed analytically as

p1a(d|E = psz) =

wy=J" (ns — Ja) + (T=T' g O
Ti= (I -JNT) B4+ I 2T (10)
where the J' denotes the generalized inverse of the Jacobian

(1D

In our approach, the joint space acceleration g and the task-
space acceleration «, are obtained from the stochastic feed-
back controller of the ProMPs. However, our approach can be
modify to incorporate other stochastic feedback controllers
as we evaluate in Sec. V-B. The variance of the operational-
space controller 34 is used as regularization matrix and the
variance of the joint-space controller X4 as weighting. The
generalized inverse J' is not a pseudo-inverse as JJt # I,
due to the regularization by the operational-space covariance
3. Therefore, the matrix (I — J'J) is not a proper null-
space projection of the Jacobian J.

T =207 (S + TT7) .

C. Extension to multiple tasks

Multiple operational-space controllers can be naturally
integrated in our approach where each task ¢ € 1--- N can
operate in a difference space. In principle, it is sufficient to
compute the posterior distribution over the joint acceleration
g, given the accelerations of all task controllers {&;}1...n,
i.e., p(g|{&i}1...n), which can be computed recursively, or
in a single step [1], where the single step solution require
sparse-matrix inversion techniques for efficiency.

We proceed with the recursive computation. For the re-
cursive computation, we begin with our prior distribution
over the joint accelerations p;(g). We condition it with
the operational-space acceleration distribution py(&y) of
the highest priority task. The resulting posterior distribution
p1n(g|En) is then used as a new prior distribution and
is conditioned with px_1(&x—1). We continue conditioning
until we reach the task 7 = 1. During the computation of the
new prior distribution at every step, we can perform a numer-
ical stability analysis of the (£5+JX4J7) matrix inversion,
e.g. by computing the condition number of the matrix. If
the inversion becomes numerically unstable, then the task i,
added at this step is incompatible to the higher priority tasks
N ---i,—1. Our recursive approach has similarities with the

TABLE I
COMPARISON OF DIFFERENT PSEUDO INVERSES USED FOR OPERATIONS

Generalized inverse

Weighted
generalized inverse,
weighted with the
inverse of the mass
Bayesian inverse,
weighting and regu-
larization are com-
puted in closed form.

Jt=J7 (3J7)""

Jt=M-1gT (JM-1JT) "

Tt =207 (S + IZgIT)

strict hierarchical prioritization approaches [5], [4], where
they recursively project every lower-priority task in the null-
space of the higher priority task. The major difference in our
approach is the use of the regularized generalized inverse, as
presented in Sec. III-B, We use the tasks accuracies obtained
from imitation data, instead of treating each task with an
infinite accuracy.

IV. AN OPTIMIZATION POINT OF VIEW

We presented our derivation by prioritizing an operational-
space controller and a joint-space controller, however, this
was only a special case. Our approach can be generalized
to a wider class of problems, where the constraints imposed
are linear to the joint acceleration ¢, i.e. can be formulated
as

Ag=b, (12)

where the matrix A and vector b possibly depend on the
current state of the robot g and g at time t. The constraint
imposed by the robot’s mechanics can be re-formulated in
the generalized form of Equation (12), by setting A = J
and b=z — Jg.

We can now formulate a optimization problem that incor-
porates a soft version of this constraint while staying close
to the prior mean. The covariance matrices serve as L2 norm
metric for the objectives, i.e.,

argmin J =argmax (A§ — b)'S;"'(AG — b)
g g

+(G = pa)"3g" (G — pa)” (13)
This formulation resembles the optimization framework pre-
sented in [4] with the difference that Ag — b is imposed
as soft-constraint and not as hard constraint. If we let 3
go to zero, we obtain a hard constraint and all the control
laws in [4] can be recovered. However, the pseudo-inverse
is lacking a proper regularization which leads to instabilities
in singularities. Furthermore, the optimization view does not
provide a direct way to update the joint covariance if several
tasks need to be prioritized. In contrast, the joint covariance
34 1s updated in the Bayesian approach. It specifies the
direction in joint space that violate all conditioned task space
controllers as little as possible.

A. Comparison to Strict Prioritization Approaches.

Our control law can also be formulated for torques w
instead of desired accelerations g. These derivations are
given in the appendix. We observe that the mean g, of
the controls, given in Equation (14), has a similar structure
as well-known operational-space control laws [4], [5], [6],
[71, [8], [9], [10], [11], [12]. It consists of a model-based
component to compensate for the dynamics of the system,
the desired acceleration in the operational-space —which, for
example, can be the output of a feedback controller— and a
projection component (I — J1J).

The difference to the aforementioned approaches lays in
the computation of the generalized inverse matrix of the
Jacobian J'. By applying a Bayesian approach, we obtain
a generalized inverse matrix of the Jacobian which is both
regularized and weighted, while strict prioritization methods
use an un-regularized inverse.

The aforementioned approaches can be derived by as-
suming that the operational-space variance X3 is zero, i.e.
s = limg0al and, therefore, degrade our approach
to a deterministic case. If the operational-space variance is
zero, the matrix JJ' = I of the projection is a null-space
projection, i.e. the lower priority tasks will not interfere with
the higher priority tasks. Therefore, decreasing the variance
of the operational-space controller ¥; can be interpreted as
“hardening” the prioritization of the two controllers.

A consequence of not regularizing the generalized inverse
is the numerical instability of the inversion at singular kine-
matic configurations. Some approaches [13], [14] suggest
to add a small regularization of the form AI to reduce the
numerical instabilities. Performing such a regularization has
the physical interpretation of adding a diagonal variance on
accuracy of the high priority task. The projection (I —JtJ)
will in this case not to be a null-space projection. However, to
our knowledge, neither the motivation or the physical inter-
pretation of this regularization has been previously discussed.

By additionally setting the joint-space covariance to 34 =
I, the pseudo inverse is un-regularized and unweighted and
we obtain controls laws as in [4], [5], [6], [7], [8], [9],
[10], [12]. Setting the joint-space covariance to X4 = M1,
we obtain controllers based on the Gauss principle of least
constraint, and consistent to d’ Alambert’s principle of virtual
work [11], [4]. The different approaches for computing the
generalized inverse are shown in Table I.

V. EXPERIMENTAL EVALUATION

We evaluate our approach on redundant simulated and
physical robots performing tasks learned by imitation. As op-
posed to optimization approaches, our approach does not use
a cost function, but learns the desired trajectory distribution
from demonstrations. First, we demonstrate that our approach
can be used for adapting known tasks, while the reproduction
stays in the vicinity of the demonstrations. Second, we show
that additional controllers can be smoothly integrated in our
framework. Third, we build a library of tasks and show how
we can use our approach to learn a combination of tasks
with considerably improved data efficiency. We conclude the

t =0(s)
6 — — — —

t=0.25(s) t=0.5(s) t=0.75(s)

t=1(s)

(e}

Fig. 2. A visualization of the 7-link planar robot trajectory for different
time-steps. The dark configuration denotes the mean configuration. At every
evaluation in time, we plot ten samples from the distribution to illustrate the
variability of the movement. In the first row, we present the reproduction
of the movement after training our approach. In the second row, we present
the reproduction of the movement after conditioning at ¢ = 0.5(s) and
t = 1(s). We observe that the variance of the task-space movement reduces
at the via-points.

5 7
_ ~
£ £
N—" N—"
z .z
o3 >~
0 ‘ 0 ‘
0 0.5 1 0 0.5 1
time (s) time (s)
Fig. 3. We present the trajectory distribution of the end-effectors of the

7-link planar robot. The demonstrated trajectory distribution is shown in
blue (blue line for the mean and shaded area for two times the standard
deviation). The reproduced trajectory distribution that is obtained from our
approach is shown in red. The reproduction distribution follows accurately
the demonstrated one. The blue boxes illustrate a via-point (low variance of
the movement at this time step) that was present during the demonstrations.

section by presenting our results on the humanoid platform
“iCub” on initiating contacts and while reaching an object.

A. Data-Driven Task-Space Adaptation

In this experiment, we used a planar robot with seven
Degrees of Freedom (DoF). We used optimal control to
provide demonstrations to our approach. The demonstrations
were provided in joint-space. We directly used the joint-space
demonstrations for training a ProMP to be used as the lowest
priority task. Additionally, we used the task-space trajectories
to learn a task-space ProMP. The movement at different
time steps is visualized in Figure 2. The demonstrations
have different variability at different time-steps throughout
the movement. Time step ¢ = 0.25s is a via-point, i.e.
has very low variability, in both task-space dimensions.
The demonstrated trajectory distribution in task-space is
shown in Figure 3(blue), with the trajectory distribution ob-
tained after reproduction(red). The reproduction distribution
matches accurately the demonstrations and passes through
the via-points. Additionally, we show that our approach can
adapt a learned task. The adaptation is performed by using
the “conditioning” operation of ProMPs on the task-space
primitive. The prior ProMP is not changed by conditioning.

ot
-3

X-axis (m)
y-axis (m)

| |
0.5 1 0 0.5 1

==}
=}

(=)

time (s) time (s)

Fig. 4. The trajectory distribution of the end-effectors of the 7-link planar
robot after conditioning. In blue, we present the trajectory distribution of
the demonstrations. In red, the reproduction after conditioning only the task-
space ProMP. The red boxes denote the additional via-points that were not
present during the demonstrations. The reproduction can match both, the via-
points of the demonstrations and the additional via-points, while it maintains
the general shape of the movement. Our approach performs conditioning in
task space while it stays close to the demonstrated data in joint space.

The adaptation does not require to run an inverse kinematics
algorithm to find the respective joint configuration, but can
be performed directly on the primitive and with a specified
accuracy. We present our results in Figure 4, where we
added two via-points to the movement. The reproduction can
accurately pass through both via-points while it maintains the
shape of the movement learned from the demonstrations.

B. Incorporation of External Control Laws

Furthermore, we present our results for a more complex
planar robot with two end-effectors. The robot has three links
for the torso and five additional links to represent arms. Each
link is one meter long. The robot learned a movement where
the “hip” moves in a constant height of 2.5m. We show
that expert-knowledge can be incorporated in our approach.
The expert designed two feedback controllers with high gains
and small variance ,, = 102 that attract the end-effectors at
{2,6}(m) and {—2,6}(m), for the right and left end-effector
respectively. The resulting movement is shown in Figure 5.
The robot can perform all of the three tasks; it reproduces
accurately the hip movement staying at the desired height
and places its end-effectors at the desired locations set by
the expert.

C. Combining Tasks of Different End-Effectors

In this evaluation we demonstrate the advantages of our
approach a combination of tasks for different end-effectors.
We use the planar robot with two end-effectors and thirteen
DoF. First, we generated demonstrations where each end-
effector has the task to reach one out of three end-points at
tena = 1. The end-point can either be “low”, set at {4,1}
for the right end-effector or at {—4, 1} for the left, or “mid”
at {£4,4}, or “high” at {£2,6}. The combination of all
three tasks of the two end-effectors yields nine different
task combinations. For each combination, we generate a set
of noisy demonstration. We denote each task by {R;, L;},
where {R, L} denotes the end-effector and 4, j € {L, M, H}
denotes the “low”, “mid”, or “high” end-point. An illustration
of the configuration of the robot at these points is shown in
Figure 6. As a baseline, we train nine individual primitives,
one for each combination of tasks. However, our approach

High gain attractors

Ve

y-axis (m)

x-axis (m)

Fig. 5. The planar robot performing a bi-manually reaching task while
moving its “hip”. The robot accurately stays at the desired targets with its
end-effectors during the movement. Additionally, the end of the “hip” link
tracks a trajectory with a constant height.

6 |
—_
4 |
E
g
X
3
> 5
Ofpg------ r----- J------ T------ 1= -
—4 —2 0 2 4
x-axis (m)
Fig. 6. A visualization of the two end-effector robot we used in our

experiments. We present the final configuration, ¢ = t¢nq of the robot in task
space for three different tasks, out of nine tasks we used in the experiment.
Each color represents a different task combination. Our approach can learn
the task of each end-effector, {R$7 L*}, independently. The task of each
end-effector, i.e., the reaching of a low point, a mid point, and a high point,
is denoted by the L, M, H subscripts.

can use all available demonstrations per task of one end-
effector, e.g. {Lns, R«}, as it can learn the end-effector
tasks independently resulting in a training set per task with
three times the number of demonstrations as can be used for
the baseline approach. Therefore, our approach considerably
outperforms the baseline as the distributions can be estimated
with higher accuracy. In Figure 7, we evaluate the average
performance of both approaches which was specified as the
negative square deviation from the true desired task-space
position at the end of the movement. Our approach shows
a superior accuracy due to the more efficient data usage.
The trajectory distribution for both end-effectors is shown in
Figure 8. In this Figure, we show that, using prioritization,
we can also reproduce a task combination that has not been
demonstrated to the robot.

Reward

—— Individual ProMP per task

»— Probabilistic Prioritization
| I I
5 10 15 20

Demonstrations per task

Fig. 7. Comparison between the Bayesian prioritization approach and
learning each task independently which is used as a baseline. We vary
the number of demonstrations used per task. Using prioritization, we can
learn the tasks for each end-effector independently and therefore, can use
more training data for the single tasks. For the baseline, we can only learn
each combination of the end-effector tasks individually. The plot shows
the average negative square deviation from the true desired end-effector
position. Using prioritized primitives considerably improves the accuracy
of learning due to the more efficient data usage.

6
P 0
E 4
” —2
g 9
¢ —4
X 0
—6
10 10
—_
8 8
g
L 6 6
X
¢
S, 4 4
2 | 5 | |
0 0.5 1 0 0.5 1
time (s) time (s)
Fig. 8. The trajectory distribution of the end-effectors of the two end-

effector robot. The first column presents the left end-effector and the
second column of the right end-effector distributions. In blue, we show
the prior distribution projected in Cartesian space after training with two
task-combinations, { R, Las} and {Rps, Ly }. Our approach utilizes all
available demonstrations. In red, we present the reproduction of of the
{Ru, Ly}, a task combination that was not contained in the demonstra-
tions, using our prioritization scheme.

D. Initiating Contacts during Reaching

In the final evaluation, we performed an experiment using
the humanoid robot iCub to reach objects while improving
its stability by partially supporting its weight on a table. The
iCub was not mount at a pole, but was rather standing for
the duration of our experiments Reaching objects that require
the robot to bend the torso can move the center of gravity of
the robot out of the support polygon defined by the feet, and,
as a result, the robot will loose its balance. The task of the
robot is to perform a reaching movement while it initiates
a contact to stabilize the robot. The robot reaches for three

0.2
—0.15
0.1
—0.2
—0.25 0
0.2
—0.15
0.1
—0.2
—0.25 - . 0
0 0.5 1 0 0.5 1 0 0.5 1

time () time (s) time (s)

Fig. 9. The trajectory distribution of left (top) and right (bottom) of the
iCub robot in Cartesian space, {x,y, z}(m) shown in first, second, and
third column respectively. We learned prior distribution of is shown in blue.
During reproduction, we reached for a “blue—cake” combination (red). The
variance of the reproduction distribution is due to the system noise, errors
in the dynamics model, and friction.

different objects, as shown in Figure 1, with its right arm.
Concurrently, with the left arm, it initiates a contact with the
table that increases the stability of the robot. The location
of the contact varies over three positions. We provided ten
demonstrations reaching for different object locations and
initiating different contacts with the forearm of the robot.
The robot was capable of reproducing the movements using
the prioritized movement primitives, as show in Figure 9.
Additionally, the robot could perform unseen combinations
of tasks and support locations.

VI. CONCLUSION

In this paper, we presented a novel approach for movement
prioritization based on the combination of Bayesian task
prioritization and the Probabilistic Movement Primitives.
While prioritization is a well established concept in control, it
has not been explored in the context of learning movement
representations. We brought attention to the Bayesian task
prioritization framework that allows for a principled treat-
ment of the task priorities and avoids numerical instabilities.
We combined it with the Probabilistic Movement primitives
to enable learning the priorities from demonstrations.

In this paper, we have shown that combining prioritization
with learning approaches yields in powerful representation
that can be used to solve a combination of tasks with dif-
ferent end-effectors. Our approach is data-driven, i.e., it can
solely be trained form demonstrations and minimizes expert
knowledge. Especially, it avoids the problem of specifying
a cost function for the task in hand, which is still an open
problem. We demonstrated that our approach can be used
to adapt task-space movements without solving an inverse
kinematics problem and, importantly, staying close to the
demonstrated data.

A key contribution of our approach is the ability to
combine tasks of different end-effectors in a principle and
data-efficient way. Our approach can generalize to task
combinations that were not present in the demonstrations
and requires significantly less training data to achieve the
same level of performance.

In future work, we will expand the evaluations of our
approach on more complex real-word scenarios. We consider
multiple task execution with physical robot interaction under
the present of contacts as interesting research direction.

APPENDIX
INCLUDING THE DYNAMICS OF THE SYSTEM

The stochastic controller on the joint acceleration given in
Equation (7) can be used to control a physical system, i.e. by
torque control, using the rigid-body dynamics model [27],

u=M(q)j+ C(q,q) + G(q),

where M (q) denotes the inertia matrix, C(q,q) denotes
Coriolis and centripetal forces, and G(q) forces due to grav-
ity. Using the rigid-body dynamics model, we reformulate
our controller to operate in the joint torque space, i.e.

pr2(u) = N (ulpy, o).
The mean ., of this controller is given by
Moy =M (JT (u:z —Jq) +(I-J%) /J,q) +C+G
~M I (1~ Ja)
+M (I -JT) (M (g —C - @) +C+G,

where we used pg = M~ (py — C — G).

Furthermore, a decoupling of the kinematics and the
dynamics can be obtained by setting fi,, = oy + C + G
and using it in place of p,,. In this case, the mean becomes

., =MJ! (w - J'q)
+M(I-JJ) (M 'py) +C+G (14)

which results in the resolved-acceleration controller [28],
[29].

REFERENCES

[1] M. Toussaint and C. Goerick, “A bayesian view on motor control
and planning,” in From Motor Learning to Interaction Learning in
Robots, 2010.

[2] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, ‘“Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems (NIPS), 2013.

[3] A. Paraschos, G. Neumann, and J. Peters, “A probabilistic approach
to robot trajectory generation,” in “Proceedings of the International
Conference on Humanoid Robots (Humanoids), 2013.

[4] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal,
“A unifying framework for robot control with redundant DOFs,”
Autonomous Robots, 2007.

[5S] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,” Journal of
Robotics and Automation, 1987.

[6] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic
behavior and control of human-like robots,” International Journal of
Humanoid Robotics, 2004.

[9]

[10]

[11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-Priority based
redundancy control of robot manipulators,” International Journal of
Robotics Research (IJRR), 1987.

L. Sentis and O. Khatib, “Synthesis of Whole-Body behaviors
through hierarchical control of behavioral primitives,” International
Journal of Humanoid Robotics, 2005.

, “A whole-body control framework for humanoids operating in
human environments,” in International Conference on Robotics and
Automation (ICRA), 2006.

J. Park, W.-K. Chung, and Y. Youm, “Characterization of instability
of dynamic control for kinematically redundant manipulators,” in
International Conference on Robotics and Automation (ICRA), 2002.
H. Bruyninckx and O. Khatib, “Gauss’ principle and the dynamics of
redundant and constrained manipulators,” in International Conference
on Robotics and Automation (ICRA), 2000.

J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of
mechanical manipulators,” Transactions on Automatic Control, 1980.
P. Baerlocher and R. Boulic, “Task-priority formulations for the
kinematic control of highly redundant articulated structures,” in
International Conference on Intelligent Robots and Systems (IROS),
1998.

, “An inverse kinematics architecture enforcing an arbitrary
number of strict priority levels,” The Visual Computer, 2004.

J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: a focus on sequencing and tasks transitions,” in
International Conference on Robotics and Automation (ICRA), 2011.
J. Salini, S. Barthélemy, P. Bidaud, and V. Padois, “Whole-Body
motion synthesis with LQP-Based controller — application to icub,”
in Modeling, Simulation and Optimization of Bipedal Walking, 2013.
W. Decre, R. Smits, H. Bruyninckx, and J. D. Schutter, “Extending
iTaSC to support inequality constraints and non-instantaneous
task specification,” in [International Conference on Robotics and
Automation (ICRA), 2009.

R. Lober, V. Padois, and O. Sigaud, “Multiple task optimization using
dynamical movement primitives for whole-body reactive control,” in
International Conference on Humanoid Robots (Humanoids), 2014.

, “Variance modulated task prioritization in Whole-Body control,”
in International Conference on Intelligent Robots and Systems (IROS),
2015.

V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and
S. Ivaldi, “Learning soft task priorities for control of redundant
robots,” in [International Conference on Robotics and Automation
(ICRA), 2016.

A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in Neural
Information Processing Systems (NIPS), 2003.

S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International
Conference on, Nov. 2012.

S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” Transactions on
Robotics, 2011.

L. Rozo, S. Calinon, D. Caldwell, P. Jiménez, and C. Torras,
“Learning collaborative impedance-based robot behaviors,” in AAAI
Conference on Artificial Intelligence, 2013.

M. Ewerton, G. Neumann, R. Lioutikov, H. Ben Amor, J. Peters, and
G. Maeda, “Learning multiple collaborative tasks with a mixture of
interaction primitives,” in International Conference on Robotics and
Automation (ICRA).

E. Rueckert, J. Mundo, A. Paraschos, J. Peters, and G. Neumann,
“Extracting Low-Dimensional control variables for movement
primitives,” in Proceedings of the International Conference on
Robotics and Automation (ICRA), 2015.

R. Featherstone, Rigid body dynamics algorithms.

Springer, 2014.

T. Yoshikawa, Foundations of robotics: analysis and control. Mit
Press, 1990.
P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of

redundant manipulators,” in International Conference on Robotics
and Automation (ICRA), 1988.

Bibliography

[1]

2]

8]

[4]

[5]

[6]

R. Lober, V. Padois, and O. Sigaud. Multiple task optimization using dynamical movement
primitives for whole-body reactive control. In Proceedings of the IEEE-RAS International
Conference on Humanoid Robots (Humanoids). Madrid, Spain, 2014.

R. Lober, V. Padois, and O. Sigaud. Variance modulated task prioritization in whole-body
control. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3944-3949, Hamburg, Germany, Sep 2015.

R Lober, V. Padois, and O. Sigaud. Task compatibility optimization. IEEE Robotics and
Automation Letters, 2017. Submitted.

V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and S. Ivaldi. Learning
soft task priorities for control of redundant robots. In Proceedings of the International
Conference on Robotics and Automation (ICRA), 2016.

Valerio Modugno, Ugo Chervet, Giuseppe Oriolo, and Serena lvaldi. Learning soft task
priorities for safe control of humanoid robots with constrained stochastic optimization. In
Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on, pages
101-108. IEEE, 2016.

A. Paraschos, J. Peters, and G. Neumann. Probabilistic prioritization of movement primi-
tives, 2017. under review.

33

