Skip to content

ronuchit/GLIB-AAAI-2021

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
ndr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This repository houses code for the AAAI 2021 paper:

GLIB: Efficient Exploration for Relational Model-Based Reinforcement Learning via Goal-Literal Babbling

Rohan Chitnis*, Tom Silver*, Joshua Tenenbaum, Leslie Pack Kaelbling, Tomás Lozano-Pérez.

For any questions or issues with the code, please email ronuchit@mit.edu and tslvr@mit.edu.

Link to paper: https://arxiv.org/abs/2001.08299

Instructions for running:

  • Use Python 3.5 or higher, e.g. with a virtual environment.
  • Download Python dependencies: pip install -r requirements.txt.
  • Download the Fast-Forward (FF) planner to any location on your computer. -> Linux: https://fai.cs.uni-saarland.de/hoffmann/ff/FF-v2.3.tgz -> Mac: https://github.com/ronuchit/FF
  • From the FF directory you just created, run make to build FF, producing the executable ff.
  • Create an environment variable "FF_PATH" pointing to this ff executable.
  • Back in the GLIB directory, you can now run python main.py.

By default, the code runs GLIB-L, GLIB-G, Oracle, and Action babbling (also called "random") on the Blocks domain. If you want another domain or only some of the methods, change domain_name or curiosity_methods_to_run in settings.py. Plots will get written out after each seed into an automatically created results/ folder. Here is an example of the rough shape of plots that should result from running this code out-of-the-box (it may take around 15 minutes to complete):

success rate error rate

About

Code for GLIB: Efficient Exploration for Relational Model-Based Reinforcement Learning via Goal-Literal Babbling. AAAI 2021.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages