statemachines &

Telfort]

GitHub

& github.com/rolfvreijdenberger/izzum-
statemachine

about me =F-

m linkedin.com/in/rolfvreijdenberger

GitHub

| github.com/rolfvreijdenberger

co-founder

sharing knowledge

software architect fixed delivery streets

so much to talk about ... =F-

 and so little time

[X X X]
amsterdam

definition =F-

* Afinite statemachine is a model for the
behaviour of a system that consists of a finite
number of states.Transitions defined between
those states can have guard logic and transition
logic

* more.

- https://en.wikipedia.org/wiki/Finite-state _machine

- https://en.wikipedia.org/wiki/UML state machine

https://en.wikipedia.org/wiki/Finite-state_machine

a scrum workflow =F-

development cycle

new story/task

feedback

in progress would imphy progress.
in process is a maore neutral tarm

integrated or marked for later integration

in process j done }l’tn be r&wewed]

picked up by team member

W

in review]
the scrum boardiscrum

toals should support this

reviewed

W flow.

[tﬂ be tested]

picked up by QAftester

Ill,rtesting ok

f{: be integ mted]

picked up by team member

)

If in integration

@<

[X X X]
amsterdam

some concepts =

 The machine is in only one state at a time: the
current state.

* |t can change from one state to another when
initiated by a triggering event or condition; this
IS called a transition

* Atransition can be (dis)allowed by guard logic

» Changing states can have logic executed as
part of the transition

applications of a =
statemachine

» anything that has statefull behaviour

- games

— process flows

- traffic lights

- text parsing

— protocol analysis
- delivery streets

- efc.

.\
new

description: the init state
entry action: none’
ext action: ‘none’

state diagram for machine 'traffic-light'
_‘ created by izzum plantuml generator
J :

@link http:jfplantuml.sourceforge .net/state.html"

new_to_green

event: ‘go-green’

transition order from ‘new" 1

rulefguard: 'zzt. mirwles\True'
command/action:

zzumcommand Wull'
escription: from green to orange. use the switch to orange comman
o iption: t th itch t d*

h 4
(green 1
description: gol*
] entry action: uzuml:ammanquﬂ
- ext action: ‘none’ ~.
/ \“\
_.Jf green_to_orange \
! event: ‘go-orange’
f transition order from J1E,"'E-E-".l
| rulefguard: Tzzum'examplestraffic
| commandiaction: .

b

b

ight vules\CanSwitch'
zzum'examples rafficlight\command\SwitchOrange
escription: from new to green. this will start the cycle

[! \
N
[

A
A
\
\
\ red to_green
orange ‘ | event. 'go-green’

_transition order from ‘red" 1)
description: looks like a shade of green...” ruledguard: izzum'examplestrafficlight vules\CanSwitch’
entry action: none’ ommand/action; izzumexamples rafficlight \command\SwitchGreen
exit action. ‘none’ | escription: from red back to green.

)
I {
| |
' /
orange_to_red /
| event: ‘go-red" /!
| r'a-:-srm order from 'orange” 1 !
| rulefguard: zz.:. mlexamplesiraffichightvules\CanSwitch' /
\ commandiaction: Yzzumlexamples raffichight \command\SwitchRed /
Y description: from arange to red. use the appropriate command’ /
,
\\ /
- o~
~—_ red -

description: 'stop’
entry action; ‘none’
ext action: ‘none’

amsterdam

when to use a statemachine? &

* when state and status fields are all over your application:
'‘has_paid’, 'is_shipped’, 'date _sent' and of course 'state’

 when business logic is closely coupled with these states:
multiple status fields are checked to see if something should
take place (select * from order where .. and .. and .. and ..)

» when a process lifecycle flow follows discrete steps with
multiple paths through the lifecycle (graph)

* when you want to simplify following a sequence of actions
through an application

« when mechanism (how) vs policy (what/when) is not clear:
the policy of when should we do something (selection of
states) is part of the mechanism of what you are doing (logic
execution for those states)

[X X X]
amsterdam

no statemachine here =

f (Sorder->isReady() && !Sorder->isOlderThanTwoWeeks()) {
Sorder-=ship();

if($order-=is0lderThanTwoWeeks()) {
sorder-=>cancel();

if($order->hasShipped() && !'$order->isClosed()) {
scommunication->send($customer, Sorder->getInvoice());

¢order-=close (:| '

[X X X]
amsterdam

[X X X]
amsterdam

problems we encountered &

e automating process flow in delivery streets with
cron jobs does not scale well: performance suffers
for batch jobs

* bugs were increasingly hard to solve

* tests for flows that are changing is hard

* business logic spread all over the place

* problems were solved inconsistently in the teams
 certain steps in the delivery streets did “too much”

* many status fields used in selection criteria for
executing logic

enter the statemachine =F-

o start of new delivery street for Telfort at end of 2013
» statemachine implementation early in 2014
 existing solutions were not good enough

- they did not store state in a backend

- Implementations were not using encapsulated logic
(business rules and business logic) for transitions

— were not tailored to our needs

* requirements were made and implemented rapidly to
make use of it asap

* reuse of already existing conceptual components

[X X X]
amsterdam

(some) requirements

shall be non-invasive to domain models. they shall not know they
are governed by a statemachine

statemachine shall work with any domain model
minimal information is needed to identify a machine {name, id}

states shall be preserved between processes. data is stored in a
backend of choice

defining transitions, state and logic should be easy via configuration
seperate policy and mechanism
interfacing with the statemachines shall be consistent and simple N\

guard and transition logic shall be implemented in rules and
commands, for which we can store the fully qualified classnames in
our configuration in a backend of choice

efc.

[X X X]
amsterdam

defining a statemachine &

« name: the type identifier for what the machine is used for

- this is more about the function of the process than about the
domain model

- order, change-order, customer-debt-management etc.

 entity id: the unique id of an entity (domain moder) for the
machine

- most probably a primary key in your application
- maps naturally to the id of a domain model

» the {name, entity id} machine will act on a specific domain
model

- {change-order, 4274} will be the statemachine that handles the
flow of a change order on the domain model 'Order’ with id 4274

[X X X]
amsterdam

[X X X]
amsterdam

introducing izzum

» github.com/rolfvreijdenberger/izzum- Gb

statemachine

+ php opensource implementation =~ e

about izzum =F-

 fully documented & quality code
 feature rich while easy to use

» advanced features for power users
» extensible for your problem domain
 high test coverage

e examples included

» formal and less formal usage possible
gl ouild [passing | stavie 323 | coverage 192%] Scrutinizer 878

izzum storage & configuration

» works with different backends for storing
state and transition history (+ write your own)

“ ?SQLite é redis My m

mongoDB Postgre SQL y

* handles configuration of machines in
different data description formats

HASH: izzum:transitions:canonical:3 TTL: -1 Rename @ Delete

row key value #_ Add row
1 machine test-machine
2 id 3 @ Delete row
3 entity_id 1
4 datetime 2015-05-31 18:09:30 @ Reload Value
5 message {"code™: 15, "transition™"b_to_c”,"message™:"izzum’\\ statemachinel \Transition 'b_to_c' [event]: "goToC' [rule]: "\izzum \rules\\ExceptionRule
] state b
7 exception 1
] timestamp 1433095770
Page |1 of 1
Set Page
Key:
message
Walue: View value as: = J50ON

“message”: “izzum'\\statemachine'\Transition 'b_to_c' [event]: "goToC’ [rule]: "\\izzum\\rules\\ExceptionRule’ [command]: this rule always throws an exception®,
“file™: "fUsers /rolf/Documents/projects/izzum/vendor/rolfvreijdenberger/izzum-statemachine/srcfstatemachine fTransition.php”,

“line": 206,

“state™ “b"

e
“code™: 15,
“transition": "b_to_c",

-

Save

[X X X]
amsterdam

configuration in json

{

"machines": [
{
"name": "presentation-machine",
"factory": "\\fully\\gqualified\\FactoryName",
"description": "presentation-machine used to model a presentation”,
"states": [
{
"name": "introduction”,
"type": "initial",
"entry command": "",
"exit command": null,
"description”: "the first state”

"name": "slides",

"type": "normal”,

"entry_command": "\\izzum\\command\\Null",
"exit command": "\\izzum\‘command\\Mull",
"description”: "presenting slides”

¥

1,
"transitions": [
{

"state from": "introduction",
"state to": "slides",
"event": "start",
"rule": "\\izzum\\rules\\True",
"command": "\\izzum\\commandy\Null",
"description”: "after the introduction the slides are presented”

[X X X]
amsterdam

rules: guarding a transition ¢

function: guard logic. determine if a transition is (dis)allowed
« are encapsulating business rules that might allow a transition
 are all about 'policy' (as opposed to mechanism)

 return true or false for the 'applies()' method, have no side
effects

 are subclasses of the \Rule class in the 'rules' package
* a 'True Rule' is used when a transition is allowed by default
 are instantiated at runtime from their fully qualified class name

* have a domain model (associated with a statemachine)
Injected via the constructor on which it can act

* rules are set on the definition of a transition (fully qualified
classname)

e can be queried as to why it did not apply

[X X X]
amsterdam

[X X X]
amsterdam

: rule class diagram

AndRule

-original : Rule
-other : Rule

Rule

+__constructioriginal : Rule, other : Rule)

OrRule

-original : Rule
-other : Rule

+not(}: Rule

+applies() : boolean
E:,.#_a,npﬁesf,l : boolean
+andiother : Rule) : Rule
+orother : Rule) : Rule

N

+__constructioriginal : Rule, other : Rule)

MNotRule

-original : Rule

+__constructionginal : Rule)

TrueRule

_applies is a hook method callad by
the 'applies’ template method

ConcreteRule

+construct{DomainModel}
_applies(}

rule: simple a

class LaterThanUnixEpochRule extends Rule {

‘ protected function applies()

return time() > @:

[X X X]
amsterdam

rule: using a dependency &

“lass OrderHasShippedRule extends Rule {

‘unction construct(\Order %order)

sthis-=order = Sorder;

‘unction applies()

1 $this-=order-=hasShipped();

[X X X]
amsterdam

rule: using entity and o2
delegating to existing rule

~lass CheckInstallationAppointment extends S

function _applies()

sorder = $this-»entity-=>getOrder();

$rule = new \Rules\HasInstallationAppointment($order);
g .-,:._-l'l't = 5 "__j]_lE'—.'F'aFlp-LiE'E- I: I;
return $result;

[X X X]
amsterdam

kinds of transition logic =

» exit logic. associated with leaving a state,
independent of the sink of the transition

» entry logic: associated with transitioning into
a state, independent of the source of the
transition

 [ransition logic: associated with a transition
between 2 states

commands: transition logic =

o function: fransition logic. execute functionality associated with a
transition and/or a state (entry/exit). These do the hard work

 are about 'mechanism' (as opposed to policy)

 are based on the 'Command' design pattern: “a behavioral design
pattern in which an object is used to encapsulate all information needed
to perform an action or trigger an event at a later time”

e can have a side effect as part of the transition

 are subclasses of the \Command class in the 'commands' package
* implement the 'execute' method

» Use a 'Null Command' when no logic is needed

o are instantiated at runtime from their fully qualified class name

* have a domain model (associated with a statemachine) injected via the
constructor

 can act on the domain model to alter data, use 3d party services etc

« commands are set on the definition of a transition or on those of a state
(entry/exit) with a fully qualified classname.

[X X X]
amsterdam

s command class diagram &

Commands

Command

+execute(} : void
#_executef) : vord

ConcreteCommand

" T+constructiDomainModel)
execute()

_execute is a hook method called by
the 'execute’ template methad

[X X X]
amsterdam

command

class CancelOrder extends \OrderCommand {

J-"-" : 3

=

* @param \Service\Order $entity
* [@param \Service\OrderManager $manager optional (used for DI in testing)

ic function _ construct($entity, Smanager = null)

parent:: construct(sentity);
1f(smanager === null) {

smanager = new \Service\0rderManager();
}

$this->manager = $manager;

}

nrotected function execute()

{
}

$this-=manager->cancelOrder($this-=entity);

[X X X]
amsterdam

izzum.statemachine \

loader \
@ AbstractFactory @ Loader
@ getStateMachinelid): StateMachine # gets a complete statemachine ready to go o loadiStateMachine)int
creates SM, Adapter, Loader, Context, Identifier, EntityBuilder
.R“m.

oads state and transition configuration from dat

© StateMachine

source

o constructiContext)
@ runimessage):boolean

@ runToCompletion(message):int
@ transition(name)

T

uses

\
| \
© State

|
@ getName() : string | \
® getTypel):string
o islnitial():boolean
o isNormal():boolean

3
i

|
| does \
/ \
o isFinal():boolean / \
@ isRegex():boolean #special state with regex name I,l' ",|
@ constructiname, type, entry, exit) / \
T /
n‘\‘ / '.II
‘\‘need each other / \needs and uses
1
\
\ n
1 |I
© Transition '|I
@ getName() : string

|
|

@ can(Context, event):boolean #checks guards (Rule and callable) |
@ process(Context, event) #executes command and callable
@ getRule(Context, event:string):Rule |
@ getCommand(Context, event:string): Command
@ getStateFromi): State
@ getStateTol):State

|
_ |
@ constructifrom, to, event, rule, command, guard, logic)

|
| n
/process transitions, entry logic, exit logic |check if transition allowed ™ acts on |
f
|
command \

rules \ ||
\
© Command

/
1/
| {
© Rals © Context
g ;z::ﬂ;:a:mo] g con?truc]FLDOE n o constructildentifier, EntityBuilder, Adapter)
g
P
_ e ——
ﬂs

n

e to ID the DO/fentity ﬂ;ets domain object aka entity (alias: DO) ‘readjwrite state info

| \

1|| 1 T

1
(©) identifier (©) EntityBuilder (B) Adapter
@ constructientity_id, machine) @ getEntitylidentifier):* g ::Egg:g:“g::g:g:p]gﬁ:aeg [essaisiboclcan
EX¥1
amsterdam

izzum.statemachine \

@ AbstractFactory

@ getStateMachinelid): StateMachine # gets a complete statemachine ready to go

@ load(StateMachine):int
creates SM, Adapter, Loader, Context, Identifier, EntityBuilder
~

oads state and transition configuration from dat§ source
© StateMachine

@ construct(Context)
@ runimessage):boolean

@ runToCompletion(imessage):int
@ transitioniname)

TR

uses

=
—

© State

f
f
@ getMamel) : string I
@ getTypel):string
@ isinitialil:boolean
@ isNormall):boolean
@ isFinall):boolean

f
| does Il"
' \
|
III |II
) 1
@ isRegex():boolean #special state with regex name ."I [
@ constructiname type, entry, exit) /
Y
ni

| .

lll 1
"-.Hneed each other /
\

ineeds and uses
|
n r'/
1
@ Transition

@ getMamel) : string

amsterdam

[
|
|
o can{Context, event):boolean #checks guards (Rule and callable)
@ process(Context, event] #executes command and callable
@ getRule(Caontext, event: stringl:Rule
o getCommand(Context, event:string): Command

[X X X]
amsterdam

I
| " |
/process transitions, entry logic, exit logic |check if transition allowed
|
cc-ml:nl-, and \

| 1
@ State

f
f
@ getMamell : string |
o getTypell:string
@ isinitiali):boolean

f
| does Il"
|
@ isNormal():boolean [l".
@ isFinall):boolean | \
@ isRegex():boolean #special state with regex name ."I ",I
@ constructiname, type, entry, exit) f
{

1
§ \
1
nh e’lf
|

"nllneed each other /

ineeds and uses

|

A r/ ".

L !
@ Transition

|
@ getMamel) : string

[
@ can(Context, eventl:boolean #checks guards (Rule and callable)

|
@ process(Context, event] #executes command and callable
@ getRulelContext, event:stringl:Rule

[
@ getCommandiContext, event string): Command
@ getStateFroml): State

@ getStateTol): State

[
@ constructifrom. to, event, rule. command, guard, logic)

|
|
y

acts an ‘
rules 'I|,

1\
© Command

| 1/
© Rule

@ construct{DO)
@ executel)

|
@ Context
@ construct(DO)

o applies():boolean

@ construct(ldentifier, EntityBuilder, Adapter)
f"ﬁﬂﬁlﬂj n
—— -l =
use to ID the DO/entity /geta domain object aka entity (alias: DO) ‘\readfwrite state info
| \H
f I, persistence \ A
1|| 1 [
L
(©) identifier (C) EntityBuilder (R) Adapter
o construct{entity_id, machine)

@ getEntityildentifier):*

o setState(ldentifier, State, message):boolean
@ getStatel(ldentifier): string

[X X X]
amsterdam

Abstract Factory Pattern &

T R L o e e e — Client
B AbstractFactory < %

@ CremeProductal)

@ CreseFroducisl)

A

| | i inoes

D AbstractProducth ¢ — Zmexe

% ConcreteFactory2 % ConcreteFactoryl A

i CreseProducia]) il CreseProduciod)

i) CremsProductsy]) il CremeProducts) .
i i i — S @, ProductAl @ ProductA2 <~ A
| | |
| e e |— — — e J
I I rmerinces
I I ArstaEates 0 AbstractProductB & - = =
I I Z:ﬂ
I I
| | I |
| L. | @ ProductBl @ ProductB2
I
I

[X X X]
amsterdam

Abstract Factory Pattern &

» “provide an interface for creating families of
related or dependent objects without
specifying their concrete classes”

- statemachine: the class that handles all our
transitions

- loader: retrieve the definition of the statemachine:
json, xml, sql, nosql, php etc.

- persistence adapter: persist to memory, sq|l,
session, mongo, redis etc.

— entity builder: creates a domain object with the
help of the id specified in the machine definition

Abstract Factory Pattern &

* €ach macC

* each mac
factory

nine has it's own factory

nine can be instantiated via the

* the fully qualified factory classname is used
to create statemachines

e statemachines can be handled
polymorphically

* this allows us to design a GUI that handles
all statemachines

[X X X]
amsterdam

configuration in json

{

"machines": [
{
"name": "presentation-machine",
"factory": "\\fully\\gqualified\\FactoryName",
"description": "presentation-machine used to model a presentation”,
"states": [
{
"name": "introduction”,
"type": "initial",
"entry command": "",
"exit command": null,
"description”: "the first state”

"name": "slides",

"type": "normal”,

"entry_command": "\\izzum\\command\\Null",
"exit command": "\\izzum\‘command\\Mull",
"description”: "presenting slides”

¥

1,
"transitions": [
{

"state from": "introduction",
"state to": "slides",
"event": "start",
"rule": "\\izzum\\rules\\True",
"command": "\\izzum\\commandy\Null",
"description”: "after the introduction the slides are presented”

tools

http://toolsizzum

QO X

<select machine= |w|] <enter id>

get state
run to completion

<select machine= {w|l center id=

<select state>

<select rule>

<select command=

sel state

check rule
execute command

<select machine> |w

<select state>

| run all I
| get ids in state I

<new-order> <xyz= is in
state <contract>

<change-order> <xyz>
has transitioned to <send-
product-communication>

<debt-management> for
<ul23=> is allowed to go to
<soft-disconnect>

I

amsterdam

uml generation =

http:/fvisualization.izzum

QO X{ |) @)

<select machine= {w state diagram

transition count

<zelect machine= {w|] =enter id=

activity diagram

flow diagram

[X X X]
amsterdam

uml generation =

 http://plantuml.com

- Open-source tool that uses simple textual
descriptions to draw UML diagrams

- uses graphviz (http://www.graphviz.org/)

» allows generation of diagrams from
statemachine data

- state diagrams
- history

— statistics

http://www.graphviz.org/

plantuml syntax

state "new" as New

New: description: 'the init state’

New: entry /f

New: exit /

state "green" as Green

Green: description: 'go!°®

Green: entry / "\izzum\command\Null'

Green: exit /

New --> Green : new to green

event: 'go-green'\n\

transition order from 'new': 1

rule/guard: '\izzum\rules\True'

command/action: "\izzum‘\commandiNull' P
description: 'from green to orange. use the switch to orange command'

[X X X]
amsterdam

.\
new

description: the init state
entry action: none’
ext action: ‘none’

state diagram for machine 'traffic-light'
_‘ created by izzum plantuml generator
J :

@link http:jfplantuml.sourceforge .net/state.html"

new_to_green

event: ‘go-green’

transition order from ‘new" 1

rulefguard: 'zzt. mirwles\True'
command/action:

zzumcommand Wull'
escription: from green to orange. use the switch to orange comman
o iption: t th itch t d*

h 4
(green 1
description: gol*
] entry action: uzuml:ammanquﬂ
- ext action: ‘none’ ~.
/ \“\
_.Jf green_to_orange \
! event: ‘go-orange’
f transition order from J1E,"'E-E-".l
| rulefguard: Tzzum'examplestraffic
| commandiaction: .

b

b

ight vules\CanSwitch'
zzum'examples rafficlight\command\SwitchOrange
escription: from new to green. this will start the cycle

[! \
N
[

A
A
\
\
\ red to_green
orange ‘ | event. 'go-green’

_transition order from ‘red" 1)
description: looks like a shade of green...” ruledguard: izzum'examplestrafficlight vules\CanSwitch’
entry action: none’ ommand/action; izzumexamples rafficlight \command\SwitchGreen
exit action. ‘none’ | escription: from red back to green.

)
I {
| |
' /
orange_to_red /
| event: ‘go-red" /!
| r'a-:-srm order from 'orange” 1 !
| rulefguard: zz.:. mlexamplesiraffichightvules\CanSwitch' /
\ commandiaction: Yzzumlexamples raffichight \command\SwitchRed /
Y description: from arange to red. use the appropriate command’ /
,
\\ /
- o~
~—_ red -

description: 'stop’
entry action; ‘none’
ext action: ‘none’

amsterdam

[X X X]
amsterdam

amsterdam

tools: process automation &

Obs(801723): address-occupied

Process automation Failed messages Links + info

statemachine (sm) + message queue (mg) regular mode statemachine (sm) diagrams

machine diagram
machine entity id action

| order-cobs X | state diagram A
|Grder—{:0b5 v | BD1723 get state in sm

machine diagram per entity entity id

mn sm once
| order-cobs ' entity flow diagram ¥ || 801723

run =m to completion

machine state action
| order-cobs Wl address-occupied (21) r get all ids in state for sm
find all in mq (1)
machine entity id action
|Grder—{:0bs v | BO1723 find in mg
put on mg
EXEE]

amsterdam

create-voip-order

UL
rule: \SM\WM\COBS\R\HasPcopRequestPending
cmd: \C\Mull

has-pcop-dossier_te_check-has-tv
prio: 2
rule: \R\True
cmd: \SM\M\COBS\C\CreatePcopRequest
PCOP request placed, now check TV

has-pcop-request-pending

5 a pcop reguest open

has-pcop-request-pending_to_check-has-tv
pric: 1
rule:; \R\True

cmd: \SM\M\COBS\C\StartPcopReplanProcess

check-has-tv

check-has-tv_to_create-tv-order

prio: 1

rule: \SM\M\COBS\R\HasTV

cmd: \C\Mull
order has tv

check-has-tv_to_check-has-voip

rule: \B\True

cmd: \C\Null
order does not have tv

create-tv-order_to_check-has-voip
prio: 1
rule: \R\True

i, £
rule: \SM\MVCOBS\R\IsXtIPlammasd
cmd: \SM\M\COBS\C\ResendT. \Nd. o.p
waiting complete. ready for next step

emd: \SM\M\COBS\C\StartTvOrderProcess, \SMM\COBSTWVIC\PULONMG

tv order created. @see: order-cobs-tv statemachine

check-has-voip_to_create-voip-order

prio: 1

rule: \SM\M\COBS\R\Has\Voip

cmd: \C\Mull
order has voip

check-has-veip_to_guidion-create-account
prio: 2
\R\True
cmd: \C\Null
order does not have voip

.
¥

create-voip-order_to_guidion-create-account
pro: 1

amsterdam

che

rule:

construction

rule: \SMyM\COE

cmd: \SM
Cancel

[X X X]
amsterdam

statemachine design patterns &>

 conditional flow: go to state C from A or from Avia B
* linear flow: one way out, mostly used for bookkeeping state

» funnel state: a state that functions as an entry to a final state with
potentially many states pointing to it. the state has no logic
associated with that flow but functions as a bookkeeping state

« two ways out: don't overcomplicate by only using two outgoing
transitions

« self transition: transition to self
 polling state: state that has a rule that polls a third party service

« active state: a state named after the activity it will perform (activity on
entry/exit)

 passive state: a state that performs no activity (activity on transition)
* bookkeeping state: does nothing, only records that is has been there

[X X X]
amsterdam

[X X X]
amsterdam

unit and component testing &

» core statemachine package is tested with high
coverage

* tests your specific application code: rules and
commands

- they should do only one thing

- they make use of tested domain models

- they can be (component/unit)tested in isolation

- they can be injected with test doubles as dependencies

« constructor injection
 setter injection

- they are whitebox tested with mocks and stubs

[X X X]
amsterdam

dependency injection

Creation

DOC

client i
Usage
Setup —
Exercise
Verify H&ercls&‘___‘-‘

s a -"\.|II -
T:-'_'] '-_|'«.- '.".'r

SUT

Test

Double

(x)unit test patterns

e http://xunitpatterns.com

-/ Vetededors - Sledleiy e it g CTE

XUNIT TEST ‘ae
PATTERNS

EX¥3
amsterdam

command

class CancelOrder extends \OrderCommand {

,-'r &

=

* @param \Service\Order $entity
* @param \Service\0OrderManager $manager optional (used for DI in testing)

ic function construct($entity, $manager = null)

parent:: construct($entity);

if($manager === null) {

$manager = new \Service\OrderManager();
} -
¢this-=>manager = $manager;

}

protected function execute()

{
}

$this->manager->cancelOrder(S$this-»entity);

[X X X]
amsterdam

Jlf:l'. =
* @group test

function canCancel()

$entity = $this-=getMock('\Service\Order', array(), array(), , false);
$manager = $this-=getMock('\Service\0OrderManager', array(), array(), , false);

Smanager->expects($this->exactly(1))
->method('cancelOrder')
-s>will($this->returnvalue(true))
->with(%entity);

¢command = new \Command\CancelOrder($entity, $manager);
Scommand->execute();

[X X X]
amsterdam

functional testing =

 tooling and diagrams supports testers
— visualization of flows through statemachines
- rules and commands can be tested in isolation
— easily skip to states in statemachines
— can be used to automate testing (eg: Selenium)

« external services and dependencies

— are mocked in chain testing

— are mostly isolated api calls and data handling encapsulated in a
command

e failures occur for a transition: 1 command or 1 rule

— failures occur in isolation and are relatively easy to debug

- base command/rule classes catches exceptions with the correct
info from the dependent upon component

[X X X]
amsterdam

[X X X]
amsterdam

e because:

- statemachines are identified by their {name, id}

» these two pieces of information allow a factory to create
the statemachine

 state is preserved between processes
o jtIs:

- easy to transmit the statemachine information in a
message "~

e and:

- we can have a message queue messages
asynchronously and scale horizontally

[X X X]
amsterdam

redis as a message queue

e redis serves as a transient data store for
process data

& redis

Shared message queue

Receivers

“"class":
"args": [

"machine": "order-cobs”,

"id": "5@84592",

"modified”: 1422454932,

"created": 1422454932,

= -

machine and message queue &

» seperating mechanism and policy

» statemachine (dis)allows transitions and
logic according to rules (policy)

* message queue jobs direct the
Statemachine (mechanism)

e

- directing a statemachine can also be done via
cronjobs, qui tools, application code efc.

some numbers =

» 13 statemachines for different processes
handling about 100.000 customers

5 million transitions executed

* 21 million messages for statemachines
processed

* 0.1% of those 21 million failed to transition
beCaUSG Of eXCeptIOnS (bugs + 3d party dependencies)

* new statemachine processes will handle
over 500.000 customers

[X X X]
amsterdam

benefits of using the o2
statemachine

» consistent and understandable behaviour for development teams
* logic is isolated in reusable rules and commands
« great process overview via uml generation

o facilitates unittesting via the implementation of rules and
commands and seperating the domain models from the
statemachine

 using statemachines scales well via message queue
« provides statistics via transition history
 there is good tooling to support users throughout the organisation

* new processes can be designed up front and implementation are
easier by just coding the appropiate rules and commands

 the organisation understands statemachines so we can use the
concept in our discussion of processes

[X X X]
amsterdam

[X X X]
amsterdam

? questions ?

maybe (?) some time for a demo ...

boudewijndanser.nl

rolfvreijdenberger/izzum

contributions are welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

