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1 Introduction

The understanding of the human dynamics and the way in which its contribute can
be applied to enhance a physical human-robot interaction (pHRI) are two of the most
promising challenges for the scientific community due mainly to their enormous and
to-be-developed potential in industrial scenarios, ergonomics context, as well as in as-
sistive and rehabilitation fields. Classical robots are built to act for humans, but in
order to adapt their functionality to the current technological progress, the new gener-
ation of robots will have to collaborate with humans. This implies that the robots will
be endowed with the capability to control physical collaboration through intentional in-
teraction with humans. To achieve this condition, robots have to know mandatorily the
dynamics (contact forces, internal forces, joint torques) of the human agent who they
are interacting with. However the current state of the robot knowledge in observing
human whole-body dynamics yields to non-proficient and unadaptive interactions.

To overcome this drawback, it is fundamental to understand what the response of
the human body is while a physical interaction is occurring. The importance in retriev-
ing this information is exemplified in Fig. 1: once the dynamic variables are computed
by exploiting a dynamics estimation algorithm, the human dynamics feedback may be
provided to the robot controllers. As a consequence, the robot may adjust the strategy
of interaction accordingly.

This work is the first attempt to go in this direction since a first pHRI task was in-
serted with respect to our previous work [10] where only an investigation on the human
inverse dynamics was carried out. The paper is built on the theoretical framework de-
scribed in [10] from which it inherits both the notation and formulation.

The paper is structured as follows. Section 2 introduces the state-of-the-art back-
ground which the paper is based on. Section 3 presents the modelling of the human
body as an articulated multi-body system. In Section 4 the adopted Gaussian proba-
bilistic domain for the sensor fusion methodology is briefly recalled. Section 5 outlines
the experimental set-up followed by a description of the results in Section 6. Conclu-
sions and several considerations on the pivotal role of further control and estimation
developments are depicted in Section 7.

2 Background

The aim of this Section is to provide a rapid fast-forward of what is the current direction
of the scientific community on this topic. Most of the studies on the pHRI take inspi-
ration from the intrinsic behaviour of the human nature: the mutual adaptive nature
that automatically occurs when two humans are cooperating together to accomplish a
common task.

To this purpose, the importance of understanding human dynamics goes without
saying and it is a crucial aspect of current state-of-the-art studies. Since humans move
by minimizing jerk trajectories [5], a method based on the minimum jerk model is used
as a suitable approximation for estimating the human partner motions in [11]. Here
the attempt is that of incorporating human characteristics in the control strategy of the
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Figure 1: An example of pHRI scenario: the human agent is provided with a wearable technol-
ogy and an estimation algorithm allows to retrieve information about his dynamics. By properly
embedding estimations in the control loop of the robot, the intentional collaboration may be
enhanced.

robot. The weakness in this type of approach, however, lies in the pre-determination
of the task and in the role that the robot has to play in the task execution. Further-
more, the minimum jerk model reliability decreases considerably if the human partner
decides to apply non-scheduled trajectory changes during the task [15]. Another route
for pHRI is the imitation learning approach, where the movements of two human actors
are typically retrieved with motion capture techniques, clustered in motion database
([6], [9], [22]) and then used to learn the interaction skills ([1], [20], [12]).

2.1 Problem statement

Unlike the current leaning, we want to pay more attention on the key role that a proper
sensing technology for human beings together with dynamics estimation algorithms
may offer for retrieving whole-body motions and interaction forces. More in detail, our
work will be based on the formalism adopted for humanoid robots by making the as-
sumption of modelling the human body as a articulated rigid multi-body system. The
advantage of this choice is evident since it allows to handle both systems with the
same mathematical tools. In this domain, the application of the Euler-Poincaré formal-
ism [13] leads to three sets of equations describing: i) the motion of the robot, ii) the
motion characterizing the human, iii) the linking equations characterizing the contacts
between human and robot.

i) M(q)v̇ + C(q,v)v + G(q) =

[
0
τ

]
+ J>(q)f
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ii) M(q̄) ˙̄v + C(q̄, v̄)v̄ + G(q̄) =

[
0
τ

]
+ J>(q̄)f

iii)
[
J(q) J(q̄)

] [v̇
˙̄v

]
+
[
J̇(q) J̇(q̄)

] [v
v̄

]
= 0

Equations i) and ii) are floating base system representations of the dynamics of
the robot and human models, respectively. Vectors q and q̄ represent the configuration
space (i.e. the position and orientation of a chosen frame, called base frame, and the
joints configuration) of the two systems. The velocity is represented by v and v̄ for
robot and human systems, respectively. The matrices M, C, G and M, C, G denote
the mass matrix, Coriolis matrix and the gravity bias term for the robot and the human
systems, respectively. The forces the two systems exchange are denoted by f , which
owns a proper dimension depending on the number of wrenches1 exchanged during
the interaction task2. The Jacobians associated with the forces f are denoted by J(q)
and J(q̄). In iii) we make the assumption of rigid contacts between the two systems.

3 Human Body Modelling

We propose a human body reference model as an articulated multi-body skeleton with
rigid bodies connected by 3 Degrees-of-Freedom (DoF) joints. Kinematic and dynamic
properties are defined as follows.

3.1 Kinematic properties

Inspired by the biomechanical model developed for the Xsens MVN motion capture
system [19] shown in Fig. 3b, our model consists of a set of 23 rigid bodies with simple
geometric shapes (parallelepiped, cylinder, sphere). The origin of each link is located
at the parent joint origin, (i.e., the joint that connects the link to its parent). Figure 2b
shows links and joints of the model. The dimension of each link is estimated by using
data coming from motion capture acquisition.

3.2 Dynamic properties

The dynamic properties, such as center of mass and inertia tensor for each link, are
not embedded in the Xsens output data since they are usually computed in a post-
processing phase. Since our aim is to have a real-time estimation for the human dy-
namic variables, the knowledge of dynamic properties during the acquisition phase is

1As an abuse of notation, we define as wrench a quantity that is not the dual of a twist but a vector
∈ R6 containing both the forces and the related moments.

2For the sake of simplicity, we omitted the forces the two systems exchange with the external environ-
ment (i.e., the ground) from the formulation of i) and ii). As a straightforward consequence, the linking
equations between each system with the external environment are not considered.

3The RGB (Red-Green-Blue) convention for x-y-z axes is adopted throughout the paper.
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Figure 2: (a) Sensor attached to a generic link. (b) Human body reference model with labels
for links and joints and with sensors distributed in the Xsens suit. Reference frames are also
shown3.
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mandatory [3]. Since it is impractical to retrieve these quantities in-vivo for humans, we
relied on the available anthropometric data in literature ([21], [8]) starting from the total
body mass of the subject, under the assumptions of geometric approximation and of
homogeneous density for the rigid bodies ([7], [23]).

4 Probabilistic Sensor Fusion Algorithm

In this Section we briefly recall the probabilistic method for estimating dynamic vari-
ables of an articulated mechanical system by exploiting the so-called sensor fusion
information, already presented in our previous work (the reader should refer to [10] for
a more thorough presentation).

From a theoretical point of view, we describe our model as a mechanical system
represented by an oriented kinematic tree with NB moving links and n-DoFs. Note that
n = n1 + ... + nNB

is the total number of DoFs of the system. The generic i-th link
and its parent are coupled with a joint i following the topological Denavit-Hartenberg
convention for joint numbering [2]. We are interested in computing an estimation of a
vector of dynamics variables d defined as:

d =
[
d>1 d>2 . . . d>NB

]> ∈ R24NB+2n,

di =
[
a>i fB

i
>
f>i τi fx

i
> q̈i

]>
∈ R24+2ni ,

where ai is the i-th body spatial acceleration, fB
i is the net wrench, fi is the internal

wrench exchanged from the parent link to the i-th link, τi ∈ Rni is the torque at the
joint, fx

i is the external wrench applied by the environment to the link and q̈i ∈ Rni is
the joint acceleration. The system can interact with the surrounding environment, and
the result of this interaction is reflected in the presence of the external wrenches fx

i .
The dynamics of the mechanical system4 can be obtained from the application of

the Newton-Euler equations5 [4]. It is possible to rearrange these equations into a
matrix form thus obtaining the following linear system of equations in the variable d:

D(q, q̇)d+ bD(q, q̇) = 0, (2)

where the matrix D ∈ R(18NB+n)×d and the bias vector bD ∈ R18NB+n. We now consider
the presence of NS measurements of dynamic quantities coming from different sensors
(e.g. accelerometers, force/torque sensors) and we denote with y ∈ RNS the vector
containing all the measurements. The dynamic variables and the values measured by
the sensors can be related by the following set of equations:

Y (q, q̇)d+ bY (q, q̇) = y, (3)

4We consider here the fixed base system configuration.
5It is worth to notice that here we prefer to adopt the Newton-Euler formalism as an equivalent repre-

sentation of the system dynamics. More details about this choice in Section 3.3 of [10].
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where Y ∈ RNS×d and bY ∈ RNS . By stacking together (2) and (3) we obtain a linear
system of equations in the variable d:[

Y (q, q̇)
D(q, q̇)

]
d+

[
bY (q, q̇)
bD(q, q̇)

]
=

[
y
0

]
. (4)

Equation (4) describes, in general, an overdetermined linear system of equations.
The bottom part, corresponding to (2) represents the Newton-Euler equations, while
the upper part contains the information coming from the, possibly noisy or redundant,
sensors. It is possible to compute the whole-body dynamics estimation by solving the
system in (4) for d. One possible approach is to solve (4) in the least-square sense, by
using a Moore-Penrose pseudoinverse or a weighted pseudo-inverse.

In the following we perform a different choice. We frame the estimation of d given
the knowledge of y and prior information about the model and the sensors in a Gaus-
sian domain by means of a Maximum-a-Posteriori (MAP) estimator6 such that

dMAP = arg max
d

p(d|y).

Since in this framework probability distributions are associated to both the measure-
ments and the model, it suffices to compute the expected value and the covariance
matrix of d given y, i.e.

Σd|y =
(
Σ̄−1D + Y >Σ−1y Y

)−1
, (5a)

µd|y = Σd|y
[
Y >Σ−1y (y − bY ) + Σ̄−1D µ̄D

]
, (5b)

where µ̄D and Σ̄D are the mean and covariance of the probability distribution
p(d) ∼ N

(
µ̄D, Σ̄D

)
of the model, respectively; Σy is the covariance matrix of the dis-

tribution p(y) ∼ N (µy,Σy) related to the measurements. In the Gaussian framework,
(5b) corresponds to the estimation of dMAP . It is worth noting that the vector d contains,
among the other dynamic variables, an estimate of the joint torque τ for retrieving the
inverse dynamics estimation.

5 Experimental Design

In this experiment the iCub is torque controlled. The control algorithm relies on the
inverse-dynamics control scheme that was presented in [17]. Human dynamics and
kinematics are monitored by whole-body distributed IMU sensors and contact forces at
the feet are measured with two force platforms.

5.1 Human wearable sensors for dynamic estimation

Human kinematics data were acquired by using a full-body wearable lycra suit pro-
vided by Xsens Technologies. The wearable suit is composed of 17 wired trackers,

6The benefits of the MAP estimator choice are explained in Section 4 of [10].
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Figure 3: (a) Subject with the motion capture suit. (b) The Xsens MVN model. (c) Model
reconstructed in OpenSim by using virtual markers from Xsens acquisition.

(i.e., inertial sensor units-IMUs including an accelerometer, a gyroscope and a magne-
tometer). The suit has signal transmitters that send measurements to the acquisition
unit through a wireless receiver which collects data at a frequency of 240 Hz. The hu-
man subject performed the required task standing with the feet on two standard force
platforms AMTI OR6 mounted on the ground, while interacting with the robot. Each
platform acquired a wrench sample at a frequency of 1 kHz by using AMTI acquisition
units.

5.2 Robot sensors for dynamic estimation

Experiments were conducted on the iCub [14], a full-body humanoid robot (Fig. 4a)
with 53-DoFs: 6 in the head, 16 in each arm, 3 in the torso and 6 in each leg. The iCub
is endowed with whole-body distributed force/torque sensors, accelerometers, gyro-
scopes and tactile sensors. Specifically, the limbs are equipped with six force/torque
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Figure 4: (a) The humanoid iCub. (b) Model of the iCub with the force/torque sensors embed-
ded in the limbs structure.

sensors placed in the upper arms, in the upper legs and in the ankles (Fig. 4b). Internal
joint torques and external wrenches are estimated through an online whole-body esti-
mation algorithm [16]. Measurements for the wrenches exchanged between the robot
and the human are obtained thanks to it. Robot data were collected at a frequency of
100 Hz.

5.3 Procedure protocol

The interacting subject (e.g. caregiver) wears the suit (Fig. 3a) and stands on the two
force plates by positioning each foot on a platform. The robot is located in front of the
subject, facing him and seating on a stool. It maintains balance with the whole-body
inverse dynamics approach described in [17]. During the experiment, human and robot
interact by exchanging forces at predefined locations. At this stage, the interaction was
chosen to occur at the iCub forearm to avoid mechanical failures due to the fragility of
the iCub hands (as shown in Fig. 6a). Also the relative human-robot distance is fixed
by requiring the human subject to place the feet at specific locations on a printed paper
which sketches the experiment layout and is placed on the floor (Fig. 6b).

The basic control strategy for the standing motion relies on whole-body inverse
dynamics. The controller is implemented in Simulink7 and has been successfully tested

7https://github.com/robotology-playground/WBI-Toolbox-controllers
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Figure 5: The iCub is initially seating on a stool while keeping the feet on the ground.

in simulation (see Fig. 7) and on the real robot (see Fig. 8). In its current version the
controller performs the standing up motion without the help of the caregiver, i.e. without
any physical human-robot interaction.

6 Physical human-robot interaction in Gazebo: lifting
the iCub arm

To test the control software for the robot lifting with the help of the human, we first
realized a prototype application in Gazebo. In this application, the robot can lift from
a chair autonomously or with the help of a human; to realize a physical interaction
between the human (operator, in this case) and the robot simulated in Gazebo, we
used the Geomagic touch, a haptic device.

The setup consists of:

• the iCub simulation in Gazebo, complete of the dynamics infor-
mation provided by wholeBodyDynamicsTree (https://github.
com/robotology/codyco-modules/tree/master/src/modules/
wholeBodyDynamicsTree developed by IIT in WP1) and the Cartesian
information provided by iKinCartesianController ;

• the Geomagic Touch, installed following the instructions in
https://github.com/inria-larsen/icub-manual/wiki/

Project Title: CoDyCo
Project Coordinator: Istituto Italiano di Tecnologia

12/20 Contract No. FP7-600716
www.codyco.eu

https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/inria-larsen/icub-manual/wiki/Installation-with-the-Geomagic-Touch
https://github.com/inria-larsen/icub-manual/wiki/Installation-with-the-Geomagic-Touch


Version 1.0, Feb. 28, 2017

Figure 6: (a) The figure shows the reference frames for the force/torque sensor of the robot
(iCubFT), the robot fixed base (iCubFB), the force plate (FP), the human fixed base (hFB), the
human foot and hand (hFOOT, hHAND) respectively. (b) Top view for the feet position layout.

Figure 7: The iCub simulated standing motion without external support from a caregiver.

Installation-with-the-Geomagic-Touch, which not only install the
SDK and drivers of the GeoMagic but also point to how to create the yarp drivers
for the Geomagic;

• a C++ module (https://github.com/inria-larsen/
icubLearningTrajectories) that connects the output command from
the Geomagic to the iCub in Gazebo, and eventually enables recording the
trajectories on a file.

The interconnection among the different modules is sketched in Figure 9. The tip of
the Geomagic is virtually attached to the end-effector of the robot:

xgeo → xicub hand

When the operator moves the Geomagic in the space, the position of the Geomagic
tip xgeo is scaled (1:1 by default) in the iCub workspace as xicub hand, and the Cartesian
controller is used to move the iCub hand around a ”home” position, or default starting
position:

xicub hand = hapticDriverMapping(x0 + xgeo)
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Figure 8: The iCub standing motion without external support from a caregiver.

where the hapticDriverMapping is the transformation applied by the haptic device
driver, which basically maps the axis from the Geomagic reference frame to the iCub
reference frame. By default, no force feedback is sent back to the operator in this mode,
as it emulates the zero-torque control pHRI where the robot is ideally transparent and
not opposing any resistance to the human guidance. A default orientation of the hand
(”katana” orientation) is set.

C++ program
To link and redirect 

the signals

kinematics / dynamics
information

trajectory1.txt
trajectory2.txt
trajectory3.txt

position
command

GAZEBO

GEOMAGIC
DEVICE

position command

record/replay
command

Figure 9: The interconnection between the Geomagic Touch and iCub in Gazebo.

The two buttons of the Geomagic are used to enable recording and replaying the
trajectories (see Figure 10). To record a trajectory, the operator must click and hold the
black button of the Geomagic; releasing the button stops recording the trajectory, and
the trajectory is saved on a file (e.g., trajectory.txt). To replay one of the trajectories
from the N previously recorded, the operator must click the light grey button of the
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Geomagic and then enter the number of the trajectory on the terminal.

Figure 10: The two buttons of the Geomagic.

A video showing the iCub moved by the haptic device in Gazebo is available
at this link: https://www.youtube.com/watch?v=4ShyNtKojy0&feature=
youtu.be. The graph in Figure 11 shows some trajectories recorded from the ge-
omagic, corresponding to lifting the left arm of the iCub: the Cartesian position of the
hand in the reference frame of iCub is shown.
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Figure 11: Some trajectories recorded when the geomagic is used to lift the left arm: Cartesian
position of the end-effector.

Demonstrated trajectories and their corresponding forces can be recorded directly
from the robot, by accessing the Cartesian interface and the Cartesian end-effector
wrench computed by wholeBodyDynamicsTree.

To enable a quicker visualization of the torques and forces in action on the
robot during physical interaction (in both simulation and on the real robot) we
developed some visualization GUI tools https://github.com/inria-larsen/
icub-wholebody-visualization. A major aim is to alert users, in real-time, when
excessive torques are applied in one or more joints. This is especially needed when
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complex interactions take place between the robot, users and the environment, such
as in the case of the robot being lifted from the chair.

6.1 Learning a ProMP of the lifting movement

Once we record a set of trajectories, we can learn the distribution of these demon-
stration in the form of a probabilistic movement primitive (ProMP) [18]. Our tool-
box for generating the proMP is currently written in Matlab, and available at https:
//github.com/inria-larsen/icubLearningTrajectories.

Let us consider the n recorded trajectories τ© = {τ1, ..., τn}, where the i-th trajectory
is τi = {y(t1), ..., y(tfi)}. y(t) is the vector containing all the variables used to learn the
ProMP, the simplest case being the mono-dimensional ProMP. If we want to learn the
ProMP of the lifting motion (see Figure 11), the simplest case is y(t) =

[
z
]>, that is the

z-axis Cartesian coordinate of the end-effector. You may notice that the duration of all
the trajectories can be different, i.e., tfi may be variable across demonstrations. To be
able to find a common representation in term of primitive, a temporal modulation of the
trajectories is applied, such that they all have the same number of samples s̄.

The ProMP is a Bayesian parametric model of the demonstrated trajectories in the
form:

y(t) = Φ(t)>ω + εy

where Φ are m radial basis functions scattered across time, scaled by the parameters
vector ω ∈ Rm. εy ∼ N (0, β) is the trajectory noise.

For each i-th trajectory τi, we compute the ωi parameters vector:

yi(t) = Φ(t)>ωi + εy

by minimizing the error between the observed trajectory yi(t) and its model Φ(t)>ωi+εy.
This is done using the Least Mean Square algorithm, i.e.:

ωi = (Φ(t)>Φ(t))−1Φ(t)>yi(t).

Then, using the aggregated [ω1, ..., ωn] parameters, we can compute the distribu-
tion over these parameters ω ∼ N (µω,Σw), and from this distribution, compute the
distribution of the observed trajectories, which is the ProMP.

Figure 12 shows the ProMP for the lifting motion, computed with the number of
reference samples s̄ = 100, number of basis functions m = 5; the center of each RBF
is equally distributed between 1 and s̄.

6.2 Predicting the movement from initial observations

Once the ProMP of a certain gesture has been learned (i.e., we have computed ω from
ω1, . . . , ωn), we can use it to predict the evolution of a movement just after few obser-
vations. Of course, the underlying hypothesis is that the movement that is observed
“belongs” to the distribution of demonstrated trajectories.

Let us consider the ProMP with the parameters distribution ω ∼ N (µω,Σω).
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Figure 12: proMP of the left end-effector z coordinate when the arm is being lifted.

Suppose that we have no observations of the trajectory to predict (e.g., lifting the
arm), called

D = [yo(t1), . . . , y
o(tno)].

Our goal is to predict the evolution of the trajectory after tno, i.e., find
ŷ(tno+1), . . . , ŷ(t̂f ), where t̂f is the estimate of the trajectory duration (by default
the mean of all the tf1 , . . . , tfn). This is equivalent to predicting the entire trajec-
tory τ̂ where the first no samples are known and equal to the observations: τ̂ =
{yo(t1), ..., yo(tno), ŷ(tno+1), ..., ŷ(tt̂f )}. Therefore, our prediction problem consists in pre-
dicting τ̂ given the D observations. Since τ̂ is computed by a ProMP, finding τ̂ means
finding the ω̂ generating the τ̂ , by:

µ̂ω = µω +K(D − Φ>t µω)

Σ̂ω = Σω −K(Φ>t Σω)
K = ΣωΦ>t (ΣD + Φ>t ΣωΦt)

−1

Figure 13 shows the predicted trajectory for the lifting motion of the left arm of iCub
after no = 15. An example of the predicted trajectory for lifting the arm in Gazebo can
be seen here: https://www.youtube.com/watch?v=0i5O4Lsf7Jc&feature=
youtu.be.

7 Conclusions and Future Works

This report presents the progresses towards the implementation of learning how to
stand up with the help of a human caregiver. Presented results focus on: (1) human
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Figure 13: Prediction of the future trajectory, after no = 15 observations, given the prior proMP
learned from n demonstrations.

dynamics estimation while is physically interacting with a robot; (2) robot motion control
for unassisted standing up motions.

Human dynamics estimation is of pivotal importance for a control design aimed at
considering the human in the loop during physical human robot interaction. It provides
in real-time the robot with the human force feedback that could be used either as a tool
for reactive human-robot collaboration (implying a robot reactive control) and, in a long-
term perspective, for predictive collaboration, for enhancing remarkably the interaction
naturalness. Thus, the next step consists in developing a controller to endow the robot
with the ability to adapt and adjust the interaction strategy.
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