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Abstract This deliverable discusses the technical details and
choices for the implementation of the year-3 valida-
tion scenario of the CoDyCo project. The validation
scenario aims at verifying the control performances
in the case the humanoid robot iCub must balance
by means of compliant or dynamical contacts. With
dynamical contact we mean that the robot’s link in
contact with the environment is not fixed with respect
to an inertial frame, and the wrench applied to it is
not due to a spring-damper system. First, we detail
the control algorithm for dealing with a soft carpet
underneath the robot’s feet. This case study exem-
plifies the case of a robot interacting with a com-
pliant environment. Then, we present the control
algorithm to allow the robot balancing on a semi-
cylindrical seesaw. This case study exemplifies the
problem of a humanoid robot balancing by means
of dynamical contacts. In fact, the robot’s feet do
not have a constant pose with respect to the inertial
frame in this case. Contact and trajectory planning
are not part of the scenario.
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1 Introduction

Differently from the first and second year validation scenarios, the third year CoDyCo scenario
consists in adding compliance and dynamicity of the robot contacts while the humanoid at-
tempts at balancing. This kind of situations have not received much attention from the control
community, and the solutions presented in this document are original in several aspects.

As in the previous validation scenarios, the control objective is the regulation of the robot
momentum. The rate-of-change of this momentum equals the summation of all external
wrenches applied to the system, and controlling the external wrenches to stabilize the robot’s
momentum is a known control strategy for humanoids when balancing. One of the main
difficulties when dealing with compliant and dynamical contacts in this context comes from
the fact that the external wrenches may not be instantaneously related to the robot’s torques,
i.e. the input to the system. This is the case, for instance, of a humanoid standing on two
springs, which exert forces on the robot’s feet that depend on the relative compressions only.

There may be some particular soft terrains, however, that exert forces and torques not only
depending on the relative compressions, but also on the robot’s joint torques. In these cases,
the soft terrain is subject to some rigid constraints that may allow the control of the robot’s
momentum through the external forces, which thus depend on the joint torques. This is the
case of a thin, highly damped carpet, which can be modeled, in the first approximation, as a
continuum of vertical springs. Each of these springs is assumed to compress vertically only,
and the other degrees of freedom are rigidly constrained, thus creating the aforementioned
relation between external forces and joint torques. The first experimental demo during the
review meeting consists of showing the humanoid robot iCub while it balances on a soft carpet
of the above kind.

We then go one step further and present control algorithms to deal with dynamical con-
tacts. The application scenario of the controller consists of the humanoid robot iCub balnacing
on a semi-cylindrical seesaw. In this case, the contacts between the robot ad its environment
are subject to the seesaw dynamics, and the control of the robot is particularly challenging.

The iCub will be torque controlled and the controller assumes that desired torques are
exactly executed by a lower level torque control. Dynamics will be computed with a custom
library, iDynTree1, built on top of KDL2.

The deliverable is organized as follows. Section 2 presents the notation, the robot equations
of motion, and recalls on the controller implemented for the first and second year validation
scenario. Section 3 discusses the modeling and control design in the case a humanoid must
balance on a thin, compliant carpet. Section 4 presents the control design in the case the
humanoid must balance on dynamical contacts, and the theory is applied to the case of
balancing on a seesaw. Section 5 presents the estimation algorithms used to estimate the
floating base of the robot and the compliance of the thin carpet used for the validation
scenario.

1http://wiki.icub.org/codyco/dox/html/group__iDynTree.html
2http://www.orocos.org/kdl
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2 Background

2.1 Notation

Throughout the paper we will use the following definitions:

• I denotes an inertial frame, with its z axis pointing against the gravity. We denote with
g the gravitational constant.

• ei ∈ Rm is the canonical vector, consisting of all zeros but the i-th component which is
one.

• Given two orientation frames A and B, and vectors of coordinates expressed in these
orientation frames, i.e. Ap and Bp, respectively, the rotation matrix ARB is such that
Ap = ARB

Bp.

• 1n ∈ Rn×n is the identity matrix of size n; 0m×n ∈ Rm×n is the zero matrix of size
m× n and 0n = 0n×1.

• We denote with S(x) ∈ R3×3 the skew-symmetric matrix such that S(x)y = x × y,
where × denotes the cross product operator in R3.

2.2 Robot equations of motion

We assume that the robot is composed of n + 1 rigid bodies – called links – connected by
n joints with one degree of freedom each. In addition, we also assume that the multi-body
system is free floating, i.e. none of the links has an a priori constant pose with respect to
the the inertial frame. This implies that the multi-body system possesses n + 6 degrees of
freedom. The configuration space of the multi-body system can then be characterized by the
position and the orientation of a frame attached to a robot’s link – called base frame B – and
the joint configurations. More precisely, the robot configuration space is defined by

Q = R3 × SO(3)× Rn.

An element of the set Q is then a triplet

q = (IpB,
IRB, qj),

where (IpB,
IRB) denotes the origin and orientation of the base frame expressed in the inertial

frame, and qj denotes the joint angles. It is possible to define an operation associated with
the set Q such that this set is a group. More precisely, given two elements q and ρ of the
configuration space, the set Q is a group under the following operation:

q · ρ = (pq + pρ, RqRρ, qj + ρj). (1)

Being the direct product of Lie groups, the set Q is itself a Lie group. The velocity of the multi-
body system can then be characterized by the algebra V of Q defined by: V = R3×R3×Rn.
An element of V is then a triplet

ν = (I ṗB,
I ωB, q̇j),
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where IωB is the angular velocity of the base frame expressed w.r.t. the inertial frame, i.e.
IṘB = S(IωB)IRB.

Although the above digression on the robot configuration space may sound pedantic and
marginal, let us observe that the choice of the group operation in (1) implies that an element
ν ∈ V is composed of ṗ, i.e. the time derivative of the origin of the floating base frame. Other
choices for the group operation would imply a different algebra and, consequently, a different
representation of the system’s velocity.

We also assume that the robot is interacting with the environment through nc distinct
contacts. Applying the Euler-Poincaré formalism [1, Ch. 13.5] to the multi-body system yields
the following equations of motion:

M(q)ν̇ + C(q, ν)ν +G(q) = Bτ + J>(q)f (1a)

J>(q)f :=
nc∑
k=1

J>Ckfk (1b)

where M ∈ Rn+6×n+6 is the mass matrix, C ∈ Rn+6×n+6 is the Coriolis matrix, G ∈ Rn+6 is
the gravity term, B = (0n×6, 1n)> is a selector matrix, τ are the internal actuation torques,
and fk denotes an external wrench applied by the environment on the link of the k-th contact.
We assume that the application point of the external wrench is associated with a frame Ck,
which is attached to the robot’s link where the wrench acts on and has its z axis pointing as
the normal of the contact plane. Then, the external wrench fk is expressed in a frame whose
orientation coincides with that of the inertial frame I, but whose origin is the origin of Ck, i.e.
the application point of the external wrench fk. The Jacobian Jk = Jk(q) is the map between
the robot’s velocity ν and the linear and angular velocity IvCk := (I ṗCk ,

I ωCk) of the frame
Ck, i.e.

IvCk = JCk(q)ν. (2)

The Jacobian has the following structure.

JCk(q) =
[
J bCk(q) J jCk(q)

]
∈ R6×n+6, (2a)

J bCk(q) =

[
13 −S(IpCk − IpB)

03×3 13

]
∈ R6×6. (2b)

Lastly, we assume that rigid contacts may occur between the robot and the environment.
The rigid contacts are assumed to be due to the rubbing of two flat surfaces belonging to the
robot and to the environment, respectively. The constraint associated with the rigid contact is
modeled as a kinematic constraint that forbids any motion of the frame Ck, i.e. JCk(q)ν = 0.

2.3 The controller for the first and second year validation scenario

The control objective for achieving balancing on either one foot or two feet has been the
following ones since the beginning of the project:

1. Stabilization of the robot’s momentum (expressed at the center-of-mass and with the
inertial frame orientation), which is defined by

H =
∑

Hi =

(
mẋ
Hω

)
,

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

6/28 Contract No. FP7-600716
www.codyco.eu



Version 1.0, Feb. 28, 2016

Figure 1: A screen-shot of the one-foot balancing demo

with Hi the momentum of each link composing the multi-body system, m the total
mass of the robot, x ∈ R3 the position of the robot center-of-mass, and Hω the angular
momentum of the multi-body system. Let us recall that contrary to the case of a single
rigid body, the possibility of expressing the angular momentum Hω in terms of a proper
angular velocity is still open. For this reason, we won’t refer to a robot angular velocity
when stabilizing the humanoid angular momentum.

The control of the robot momentum is achieved assuming the contact wrenches as a
virtual control input in the dynamics of H. For instance, assuming that the robot is
balancing on two feet, two external wrenches fL ∈ R6 and fR ∈ R6 act on the left and
right foot, respectively. Then, one has

Ḣ = mg +c XLfL +c XRfR = mg +
(
cXL

cXR

)
f, (3)

where cXL,
cXR ∈ R6×6 are two proper projection matrices, and f := (f>L , f

>
R )>.

Since f is assumed to be a control input, one can choose it so that Ḣ = Ḣ∗, where Ḣ∗

ensures that x→ xd and Hω → 0. Clearly, at this level, one is left with a six-dimensional
redundancy of the control input. This redundancy is exploited to minimize joint torques.

2. In the null space of the above task, we want the robot to assume a desired joint con-
figuration, while having also some compliance. This is achieved by means of a postural
task at the joint torque level, which exploits a proportional-derivative plus gravity com-
pensation control strategy for stabilizing a desired joint reference.

In the language of the Optimization Theory, the above control objectives can be formulated
as follows.
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f ∗ = argmin
f
|τ ∗(f)| (4a)

s.t.

Cf < b (4b)

Ḣ(f) = Ḣ∗ (4c)

τ ∗(f) = argmin
τ
|τ(f)− τ0(f)| (5)

s.t.

J̇(q, ν)ν + J(q)ν̇ = 0 (5a)

ν̇ = M−1(Sτ + J>(q)f − h(q, ν)) (5b)

τ0 = h̄− J̄>j f −Kp(qj − qdesj )−Kd(q̇j − q̇desj ) (5c)

For the sake of completeness, in the above optimization problem one has

Ḣ∗ =

(
m(ẍd − kp(x− xd)− kd(ẋ− ẋd))

−kωHω − ki
∫ t
0
Hωds

)
(6a)

h̄ := hj −M>
bjM

−1
b hb (6b)

h̄ :=

(
hb
hj

)
= C(q, ν)ν +G(q), hb ∈ R6 hj ∈ Rn (6c)

J̄ := Jj − J>b M−1
b Mbj (6d)

M =

(
Mb Mbj

M>
bj Mj

)
Mb ∈ R6×6 Mbj ∈ R6×n Mb ∈ Rn×n (6e)

Note that the additional constraint (4b) ensures that the desired contact wrenches f belong
to the associated friction cones. Once the optimum f ∗ has been determined, the input torques
τ are obtained by re-using the expression (5), i.e.

τ = τ ∗(f ∗) (7)

Now, by direct calculations one can verify that the solution to the problem (5) is an affine
function versus the desired wrenches f , i.e. τ ∗ = A(q, ν)f + b(q, ν), where A ∈ Rn×12 and
b ∈ Rn two proper matrices. This leads to the following simplification of the optimization
problem

f ∗ = argmin
f
|τ ∗(f)| (8a)

s.t.

Cf < b (8b)

Ḣ(f) = Ḣ∗ (8c)

τ ∗(f) = A(q, ν)f + b(q, ν) (8d)

The above control algorithm has run at both review meetings of the CoDyCo project.
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Figure 2: A compliant carpet subject to a uniform force distribution

3 Modelling and control design for a humanoid balancing
on a thin carpet

This section discusses the modification of the control algorithm (4) for dealing with compliant
contacts. Prior to the control design, however, we present a simple model for the carpet.

3.1 Modelling

To introduce the reader to the model of a compliant carpet, we first consider the planar case,
and then address the three-dimensional case.

3.1.1 A case study: the planar case

Figure 2 shows a uniform force distribution acting on a compliant carpet of height h. The
resultant force due to the distribution is denoted by F . The force distribution induces a com-
pression of the compliant carpet and, assuming uniform carpet characteristics, the compression
is equally distributed. So, the carpet is horizontal even after the compression due to the force
distribution. Now, assume that the mapping F : zM → FE is known – or properly estimated
– in the case shown in Figure 2. The following details how to evaluate the resultant force and
torque acting from the carpet to the contact surface when it is not uniformly compressed. To
this purpose, we make the following assumptions.

Assumption 1. Throughout the paper, we assume the following.

1. The carpet characteristics are isotropic.

2. The soft carpet can be approximated as a continuum of springs. In addition, each
infinitesimal spring can exert only a vertical force.

3. An off-line estimation procedure provides us with the mapping F = FE(zM) when a
uniform force distribution f(·) is applied to the carpet.

Let l denote the length of the compliant carpet subject to the uniform force distribution.
As a consequence of assumptions 1.1 and 1.3, one has:
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FE(zM) =

∫ b

a

f(zM)dx = f(zM)l. (9)

So, we can evaluate the force distribution f(z) from the estimated force FE(zM),

f(z) =
FE(z)

l
. (10)

Then, Eq. (9) can be used to evaluate the total force applied from the carpet to a generic
contact surface, i.e.

F =

∫ b

a

f(z(x))dx, (11)

with z(x) a proper function describing the shape of the contact surface on a domain x ∈ [a, b].
Also, in view of the assumption 1.2, the torque about a point located at x = x̄ of the carpet
can be easily computed as:

M =

∫ b

a

f(z(x))(x− x̄)dx. (12)

3.1.2 The case of a flat contact surface and a linear force distribution

Assume that the flat surface in Figure 2 bends as shown in Figure 3. Then, its shape can be
characterized by a line of slope tan(θ), i.e

z(x) = zM + tan(θ)(x− xM), (13)

with (xM , zM) the coordinates of the central point of the flat plate. In addition, assume also
that the estimated force F = FE(zM) is linear with respect to the carpet’s compression, i.e.

FE(zM) = K(h− zM),

which implies

f(z) = k(h− z), (14)

with k := K/l. Then, the total force and torque exerted from the compliant carpet to the
flat surface is given by (11) and (12) evaluated with (14) and (13), i.e.

F =

∫ xM+ l
2
cos(θ)

xM− l
2
cos(θ)

f(z(x))dx = kl cos(θ) (h− zM) (15a)

M =

∫ zM+ l
2
cos(θ)

xM− l
2
cos(θ)

f(z(x))(x−x̄)dx

= kl cos(θ)

[
(h− zM) (xM − x̄)− l2

12
sin(θ) cos(θ)

]
(15b)
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Figure 3: A compliant carpet subject to a non-uniform force distribution

The process of finding the solutions to the above integral is simplified by applying the vari-
able transformation ξ = x− xM , which renders the limits of integration equal to −0.5l cos(θ)
and 0.5l cos(θ). This hint is used for calculating the integrals in the more-complex 3-D case.

Note that if the torque M is expressed with respect to the central point (xM , zM) of the
plate, one has:

F = kl cos(θ) (h− zM) (16a)

M = −k l
3

12
sin(θ) cos2(θ) (16b)

As shown in Figure 3, positive angles θ produce negative torques,

3.1.3 The three-dimensional case

Analogously to the planar case, this section addresses the modeling of the forces and torques
applied from a compliant carpet to a contact surface by considering the three-dimensional case.
To this purpose, we still assume that Assumption 1 holds, modulo straightforward modifications
for handling the three-dimensional case. In particular, we assume that an estimation procedure
is performed when the contact surface is a flat, rectangular plate of length l and width d –
see Figure 4. In addition, we also assume that the estimation procedure consists of applying a
uniform force distribution so that the flat plate compresses the carpet uniformly. Hence, the
estimated force takes the following form:

FE(z) = e3

∫ x1

x0

∫ y1

y0

f(z)dxdy = f(z)lde3, (17)

with f(z) the vertical force distribution per surface. Hence, the force distribution can be
evaluated as follows:

f(z) =
|FE(z)|
ld

. (18)

In light of the above, the force and torque due to a generic contact surface is given by:

F = e3

∫ ∫
D

f(z)dxdy, (19a)

M =

∫ ∫
D

f(z)S(p− p̄)e3dxdy, (19b)
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Figure 4: A compliant carpet subject to a non-uniform force distribution

with p = (x y z)> a point of the contact surface, p̄ = (x̄ ȳ z̄)> the point w.r.t. which
the torque is expressed, and D ⊂ R2 a proper integration domain associated with the contact
surface configuration.

3.1.4 The case of a flat contact surface and a linear force distribution

Assume that the contact surface is flat – see Figure 4 – so it can be characterized by the
following equation

n>p = 0, (20)

with n ∈ R3 the unit vector perpendicular to the surface.
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Lemma 1. Assume that Assumption 1 holds, and that the force distribution f(·) associated
with the compliant carpet is linear with respect to the height, i.e.

f(z) = k(h− z). (21)

Let a flat, rectangular surface, of length l and width d, be in full-contact with the com-
pliant carpet. Then, the force-torque acting on the rectangular surface at the equilibrium
configuration is given by:

F = kld|n>e3| (h− zM) e3 (22a)

M = S(pM − p̄)F +
kld

12
|n>e3|S(e3)Λ(ı, )e3 (22b)

with Λ = d2>+ l2ıı>, pM the central point of the rectangular surface, and ı and  two unit,
perpendicular vectors parallel to the rectangle’s borders associated with the length and the
width, respectively.

The proof is given in the Appendix. The above Lemma points out that the total force F
depends on the normal n to the plane representing the flat plate, but it does not depend on
the angle about this normal (i.e. the yaw angle about the normal n). Clearly, the force F also
depends on how much the plate immerses into the soft carpet, and this dependence comes
from the term (h− zM) in Eq. (22a). The expression of the torque M , instead, is the sum of
two terms: the torque due to the force F applied at the point p̄ plus a term depending only on
the relative orientation of the plate w.r.t. the inertial frame. Note that if the plate is parallel
to the plane x− y of the inertial frame, then ı>e3 = 0 and >e3 = 0. As a consequence, the
second term on the right hand side of (22) is equal to zero, and so is the momentum M when
expressed with respect to pM (i.e. p̄ = pM).

3.1.5 Constraints associated with the flat plate due to friction

Consider Figure 4, where v ∈ R3 denotes the velocity of the point pM , and ω ∈ R3 the
angular velocity of the flat plate, both expressed with respect to the inertial frame. Then, it is
reasonable to assume that friction effects forbid any rotation of the plate about the axis n as
long as friction forces belong to the associated friction cones, i.e. n>ω = 0. In addition, it is
also reasonable to assume that friction effects forbid the velocity of any point of the plate to
be tangential to the plate itself. It is straightforward to verify that the velocity of any point p
of the flat plate has null tangential velocity if and only if the velocity of the point pM has null
tangential velocity when n>ω = 0. In light of the above, we assume that as long as friction
forces belong to the associated friction cones, one has:

ı>v = 0 (23a)

>v = 0 (23b)

n>ω = 0 (23c)

The above equations point out that the flat plate can rotate only about the axes ı and , and
can also go ”up-and-down” due to the compliance of the carpet. When coming to practice,
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however, it is also reasonable to assume that the vertical speed of the point pM is equal to
zero, i.e.

e>3 v = 0 (24)

Let us justify this additional hypothesis. Eq. (22a) shows that the vertical force at the equi-
librium configuration exerted from the carpet to the plate is given by

Fz = kld|n>e3| (h− zM) .

Now, without loss of generality, assume that the point pM is the plate’s center of mass. Then,
the force balance along the z axis writes:

mpz̈M = −kvżM + kld|n>e3| (h− zM)−mpg

where mp is the mass of the plate, and kv the viscous coefficient associated with the compliant
carpet. In particular, thin compliant carpet are typically associated with very high value of kv,
which implies fast convergence of the plate vertical velocity to zero, i.e. żM → 0. Also, from
the above equation, it is clear that at the equilibrium configurations with a flat plate almost
parallel to the ground, i.e. |n>e3| ≈ 1, one has

zM ≈ h− mpg

kld
.

Since the weight of the plate is constant, then the height zM converges to the same value
independently of an external, vanishing perturbation applied to the plate. This fact combined
with the high value of carpet’s damping justify the assumption (24).

Note that the constraints (23) (24) can be compactly written as:

H(ı, , n)v = 0, (25)

where

H(ı, , n) :=


ı> 01×3
> 01×3
e>3 01×3

01×3 n>

 (26a)

v :=

(
v
ω

)
(26b)

3.1.6 Kinematic constraints and contact forces associated with the robot’s feet

Assume that the robot is balancing on both feet, underneath which there is the compliant
carpet characterized by the equations presented above. In view of Eqs. (26), the constraints
acting on both feet can be compactly written as:

H̄vf = 0, (27)

with

H̄ =

(
H(ıL, L, nL) 04×6

04×6 H(ıR, R, nR)

)
(28a)

vf =

(
vL
vR

)
, (28b)
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and (ıL, L, nL) and (ıR, R, nR) two frames attached to the left and right foot, respectively
(as indicated in Figure (4)b and vL and vR the linear and angular velocity of the central point
of the robot’s feet, respectively. Now, the feet velocity vf can be expressed in terms of the
robot velocity ν though its Jacobian, i.e.

vf = J(q)ν.

By substituting the above equation into (25), one obtains

J̇s(q)ν + Js(q)ν̇ = 0 (29a)

where Js(q) := H̄(q)J(q). Hence, the constraint equations when the robot stands on a
compliant carpet have the same form of those when standing on rigid constraints (compare
Eqs. (29) and (5a)). What does change between these two situations is the number of rigid
constraints acting on the system. In fact, in the case the robot stands on rigid contacts, one
has 12 kinematic constraints, while when the humanoid balances on the soft carpet, one has
8 rigid constraints acting on the system.

The rigid constraints generate eight contact forces f rigid ∈ R8, which must be taken into
account in the dynamic equation, i.e.

M(q)ν̇ + C(q, ν)ν +G(q) = Bτ + J>s (q)f rigid + J>(q)f comp (30)

By combining the above equation with the constraints (29), one can find an expression of
the contact forces f rigid, which depend on the torque τ and can be assumed as an artificial
control input. Note that the effect of the compliant forces f comp in Eq. (30) is also taken into
account. Let f compL ∈ R6 and f compR ∈ R6 denote the compliant wrenches acting on the left
and right foot, respectively. Assuming that the contact torques in Eq. (22) are expressed w.r.t.
the feet central point, i.e. p̄ = pM , and that the feet can be approximated as two rectangles
of the same dimension, one has

fcomp =

(
f compL

f compR

)
= kld


|n>Le3|

(
h− zLM

)
e3

1
12
|n>Le3|S(e3)Λ(ıL, L)e3
|n>Re3|

(
h− zRM

)
e3

1
12
|n>Re3|S(e3)Λ(ıR, R)e3,

 (31)

with zLM and zRM the third components of the position vectors pLM and pRM describing the
central points of the feet, i.e. zLM = e>3 p

L
M and zRM = e>3 p

R
M .

3.2 Control design

Recall that the control objective is the asymptotic stabilization of the robot momentum, the
rate of change of which equals the net external wrench acting on the system. In the case the
robot is balancing on the compliant carpet described in Section (3.1.4), one then has

Ḣ(f rigid) = mg +
(
cXL,

cXR

)
(H̄>(q)f rigid + f comp), (32)
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where f rigid, being dependent on the input torques τ , can be assumed as a control input
in the above dynamics. In light of the above, the control problem (4) is modified as follows
to deal with the compliant carpet.

f rigid∗ = argmin
frigid

|τ ∗(f rigid)| (33a)

s.t.

Cf rigid < b (33b)

Ḣ(f rigid) = Ḣ∗ (33c)

τ ∗(f rigid) = argmin
τ
|τ(f rigid)− τ0(f rigid)| (34)

s.t.

J̇s(q, ν)ν + Js(q)ν̇ = 0 (34a)

ν̇ = M−1(Sτ + J>s (q)f rigid + J>(q)f comp − h(q, ν)) (34b)

τ0 = h̄−J̄>j (H̄>(q)f rigid + f comp)−Kp(qj − qdesj )−Kd(q̇j − q̇desj ) (34c)

Analogously to what we discussed in Section 2.3, the above control problem is equivalent
to:

f rigid∗ = argmin
frigid

|τ ∗(f rigid)| (35a)

s.t.

Cf rigid < b (35b)

Ḣ(f) = Ḣ∗ (35c)

τ ∗(f) = A(q, ν)(H̄>(q)f rigid + f comp) + b(q, ν) (35d)

and once the optimal solution f rigid∗ is determined, we apply again Eq. (36) to determine
the input torques to the robot. The above control algorithm will be implemented for the third
year demo review meeting when the humanoid must balance on two feet and on a compliant
carpet.

4 Control design for humanoids balancing on dynamical
contacts: the case of balancing on a seesaw

4.1 The equation of motion of the seesaw

The equation of motion of the seesaw are derived by considering it as a rigid body subject to
the rolling constraint. Let ms and Is denote the mass and the inertia matrix of the seesaw,
and Ivs and Iωs the linear velocity of its center of mass and its angular velocity, respectively.
Then, the momentum of the seesaw Hs ∈ R6 is defined by

Hs :=

(
ms

Ivs
Is
Iωs

)
, (36)
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Figure 5: The semi-cylindrical seesaw

and the equation of motion are given by

Ḣs =
∑
i

fexti (37)

subject to the following constraints

Ivp = 0. (38a)
Iωs

>e2 = 0 (38b)
Iωs

>e3 = 0 (38c)

with fexti the external wrenches acting on the seesaw (see Figure 5). The kinematic con-
straints (38) express the following facts:

• The seesaw cannot rotate about the axes e2 and e3 of the inertial frame.

• The contact point between the seesaw and the floor possesses null velocity. This, along
with the constraints on the seesaw angular velocity, ensures that all points of the contact
line between the seesaw and the floor have zero velocity.

The satisfaction of the above constraints is ensured as long as the contact wrench wc (see
Figure 5 ) belong to the associated friction cones.

4.2 Control design

Consider the robot balancing on the seesaw depicted in Figure 6. Recall that the control
objective is the asymptotic stabilization of the robot’s momentum H, the rate-of-change of
which equals the net external force acting on the system. In the case of the robot balancing
on the seesaw, one has:

Ḣ = mg +c XLfL +c XRfR = mg +
(
cXL

cXR

)
f, (39)

where cXL,
cXR ∈ R6×6 are two proper projection matrices, and f := (f>L , f

>
R )>. Now, we

consider the contact forces f as a virtual control input of the above system, which can then
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fL
fR

pLpR Gs

Figure 6: The robot balancing on the semi-cylindrical seesaw

be chosen so as Ḣ = Ḣ∗ . To determine the relation between the contact forces f and the
input torques τ , we have to define the constraints acting on the system robot plus seesaw.

To do so, consider, for instance, the left foot. As long as the foot stays in contact
with the seesaw, the angular acceleration of the foot equals the angular acceleration of the
seesaw. Analogously, the linear acceleration of any point belonging to the foot’s sole equals
the acceleration of the corresponding point belonging to the seesaw. This latter condition
can be imposed by considering one single point of the foot’s sole. As a consequence, the feet
constraints can be expressed as follows:

J̇(q)ν + J(q)ν̇ = ac (40)

where

ac =

(
aL
aR

)
=


p̈L
Iω̇s
p̈R
Iω̇s

 (41)

and aL and aR the linear accelerations of the points pL and pR, respectively. Note that the
accelerations aL and aR can be expressed in terms of the acceleration of the seesaw center of
mass Gs through the relation

p̈L = I v̇s +I ω̇s × (pL −Gs) +I ωs × (ṗL −I vs). (42)

The accelerations v̇s and ω̇s can be evaluated from the Newton-Euler equation of the
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seesaw. By considering Figure 6, one has

Ḣs =
d

dt

(
ms

Ivs
Is
Iωs

)
= msg +s Xcfc −s XLfL −s XRfR

= msg +s Xcfc −
(
sXL

sXR

)
f, (43)

The above balance has been written by considering the fact that the force-torque (at each
contact) that the seesaw exerts on the robot is equal and opposite to the force-torque the
robot exerts on the seesaw. In view of (40), (41), (42), (43), one has

J̇(q)ν + J(q)ν̇(τ, f) = ac(f) (44)

In light of the above, the control problem (4) is modified as follows to deal with the
dynamical contacts generated by the seesaw.

f ∗ = argmin
f
|τ ∗(f)| (45a)

s.t.

Cf < b (45b)

Ḣ(f) = Ḣ∗ (45c)

Ḣs = Ḣs(f, fc) (45d)
Ivp = 0 (45e)
Iωs

>e2 = 0 (45f)
Iωs

>e3 = 0 (45g)

τ ∗(f) = argmin
τ
|τ(f)− τ0(f)| (46)

s.t.

J̇(q)ν + J(q)ν̇(τ, f) = ac(f) (46a)

ν̇ = M−1(Sτ + J>(q)f − h(q, ν)) (46b)

τ0 = h̄− J̄>j f −Kp(qj − qdesj )−Kd(q̇j − q̇desj ) (46c)

5 Estimation algorithms

This section discusses the estimation algorithms for both the floating base and the compliance
of the soft carpet.

5.1 Estimation of the floating base

5.1.1 Quaternion-based Extended Kalman Filter

The goal of this Kalman Filter is to estimate the orientation of our previously defined world
reference frame3 w with respect to the sensor reference {s} in the quaternion representation

3Remember it was defined as a right-handed co-ordinate system with the positive x axis pointing to the
local magnetic North, positive z pointing up and y according to the right handed system

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

19/28 Contract No. FP7-600716
www.codyco.eu



Version 1.0, Feb. 28, 2016

(radians), i.e. qsw. We start with a simplified version of the filter where only a triad of gyroscopes
and accelerometers will be used along with a simple model of the process representing solely
the orientation to be estimated. In this way, the state of the Kalman Filter will be the
quaternion-based orientation of the world w in the sensor reference frame {s}, i.e.

x = qsw (47)

Where q = [q1 qv], q1 ∈ R, qv ∈ R3 and ||q|| = 1.

Figure 7: Earth-fixed (world) reference frame w and local sensor reference frame {s}. R(qsw)
denotes the quaternion-based rotation matrix that rotates the world reference frame w into
{s}.

5.1.2 Discrete Time Process Model

[xk+1 = Axk+wk]. This model is obtained starting off the continuous time equations relating
the quaternion orientation with its derivative resulting in the following differential equation:

q̇sw(t) =
1

2
Ω(ωs(t))qsw(t) (48)

From now on, let us forget about the super and subscript identifying the reference frames
for this quaternion for the sake of clarity, and let us work out Eq. 48 in order to obtain the
more cannonical equation of the process model. In the previous equation ω is the actual
angular velocity in body coordinates. The relationship between this angular velocity and the
one measured by a gyroscope ωm with zero-mean normal additive noise εk at time k is given
by:

ωmk = ωk + εk (49)
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Let us then call Ω(ω) the “derivative matrix” which appears in the multiplication of a
matrix by a quaternion and has the same structure:

Ω(ω) =

[
0 −ωT
ω −S(ω)

]
(50)

The discrete-time solution to Eq. 48 is known to be:

qk+1 = Φkqk (51)

Under the assumption that ω is constant over the integration time (Ts), thus making Ω inde-
pendent of time, the differential equation becomes time-invariant and a closed form solution
can be obtained resulting in the so-called “zeroth order quaternion integrator” , thus:

Φk = exp

(
1

2
Ω(ω)Ts

)
(52)

Using the Taylor expansion of this matrix exponential along with the power properties of matrix
Ω(ω), you get the common Taylor series expansions of the sine and cos functions and taking
the first order approximation (as ω → 0) we finally obtain:

Φk = I4×4 +
Ts
2

Ω(ω) (53)

In this simplified case of the filter, since we are not estimating ω, but measuring it with the
gyroscope which is subject to error and bias, the transition matrix that uses ωm instead of ω
will differ from Φk by ∆Φk, that is:

Φm
k = Φk + ∆Φk (54)

∆Φk is called the Error Matrix which according to can be expressed as its matrix power
series first order term only, or from the first order approximations of Φm

k and Φk, such that:

Φm
k − Φk = (I4×4 +

1

2
Ω(ωmk )Ts)− (I4×4 +

1

2
Ω(ωk)Ts) (55)

=
1

2
Ω(ωmk − ωk)Ts (56)

=
1

2
Ω(εk)Ts = EkTs (57)

Where εk is the gyro measurement noise vector, thus:

∆Φk ' EkTs (58)

Where

Ek =
1

2

[
0 −εTk
εk −S(εk)

]
(59)

And S(εk) the skew-symmetric matrix:

S(εk) =

 0 −εk3 εk2
εk3 0 −εk1
−εk2 εk1 0

 (60)
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Hence, from Eq. 54

Φk = Φm
k −∆Φk (61)

Φk = Φm
k − EkTs (62)

Substituting in Eq. 51

qk+1 = Φkqk (63)

qk+1 = (Φm
k − EkTs)qk (64)

qk+1 = Φm
k qk − TsEkqk (65)

The term Ekqk can be further expanded taking advantage of the properties of the matrix Ek,
which when pre-multiplying a quaternion respects the following property (Ω(ω) and Ek have
the same structure!):

Thus, Eq. 65 can be further expressed as:

qk+1 = Φm
k qk −

Ts
2

Ξ(qk)εk (66)

Taking x = ε and q = qk. Finally, the Process Model is:

xk+1 = qk+1 = Φm
k qk + wk (67)

Where:

Φm
k = I4×4 +

Ts
2

Ω(ωmk ) (68)

wk = −Ts
2

Ξ(qk)εk (69)

Ξ(qk) =

[
−qTv

q1I3×3 + S(qv)

]
(70)

The zero-mean gyro noise vector εk is normally distributed, i.e. ε ∼ N (0, σg)

Σg
k = σ2

gI3×3 (71)

With process covariance matrix given by:

Qw
k = E(wkw

T
k ) =

(
Ts
2

)2

ΞkΣ
g
kΞ

T
k (72)

Remember that Ts must be kept small, as well as εk since these assumptions allowed for
the approximation of ∆Φk, the Error Transition Matrix first order approximation.

5.1.3 Measurement Model

[zk = h(xk+1) + vk]. This model is constituted by the accelerometer only, neglecting its
bias and scaling factors or body acceleration. The latter assumption is also done in many
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commercial IMUs as the one used to compare our results. The measurement model in the
body frame:

zk = h(qswk+1) + vk (73)

zk = R(qswk+1)g
w + vk (74)

Where R(qswk+1
) is the rotation matrix representing the orientation of the sensor reference

frame with respect to the world frame. This rotation matrix is a function of the quaternion
orientation. gw is the gravity vector (as it would be measured by the accelerometer) in Earth
coordinates and is considered constant and equal to [0 0 9.8]T . The covariance matrix of the
measurement model is assumed constant and equal to:

Σa
k = σ2

aI3×3 (75)

5.1.4 Filter design

The measurement model described by Eq. 5.1.3 is non-linear in q. To fully describe the filter
we further need to linearize h(qswk+1

). Notice that the process model given by Eq. 67 is already
linear in q.

To linearize Eq. 5.1.3 we proceed to compute the Jacobian of h(q), evaluated at the most
recent estimate of q. Let us recall here that R(qsw) can be expressed in terms of the quaternion
as:

R(qsw) =

 2q21 − 1 + 2q22 2q2q3 − 2q1q4 2q2q4 + 2q1q3
2q2q3 + 2q1q4 2q21 − 1 + 2q23 2q3q4 − 2q1q2
2q2q4 − 2q1q3 2q3q4 + 2q1q2 2q21 − 1 + 2q24

 (76)

The observation matrix is then defined by the following Jacobian:

Hk+1 =
∂h

∂q

∣∣∣∣
xk+1|k

(77)

=
∂

∂q
R(qsw)gw

∣∣∣∣
xk+1|k

(78)

Where

∂

∂q
R(qsw) =

[
∂
∂q1
R(q) ∂

∂q2
R(q) ∂

∂q3
R(q) ∂

∂q4
R(q)

]
(79)
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with

∂

∂q1
R = 2

 2q1 −q4 q3
q4 2q1 −q2
−q3 q2 2q1

 (80)

∂

∂q2
R = 2

 2q2 q3 q4
q3 0 −q1
q4 q1 0

 (81)

∂

∂q3
R = 2

 0 q2 q1
q2 2q3 q4
−q1 q4 0

 (82)

∂

∂q4
R = 2

 0 −q1 q2
q1 0 q3
q2 q3 2q4

 (83)

At this point we have all the elements necessary to implement an Extended Kalman Filter
with linearized measurement equations.

5.1.5 Floating-base attitude estimation

In order to estimate the final attitude of the floating base, we proceed by composing the esti-
mate given by the extended Kalman filter of the previous section with the kinematic information
of the supporting leg. The floating base attitude will be expressed in w

Rw
FB = (RFB

s Rs
w(q)) (84)

Where q is the quaternion estimated as done in the previous section expressing the orien-
tation of w in s.

5.1.6 Implementation and experiments

A YARP-based C++ module has been written within the CoDyCo software CoDyCO software
reference and link to wholeBodyEstimator. The module is called wholeBodyEstimator. A
class diagram depicting the design principles behind it is shown in Figure 8. The module allows
the user to specify the estimators that will be run, in a factory design pattern manner. The list
of estimators to be instantiated by the module can be specified via the module’s configuration
file.

5.2 Estimation of the floor compliance

This section presents preliminary results on the estimation of the force distribution f(z) of the
compliant carpet. The carpet’s height is equal to h = 1 cm.

5.2.1 The setup

Figure 9 shows the experimental setup used for estimating the compliance f(z) associated
with the chosen soft carpet. By means of a vise, we push a dynamometer that measures the
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Figure 8: Class diagram for the wholeBodyEstimator module.
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Figure 9: Estimation setup
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Figure 10: Estimation setup

force exerted from the compliant carpet to a flat plate attached to the dynamometer’s top.
The measurement of the carpet’s compression is taken by using a high-precision caliper whose
resolution is 0.01 mm.

5.2.2 Results

We carried on experiments with two rectangular contact surfaces of different size:

S1 : l1 = 5.01 cm and d1 = 2.01 cm;

S2 : l2 = 5.6 cm and d2 = 3.5 cm.

The measurements are taken so that the contact force spans the range [0, 265] N for S1
and [0, 388] N for S2. Figure 10 depicts both the measurements taken for the two different
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surfaces and the approximation result. Recall that the force distribution f(z) is estimated
from the measurement of the contact force via Eq. (18), i.e.

f(z) =
|FE(z)|
lidi

,

with i ∈ {1, 2}. Hence, Figure 10 points out the following facts:

• Assumption 1.1, namely the carpet characteristics be uniform, is well-posed. In fact,
measurements taken with a larger contact surface show that the governing behavior of
the force distribution f(z) does not change significantly versus the contact’s surface.

• The assumption made in Lemma 1 on the linearity of the force distribution versus (h−z)
is well-posed.

• Since the carpet is of h = 1 cm, it shows some nonlinear effects around (h−z) ≈ 0.6 cm.
This threshold, which impairs the use of the model (21) to evaluate the total force-
torque acting on the plate, is far from the operational condition representing a foot size
in contact with the carpet.
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Appendix

Proof of Lemma 1

First, note that any point p = (x, y, z) of the rectangular surface can be expressed as follows

p = pM +Rp′, (85)

where R is the rotation matrix given by R = (ı, , n), and p′ = (u, v, 0) any point of the
rectangular surface expressed in the frame (pM , R), which implies that u ∈

[
− l

2
, l
2

]
and

v ∈
[
−d

2
, d
2

]
. Then, we consider (85) as a variable change

x = x(u, v) (86a)

y = y(u, v) (86b)

to facilitate the process of finding the solutions to the integrals (19). Let us remind that given
a double integral of a function g(x, y) : R2 → R, a variable change of the form (86) yields∫ ∫

g(x, y)dxdy =

∫ ∫
g(x(u, v), y(u, v))| det(J)|dudv, (87)

where J is the Jacobian of the variable transformation (86), i.e.

J =

(
∂ux ∂vx
∂uy ∂vy

)
(88)

It is straightforward to verify that the variable change (85) yields

| det(J)| = |ı12 − ı21| = |n>e3| (89)

Once the variable change (86) has been applied, the domains on which the integrals (19)
must be evaluated are normal with domains u ∈

[
− l

2
, l
2

]
and v ∈

[
−d

2
, d
2

]
. Hence, from

Eqs. (19) (21) (85) and (89), one has

F = e3k|n>e3|
∫ d

2

− d
2

dv

∫ l
2

− l
2

(h− zM − ı3u− 3v)du, (90a)

M = k|n>e3|
∫ d

2

− d
2

dv

∫ l
2

− l
2

(h−zM−ı3u−3v)S(pM − p̄+ uı+ v)e3du. (90b)

By computing the above integrals, one gets (22).
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