
statemachines

 github.com/rolfvreijdenberger/izzum-
statemachine

 2 / 66

about me

● linkedin.com/in/rolfvreijdenberger

● github.com/rolfvreijdenberger

● co-founder

● sharing knowledge

● software architect fixed delivery streets

 3 / 66

so much to talk about ...

● and so little time

 4 / 66

a little bit of theory

 5 / 66

definition

● A finite statemachine is a model for the
behaviour of a system that consists of a finite
number of states.Transitions defined between
those states can have guard logic and transition
logic

● more:
– https://en.wikipedia.org/wiki/Finite-state_machine

– https://en.wikipedia.org/wiki/UML_state_machine

https://en.wikipedia.org/wiki/Finite-state_machine

 6 / 66

scrum workflow

 7 / 66

some concepts

● The machine is in only one state at a time: the
current state.

● It can change from one state to another when
initiated by a triggering event or condition; this
is called a transition

● A transition can be (dis)allowed by guard logic
● Changing states can have logic executed as

part of the transition

 8 / 66

applications of a
statemachine

● anything that has statefull behaviour
– games

– process flows

– traffic lights

– text parsing

– protocol analysis

– delivery streets

– etc.

 9 / 66

 10 / 66

when to use a statemachine?

● when state and status fields are all over your application:
'has_paid', 'is_shipped', 'date_sent' and of course 'state'

● when business logic is closely coupled with these states:
multiple status fields are checked to see if something should
take place (select * from order where .. and .. and .. and ..)

● when a process lifecycle flow follows discrete steps with
multiple paths through the lifecycle (graph)

● when you want to simplify following a sequence of actions
through an application

● when mechanism (how) vs policy (what/when) is not clear:
the policy of when should we do something (selection of
states) is part of the mechanism of what you are doing (logic
execution for those states)

 11 / 66

no statemachine here

 12 / 66

meanwhile, at Telfort

 13 / 66

problems we encountered

● automating process flow in delivery streets with
cron jobs does not scale well: performance suffers
for batch jobs

● bugs were increasingly hard to solve
● tests for flows that are changing is hard
● business logic spread all over the place
● problems were solved inconsistently in the teams
● certain steps in the delivery streets did “too much”
● many status fields used in selection criteria for

executing logic

 14 / 66

enter the statemachine

● start of new delivery street for Telfort at end of 2013
● statemachine implementation early in 2014
● existing solutions were not good enough

– they did not store state in a backend

– implementations were not using encapsulated logic
(business rules and business logic) for transitions

– were not tailored to our needs

● requirements were made and implemented rapidly to
make use of it asap

● reuse of already existing conceptual components

 15 / 66

(some) requirements
● shall be non-invasive to domain models. they shall not know they

are governed by a statemachine
● statemachine shall work with any domain model
● minimal information is needed to identify a machine {name, id}
● states shall be preserved between processes. data is stored in a

backend of choice
● defining transitions, state and logic should be easy via configuration
● seperate policy and mechanism
● interfacing with the statemachines shall be consistent and simple
● guard and transition logic shall be implemented in rules and

commands, for which we can store the fully qualified classnames in
our configuration in a backend of choice

● etc.

 16 / 66

defining a statemachine

● name: the type identifier for what the machine is used for
– this is more about the function of the process than about the

domain model

– order, change-order, customer-debt-management etc.

● entity_id: the unique id of an entity (domain model) for the
machine
– most probably a primary key in your application

– maps naturally to the id of a domain model

● the {name, entity_id} machine will act on a specific domain
model
– {change-order, 4274} will be the statemachine that handles the

flow of a change order on the domain model 'Order' with id 4274

 17 / 66

so what can we use for our
statemachine needs?

 18 / 66

introducing izzum

● github.com/rolfvreijdenberger/izzum-
statemachine

● php opensource implementation

 19 / 66

about izzum

● fully documented & quality code
● feature rich while easy to use
● advanced features for power users
● extensible for your problem domain
● high test coverage
● examples included
● formal and less formal usage possible
●

 20 / 66

izzum storage & configuration

● works with different backends for storing
state and transition history (+ write your own)

● handles configuration of machines in
different data description formats

 21 / 66

redis as backend

 22 / 66

configuration in json

 23 / 66

core concepts of izzum

 24 / 66

rules: guarding a transition
● function: guard logic. determine if a transition is (dis)allowed
● are encapsulating business rules that might allow a transition
● are all about 'policy' (as opposed to mechanism)
● return true or false for the 'applies()' method, have no side

effects
● are subclasses of the \Rule class in the 'rules' package
● a 'True Rule' is used when a transition is allowed by default
● are instantiated at runtime from their fully qualified class name
● have a domain model (associated with a statemachine)

injected via the constructor on which it can act
● rules are set on the definition of a transition (fully qualified

classname)
● can be queried as to why it did not apply

 25 / 66

rule class diagram

 26 / 66

rule: simple

 27 / 66

rule: using a dependency

 28 / 66

rule: using entity and
delegating to existing rule

 29 / 66

kinds of transition logic

● exit logic: associated with leaving a state,
independent of the sink of the transition

● entry logic: associated with transitioning into
a state, independent of the source of the
transition

● transition logic: associated with a transition
between 2 states

 30 / 66

commands: transition logic
● function: transition logic. execute functionality associated with a

transition and/or a state (entry/exit). These do the hard work
● are about 'mechanism' (as opposed to policy)
● are based on the 'Command' design pattern: “a behavioral design

pattern in which an object is used to encapsulate all information needed
to perform an action or trigger an event at a later time”

● can have a side effect as part of the transition
● are subclasses of the \Command class in the 'commands' package
● implement the 'execute' method
● Use a 'Null Command' when no logic is needed
● are instantiated at runtime from their fully qualified class name
● have a domain model (associated with a statemachine) injected via the

constructor
● can act on the domain model to alter data, use 3d party services etc
● commands are set on the definition of a transition or on those of a state

(entry/exit) with a fully qualified classname.

 31 / 66

command class diagram

 32 / 66

command

 33 / 66

 34 / 66

 35 / 66

 36 / 66

so how can we use this to
create tooling?

 37 / 66

Abstract Factory Pattern

 38 / 66

Abstract Factory Pattern

● “provide an interface for creating families of
related or dependent objects without
specifying their concrete classes”
– statemachine: the class that handles all our

transitions

– loader: retrieve the definition of the statemachine:
json, xml, sql, nosql, php etc.

– persistence adapter: persist to memory, sql,
session, mongo, redis etc.

– entity builder: creates a domain object with the
help of the id specified in the machine definition

 39 / 66

Abstract Factory Pattern

● each machine has it's own factory
● each machine can be instantiated via the

factory
● the fully qualified factory classname is used

to create statemachines
● statemachines can be handled

polymorphically
● this allows us to design a GUI that handles

all statemachines

 40 / 66

configuration in json

 41 / 66

tools

 42 / 66

uml generation

 43 / 66

uml generation

● http://plantuml.com
– Open-source tool that uses simple textual

descriptions to draw UML diagrams

– uses graphviz (http://www.graphviz.org/)

● allows generation of diagrams from
statemachine data
– state diagrams

– history

– statistics

http://www.graphviz.org/

 44 / 66

plantuml syntax

 45 / 66

examples: trafficlight

 46 / 66

how does that work at
Telfort?

 47 / 66

examples: order-new on door

 48 / 66

tools: process automation

 49 / 66

examples: order-new

 50 / 66

examples: migration on window

 51 / 66

statemachine design patterns

● conditional flow: go to state C from A or from A via B
● linear flow: one way out, mostly used for bookkeeping state
● funnel state: a state that functions as an entry to a final state with

potentially many states pointing to it. the state has no logic
associated with that flow but functions as a bookkeeping state

● two ways out: don't overcomplicate by only using two outgoing
transitions

● self transition: transition to self
● polling state: state that has a rule that polls a third party service
● active state: a state named after the activity it will perform (activity on

entry/exit)
● passive state: a state that performs no activity (activity on transition)
● bookkeeping state: does nothing, only records that is has been there

 52 / 66

and what about quality
control and testing?

 53 / 66

unit and component testing

● core statemachine package is tested with high
coverage

● tests your specific application code: rules and
commands
– they should do only one thing

– they make use of tested domain models

– they can be (component/unit)tested in isolation

– they can be injected with test doubles as dependencies
● constructor injection
● setter injection

– they are whitebox tested with mocks and stubs

 54 / 66

dependency injection

 55 / 66

(x)unit test patterns

● http://xunitpatterns.com

 56 / 66

command

 57 / 66

testing a command

 58 / 66

functional testing

● tooling and diagrams supports testers
– visualization of flows through statemachines

– rules and commands can be tested in isolation

– easily skip to states in statemachines

– can be used to automate testing (eg: Selenium)

● external services and dependencies
– are mocked in chain testing

– are mostly isolated api calls and data handling encapsulated in a
command

● failures occur for a transition: 1 command or 1 rule
– failures occur in isolation and are relatively easy to debug

– base command/rule classes catches exceptions with the correct
info from the dependent upon component

 59 / 66

that's all good, but does it
perform?

 60 / 66

solving scalability

● because:
– statemachines are identified by their {name, id}

● these two pieces of information allow a factory to create
the statemachine

● state is preserved between processes

● it is:
– easy to transmit the statemachine information in a

message

● and:
– we can have a message queue handle messages

asynchronously and scale horizontally

 61 / 66

redis as a message queue

● redis serves as a transient data store for
process data

 62 / 66

machine and message queue

● seperating mechanism and policy
● statemachine (dis)allows transitions and

logic according to rules (policy)
● message queue jobs direct the

statemachine (mechanism)
– directing a statemachine can also be done via

cronjobs, gui tools, application code etc.

 63 / 66

some numbers

● 13 statemachines for different processes
handling about 100.000 customers

● 5 million transitions executed
● 21 million messages for statemachines

processed
● 0.1% of those 21 million failed to transition

because of exceptions (bugs + 3d party dependencies)

● new statemachine processes will handle
over 500.000 customers

 64 / 66

almost there, wrapping it
up....

 65 / 66

benefits of using the
statemachine

● consistent and understandable behaviour for development teams
● logic is isolated in reusable rules and commands
● great process overview via uml generation
● facilitates unittesting via the implementation of rules and

commands and seperating the domain models from the
statemachine

● using statemachines scales well via message queue
● provides statistics via transition history
● there is good tooling to support users throughout the organisation
● new processes can be designed up front and implementation are

easier by just coding the appropiate rules and commands
● the organisation understands statemachines so we can use the

concept in our discussion of processes

 66 / 66

that's all, thanks!
? questions ?

maybe (?) some time for a demo ...

graphics: boudewijndanser.nl
●

github: rolfvreijdenberger/izzum
● contributions are welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

