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about me

●       linkedin.com/in/rolfvreijdenberger

●       github.com/rolfvreijdenberger

●       co-founder

●       sharing knowledge

●       software architect fixed delivery streets
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so much to talk about ...

● and so little time
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a little bit of theory
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definition

● A finite statemachine is a model for the 
behaviour of a system that consists of a finite 
number of states.Transitions defined between 
those states can have guard logic and transition 
logic 

● more:
– https://en.wikipedia.org/wiki/Finite-state_machine

– https://en.wikipedia.org/wiki/UML_state_machine

https://en.wikipedia.org/wiki/Finite-state_machine
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scrum workflow
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some concepts

● The machine is in only one state at a time: the 
current state. 

● It can change from one state to another when 
initiated by a triggering event or condition; this 
is called a transition

● A transition can be (dis)allowed by guard logic
● Changing states can have logic executed as 

part of the transition
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applications of a 
statemachine

● anything that has statefull behaviour
– games

– process flows

– traffic lights

– text parsing

– protocol analysis

– delivery streets

– etc.
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when to use a statemachine?

● when state and status fields are all over your application: 
'has_paid', 'is_shipped', 'date_sent' and of course 'state'

● when business logic is closely coupled with these states: 
multiple status fields are checked to see if something should 
take place (select * from order where .. and .. and .. and ..)

● when a process lifecycle flow follows discrete steps with 
multiple paths through the lifecycle (graph)

● when you want to simplify following a sequence of actions 
through an application

● when mechanism (how) vs policy (what/when) is not clear: 
the policy of when should we do something (selection of 
states) is part of the mechanism of what you are doing (logic 
execution for those states)
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no statemachine here
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meanwhile, at Telfort
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problems we encountered

● automating process flow in delivery streets with 
cron jobs does not scale well: performance suffers 
for batch jobs

● bugs were increasingly hard to solve
● tests for flows that are changing is hard
● business logic spread all over the place
● problems were solved inconsistently in the teams
● certain steps in the delivery streets did “too much”
● many status fields used in selection criteria for 

executing logic
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enter the statemachine

● start of new delivery street for Telfort at end of 2013
● statemachine implementation early in 2014
● existing solutions were not good enough

– they did not store state in a backend

– implementations were not using encapsulated logic 
(business rules and business logic) for transitions

– were not tailored to our needs

● requirements were made and implemented rapidly to 
make use of it asap

● reuse of already existing conceptual components
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(some) requirements
● shall be non-invasive to domain models. they shall not know they 

are governed by a statemachine
● statemachine shall work with any domain model
● minimal information is needed to identify a machine {name, id}
● states shall be preserved between processes. data is stored in a 

backend of choice
● defining transitions, state and logic should be easy via configuration
● seperate policy and mechanism
● interfacing with the statemachines shall be consistent and simple
● guard and transition logic shall be implemented in rules and 

commands, for which we can store the fully qualified classnames in 
our configuration in a backend of choice

● etc.
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defining a statemachine

● name: the type identifier for what the machine is used for
– this is more about the function of the process than about the 

domain model

– order, change-order, customer-debt-management etc.

● entity_id: the unique id of an entity (domain model) for the 
machine
– most probably a primary key in your application

– maps naturally to the id of a domain model

● the {name, entity_id} machine will act on a specific domain 
model
– {change-order, 4274} will be the statemachine that handles the 

flow of a change order on the domain model 'Order' with id 4274
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so what can we use for our 
statemachine needs?
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introducing izzum

● github.com/rolfvreijdenberger/izzum-
statemachine

● php opensource implementation
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about izzum

● fully documented & quality code
● feature rich while easy to use
● advanced features for power users
● extensible for your problem domain
● high test coverage
● examples included
● formal and less formal usage possible
●
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izzum storage & configuration

● works with different backends for storing 
state and transition history (+ write your own)

● handles configuration of machines in 
different data description formats
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redis as backend
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configuration in json
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core concepts of izzum



  24 / 66

rules: guarding a transition
● function: guard logic. determine if a transition is (dis)allowed
● are encapsulating business rules that might allow a transition
● are all about 'policy' (as opposed to mechanism)
● return true or false for the 'applies()' method, have no side 

effects
● are subclasses of the \Rule class in the 'rules' package
● a 'True Rule' is used when a transition is allowed by default
● are instantiated at runtime from their fully qualified class name
● have a domain model (associated with a statemachine) 

injected via the constructor on which it can act 
● rules are set on the definition of a transition (fully qualified 

classname)
● can be queried as to why it did not apply
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rule class diagram
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rule: simple
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rule: using a dependency



  28 / 66

rule: using entity and 
delegating to existing rule
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kinds of transition logic

● exit logic: associated with leaving a state, 
independent of the sink of the transition

● entry logic: associated with transitioning into 
a state, independent of the source of the 
transition

● transition logic: associated with a transition 
between 2 states
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commands: transition logic
● function: transition logic. execute functionality associated with a 

transition and/or a state (entry/exit). These do the hard work
● are about 'mechanism' (as opposed to policy)
● are based on the 'Command' design pattern: “a behavioral design 

pattern in which an object is used to encapsulate all information needed 
to perform an action or trigger an event at a later time”

● can have a side effect as part of the transition
● are subclasses of the \Command class in the 'commands' package
● implement the 'execute' method
● Use a 'Null Command' when no logic is needed
● are instantiated at runtime from their fully qualified class name
● have a domain model (associated with a statemachine) injected via the 

constructor
● can act on the domain model to alter data, use 3d party services etc
● commands are set on the definition of a transition or on those of a state 

(entry/exit) with a fully qualified classname.
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command class diagram
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command
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so how can we use this to 
create tooling?
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Abstract Factory Pattern
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Abstract Factory Pattern

● “provide an interface for creating families of 
related or dependent objects without 
specifying their concrete classes”
– statemachine: the class that handles all our 

transitions

– loader: retrieve the definition of the statemachine: 
json, xml, sql, nosql, php etc.

– persistence adapter: persist to memory, sql, 
session, mongo, redis etc.

– entity builder: creates a domain object with the 
help of the id specified in the machine definition
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Abstract Factory Pattern

● each machine has it's own factory
● each machine can be instantiated via the 

factory
● the fully qualified factory classname is used 

to create statemachines 
● statemachines can be handled 

polymorphically
● this allows us to design a GUI that handles 

all statemachines
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configuration in json
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tools
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uml generation
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uml generation

● http://plantuml.com
– Open-source tool that uses simple textual 

descriptions to draw UML diagrams

– uses graphviz (http://www.graphviz.org/)

● allows generation of diagrams from 
statemachine data
– state diagrams

– history

– statistics

http://www.graphviz.org/
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plantuml syntax
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examples: trafficlight
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how does that work at 
Telfort?
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examples: order-new on door
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tools: process automation
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examples: order-new
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examples: migration on window
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statemachine design patterns

● conditional flow: go to state C from A or from A via B
● linear flow: one way out, mostly used for bookkeeping state
● funnel state: a state that functions as an entry to a final state with 

potentially many states pointing to it. the state has no logic 
associated with that flow but functions as a bookkeeping state

● two ways out: don't overcomplicate by only using two outgoing 
transitions

● self transition: transition to self 
● polling state: state that has a rule that polls a third party service 
● active state: a state named after the activity it will perform (activity on 

entry/exit)
● passive state: a state that performs no activity (activity on transition)
● bookkeeping state: does nothing, only records that is has been there
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and what about quality 
control and testing?
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unit and component testing

● core statemachine package is tested with high 
coverage

● tests your specific application code: rules and 
commands
– they should do only one thing

– they make use of tested domain models

– they can be (component/unit)tested in isolation

– they can be injected with test doubles as dependencies
● constructor injection
● setter injection 

– they are whitebox tested with mocks and stubs
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dependency injection
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(x)unit test patterns

● http://xunitpatterns.com
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command
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testing a command
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functional testing

● tooling and diagrams supports testers
– visualization of flows through statemachines

– rules and commands can be tested in isolation

– easily skip to states in statemachines

– can be used to automate testing (eg: Selenium)

● external services and dependencies
– are mocked in chain testing

– are mostly isolated api calls and data handling encapsulated in a 
command

● failures occur for a transition: 1 command or 1 rule
– failures occur in isolation and are relatively easy to debug

– base command/rule classes catches exceptions with the correct 
info from the dependent upon component
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that's all good, but does it 
perform?
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solving scalability

● because:
– statemachines are identified by their {name, id}

● these two pieces of information allow a factory to create 
the statemachine

● state is preserved between processes

● it is:
– easy to transmit the statemachine information in a 

message

● and:
– we can have a message queue handle messages 

asynchronously and scale horizontally



  61 / 66

redis as a  message queue

● redis serves as a transient data store for 
process data
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machine and message queue

● seperating mechanism and policy
● statemachine (dis)allows transitions and 

logic according to rules  (policy)
● message queue jobs direct the 

statemachine (mechanism)
–  directing a statemachine can also be done via 

cronjobs, gui tools, application code etc.
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some numbers

● 13 statemachines for different processes 
handling about 100.000 customers

● 5 million transitions executed
● 21 million messages for statemachines 

processed
● 0.1% of those 21 million failed to transition 

because of exceptions (bugs + 3d party dependencies)

● new statemachine processes will handle  
over 500.000 customers
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almost there, wrapping it 
up....
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benefits of using the 
statemachine

● consistent and understandable behaviour for development teams
● logic is isolated in reusable rules and commands
● great process overview via uml generation
● facilitates unittesting via the implementation of rules and 

commands and seperating the domain models from the 
statemachine

● using statemachines scales well via message queue
● provides statistics via transition history
● there is good tooling to support users throughout the organisation
● new processes can be designed up front and implementation are 

easier by just coding the appropiate rules and commands
● the organisation understands statemachines so we can use the 

concept in our discussion of processes
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that's all, thanks!
? questions ?

maybe (?) some time for a demo ...

graphics: boudewijndanser.nl
●

github: rolfvreijdenberger/izzum
● contributions are welcome!
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