
Patterns for Extracting High Level

Information from Bug Reports

Rodrigo Souza∗†, Christina Chavez∗‡, and Roberto Bittencourt∗§

∗Dept. of Computer Science, Federal University of Bahia, Brazil
†Data Processing Center, Federal University of Bahia, Brazil

‡Fraunhofer Project Center, Federal University of Bahia, Brazil
§Dept. of Exact Sciences, State University of Feira de Santana, Brazil

rodrigo@dcc.ufba.br, flach@dcc.ufba.br, roberto@uefs.br

Abstract—Bug reports record tasks performed by users and
developers while collaborating to resolve bugs. Such data can
be transformed into higher level information that helps data
scientists understand various aspects of the team’s development
process. In this paper, we present patterns that show, step by
step, how to extract higher level information about software
verification from bug report data.

Index Terms—data analysis, mining software repositories,
patterns, bugs.

I. INTRODUCTION

Bug tracking systems record in their bug reports the col-

laboration between final users and developers in order to fix

bugs. Such exchange of information can be help data scientists

reason about the software development process.

Bug reports help compute many statistics related to quality

and software development. For example, how many bugs are

reported per day? What proportion of bugs are considered

invalid? What is the average bug lifetime?

Even better, the raw data can be transformed into higher

level information about developers and the software develop-

ment process. With such information, one can infer developer

roles, developers’ workflow, software lifecycle phases, and so

on.

In this paper, we present patterns to transform bug data

into higher level information about the software verification

process. Each pattern contains an Examples section with code

snippets showing how to apply the pattern on real data. The

snippets are written in R, a programming language for data

analysis1.

The next section presents the data set used in this paper.

Section III presents the Not Everyone is a Programmer pat-

tern, that helps discover quality engineers from bug reports.

Section IV, Testing Phase, shows how to detect testing phases

in the software development life cycle.

II. DATA SET

The examples in this paper use bug reports from Net-

Beans/Platform and Eclipse/Platform, made available for the

1http://www.r-project.org/

2011 edition of the MSR Mining Challenge2. Both projects

use Bugzilla3 as their bug tracking system.

Bugzilla stores all modifications users make to bug reports,

including changes in priority, status, resolution, or any other

field in a bug report. In the examples, such data is available

in the changes table, in which each row contains the new

value of a field that was modified by a user4 at some

point in time.

In this paper, two kinds of change are explored: the

change of resolution to FIXED (meaning that the bug

was fixed by modifying the source code), and the change

of bug_status to VERIFIED (meaning that the fix was

considered appropriate by someone else).

All the data and code used in this paper is available online5.

III. FIXERS AND VERIFIERS

A. Problem

Find the quality engineering team (if it exists).

B. Context

Developers tend to assume specific roles in the software

development process. While many developers participate by

fixing bugs, quality engineers usually take bug fixes and

verify if they are appropriate. Making the distinction between

quality engineers (“verifiers”) and programmers who fix bugs

(“fixers”) is important when studying the influence of human

factors on outcomes of the software development process.

C. Solution

To find members of the quality team, first analyze each

developer’s activity in the bug tracking system, such as status

and resolution changes. In particular, count how many times

each developer has...

• ... changed the status to VERIFIED (number of verifica-

tions);

• ... changed the resolution to FIXED (number of fixes).

2http://2011.msrconf.org/msr-challenge.html
3http://www.bugzilla.org/
4In this context, user denotes a user of the bug tracking system, which can

be either a developer or a final user.
5https://github.com/rodrigorgs/dapse13-analysis

978-1-4673-6296-2/13 c© 2013 IEEE DAPSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

29

Then, compute the ratio between verifications and fixes

for each developer (add 1 to the number of fixes to avoid

division by zero). If such ratio is greater than some threshold

(e.g., 5 or 10), it suggests that the developer is specialized in

verifications. Select all such developers and compute the total

number of verifications performed by them, compared to the

total number of verifications in the project. If they perform a

great part of the verifications in the project (e.g., more than

50%), then the project has a quality team, formed by that

developers.

Choosing a suitable threshold for the ratio between verifica-

tions and fixes is a hard problem. If the threshold is too high,

then only the most active quality engineers are chosen; if it is

too low, then sporadic contributors, who have contributed with

a few verifications, may also regarded as quality engineers.

One possible criterion is to choose a threshold that results in

the smallest quality team that still contributes with large part

of the verifications performed in the project. First, compute,

for each candidate threshold (e.g., from 1 to 50), the size of

the quality team and the number of verifications its members

performed in the project. Then create a scatter plot of number

of verifications vs. size of quality team (see Figure 1 in

the Examples section). Finally, look for a point in the plot

such as that increasing the size of the quality team does not

significantly increase the number of verifications6. The value

used to compute this point is the chosen threshold.

D. Discussion

It is a common mistake to use the absolute number of

verifications to determine if a developer is a quality engineer.

This is a poor indicator because, in some projects, developers

that fix bugs also mark them as VERIFIED.

Developers can change roles over time. If this is the

case, consider using sliding windows, i.e., analyze multiple

consecutive short periods.

The solution to this pattern can be adapted to perform

similar analyses on different types of change.

E. Examples

This solution was used by Souza and Chavez [1]. They

chose a threshold of 10 for the ratio between verifications

and fixes, but did not explain their choice.

In the following source code, we show how to apply this

solution to NetBeans/Platform. First, compute the number of

verifications and fixes for each user:

> resolution <- subset(changes, field=='resolution')

> status <- subset(changes, field == 'bug_status')

> t1 <- table(resolution$user, resolution$new.value)

> t2 <- table(status$user, status$new.value)

> user <- merge(as.data.frame.matrix(t1),

+ as.data.frame.matrix(t2),

+ by="row.names")

> user$ratio <- user$VERIFIED / (1 + user$FIXED)

Next, choose a threshold. To do that, first plot, for each

number between 1 and 50, the relative number of verifications

6This is similar to the elbow criterion, used to find the optimal number of
clusters in a data set.

2 4 6 8 10 12 14

3
0

4
0

5
0

6
0

7
0

8
0

9
0

size.of.team

v
e
ri

fi
e
d
.b

y
.t
e
a
m

●
●

●

●
●●

●

●
●●

5
1015

202530
35

404550

Fig. 1. Plot used to choose a threshold for the ratio between verifications and
fixes. Labeled circles represent candidate thresholds.

(%) vs. the relative size of quality team (%). The source code

is omitted from this paper for space reasons, but can be found

online (see Section II). The result is the plot in Figure 1, which

show percentage values for the variables.

By visually inspecting the plot, we choose 15 as the

threshold, because choosing a lower value increases the size

of the team without significantly increasing the number of

verifications. Choosing this threshold, the discovered quality

team is formed by 24 members (2.8%), who contributed with

11310 verifications (84%).

F. Related Patterns

While this patterns helps identify people who concentrate

quality efforts, the pattern Testing Phase (Section IV) helps

find periods in which such efforts are concentrated.

IV. TESTING PHASE

A. Problem

Identify testing phases in the software development life

cycle.

B. Context

Before a new version is shipped to final users, it is common

to test new features and bug fixes. In some projects, most of the

testing effort is concentrated on a well-defined testing phase,

that precedes the release of the next version of the software.

In a bug tracking system, testing efforts are recorded as

bug status changes, from RESOLVED to VERIFIED. Testing

phases, therefore, show up as a relatively large number of

verifications comprised in a relatively short period.

Failing to recognize testing phases mislead analyses. For

example, if most bugs are verified during a testing phase, then

measuring the time from RESOLVED to VERIFIED does not

measure verification effort. Instead, it reflects how early a bug

was resolved with respect to the next testing phase.

C. Solution

Solution 1. Select verifications, i.e., changes that set the

bug status to VERIFIED. Then, plot the accumulated number

of verifications over time using a line chart. If you know

the software release dates, highlight them in the chart with

vertical lines. Although the chart is monotonically increasing,

some portions may exhibit a steeper ascent, that represents a

30

period with high verification activity. Such periods probably

are testing phases, particularly if they precede a release date.

Solution 2. Select verifications, i.e., changes that set the bug

status to VERIFIED. Then, apply Kleinberg’s algorithm [2]

to verification times in order to detect bursts, i.e., periods of

intense verification activity.

The algorithm is based on a Markov model and outputs a

hierarchical burst structure. The first level comprises the entire

period; the second level contains bursts in the period; the third

level, bursts within second-level bursts, and so on. In the data

we analyzed, second-level bursts spanned a few days, which

seems right for a testing phase, while higher level bursts tended

to span a few hours.

D. Discussion

The first solution is suitable for visual exploration of the

data. If the data set is too large, however, it becomes difficult

to visualize. The second solution is objective, though compu-

tationally expensive.

Be suspicious if the number of verifications per day is

too high (e.g., above 50). Such verifications may be the

result of a mass verification, when multiple bug reports are

simultaneously updated in order to tidy the bug tracking

system [3].

Some teams have dedicated quality engineers that are

responsible for testing. Well-defined testing phases are less

common in such teams, because quality engineers constantly

test features and bug fixes, and therefore do not need to switch

between programming and testing activities.

E. Examples

The first solution was used by Souza and Chavez [1] (see

Figure 2 in their paper). The following R code shows how to

apply the solution to Eclipse/Platform. Only a subset of the

data is used, otherwise testing phases would be difficult to

visualize. Assume releases$date is a vector with release

dates.
> ver <- subset(changes,

+ field == "bug_status"

+ & new.value == "VERIFIED")

> ver <- ver[order(ver$time),]

> ver$n.changes <- 1:nrow(ver)

> ver <- subset(ver,

+ time >= as.POSIXct("2009-06-10")

+ & time < as.POSIXct("2010-06-09"))

> with(ver, plot(n.changes ~ time, type="l"))

> abline(v=releases$date, lty=2)

The result is shown in Figure 2. Notice how verification

activity (steep ascents) is concentrated just before release

dates (dashed vertical lines), suggesting there are well-defined

testing phases in Eclipse/Platform.

The following R code shows how to apply the second

solution, using Kleinberg’s algorithm and taking second-level

bursts. Then, we count the number of verifications, total and

per day, in each burst. The variable ver is reused from the

previous snippet of code. The first 4 bursts are shown in

Table I.
> library(bursts)

> k <- kleinberg(unique(ver$time))

1
4
2
0
0

1
4
6
0
0

n
.c

h
a
n
g
e
s

2
0
0
9
−

0
6

2
0
0
9
−

0
7

2
0
0
9
−

0
8

2
0
0
9
−

0
9

2
0
0
9
−

1
0

2
0
0
9
−

1
1

2
0
0
9
−

1
2

2
0
1
0
−

0
1

2
0
1
0
−

0
2

2
0
1
0
−

0
3

2
0
1
0
−

0
4

2
0
1
0
−

0
5

Fig. 2. Accumulated number of verifications over time.

TABLE I
PERIODS WITH INTENSE VERIFICATION ACTIVITY (SAMPLE).

start end count per.day

2009-07-29 09:07:15 2009-07-29 16:21:58 17 17
2009-08-26 11:07:36 2009-09-03 12:24:38 71 7
2009-09-15 02:36:27 2009-09-16 12:54:35 26 13
2009-10-26 09:47:55 2009-10-29 12:00:26 82 20

> bursts <- subset(k, level == 2)

> # Num. of verifications (total and per day average)

> bursts$count <- apply(bursts, 1, function(x)

+ sum(ver$time > as.POSIXct(x["start"])

+ & ver$time < as.POSIXct(x["end"])))

> days <- as.Date(bursts$end) - as.Date(bursts$start)

> days <- days + 1

> bursts$per.day <- bursts$count %/% as.numeric(days)

F. Related Patterns

Before applying this pattern, use the Look Out For Mass

Updates pattern [3] to remove mass verifications from the data.

Periods which include mass verifications can be confused with

testing phases.

Use the Fixers and Verifiers pattern (Section III) to assess

if the project has a quality team. The existence of such teams

may explain the absence of a testing phase.

REFERENCES

[1] R. Souza and C. Chavez, “Characterizing verification of bug fixes in two
open source IDEs.” in Proceedings of the 9th Working Conference on

Mining Software Repositories. IEEE, June 2012.
[2] J. Kleinberg, “Bursty and hierarchical structure in streams,” in Proceed-

ings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, ser. KDD ’02. New York, NY, USA: ACM,
2002, pp. 91–101.

[3] R. Souza, C. Chavez, and R. Bittencourt, “Patterns for cleaning up bug
data,” in Proceedings of the First Workshop on Data Analysis Patterns in

Software Engineering. IEEE, May 2013.

31

