
A Comparison of Efficient Optimization Methods

for Fitting Neural Networks

Roman Kouznetsov, Pramit Das, Luke Francisco

April 2021

1 Introduction

This paper explores the mathematical details and performance of various popu-
lar optimization methods in deep learning, including SGD, AdaGrad, RMSProp,
Adam, AdaMax, and AdaBelief. We first review the mathematical details of
these algorithms and then implement them on the popular MNIST and CIFAR-
10 data sets to evaluate their performance. Thereafter, we focus on the the
convergence behavior of the methods. We also mention some relevant theorems
in this context.

2 Algorithms for Optimization of Loss Functions

For this report, we shall consider image classification problems. We take f to
be the widely-used cross-entropy loss and α to be a step size parameter. θ
refers to the vector whose entries consist of the weights and biases of the neural
network. Following is a discussion of common gradient descent algorithms used
to estimate θ for neural networks in classification problems.

2.1 Stochastic Gradient Descent (SGD)

It is often difficult to compute the gradient on an entire data set due to either size
or complexity. In SGD, we approximate the gradient by computing it based on
a smaller subset (known as a minibatch) of the data. We update the parameter
using the rule θt+1 = θt − α∇fb(θt), where the gradient is approximated based
on minibatch b. We then iterate over our minibatches until convergence. This
approach often works better than vanilla gradient descent, as it uses information
from different subsets of the data. Details have been discussed in [2].

2.2 AdaGrad

AdaGrad, originally proposed by Duchi et al. in 2010 [4], is the earliest modifica-
tion to standard SGD we will consider. This algorithm iterates over minibatches
(or the full data set) applying the update rule θt+1 = θt−α gt∑t

j=1 g
2
j

until conver-

gence, where gt is the estimate of the gradient at the tth step. AdaGrad’s main
improvement over SGD is its ability to use different learning rates depending on

1

the iteration. Here we use a time-dependent αt = α.t−1/2 to dampen the effect.
Details have been discussed in [8].

2.3 RMSProp

RMSProp was first introduced by Geoffrey Hinton during a lecture [5]. It uses
the update rule θt+1 = θt−α gt√

st+ε
, where st is the exponential moving average

(EMA) estimate of the squared gradient st = βst−1 + (1 − β)g2t . This helps
prevent learning rates from rapidly converging to 0 as in AdaGrad, because the
denominator of the update formula here is not a pure sum of squared gradients
[8]. Additionally, this method is well-suited for use with minibatches in SGD
because the EMA term prevents us from basing our update too much on the
current gradient [5].

2.4 Adam

Adam [6] is a moment-based stochastic optimization algorithm which builds on
AdaGrad and RMSProp. It proceeds with the following steps:

Initialize t← 0,m0, v0

do

t← t+ 1

gt ← ∇θft(θt−1)

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2t

m̂t ←
mt

1− βt1
v̂t ←

vt
1− βt2

θt ← θt−1 − α
m̂t√
v̂t + ε

until θt converged

We can see that AdaGrad is a special case of Adam with β1 = 0 and β2 very
close to 1. Adam is based on EMA estimates of the moments of the gradient.
As the iterations mt = β1mt−1+(1−β1)gt and vt = β2vt−1+(1−β2)g2t suggest,
mt and vt are weighted combinations of the previous iterates with gt and g2t ,
respectively, and hence are adaptive combinations of the ”past” and current
gradient values. This is one of the most popular optimization methods used in
deep learning, and it often outperforms SGD.

2.5 AdaMax

AdaMax [6] is closely related to Adam. We have mt = β1mt−1 + (1 − β1)gt
as before, but instead of vt, we use a term ut, which is iteratively given by
ut = max{βut−1, |gt|}. This essentially updates the infinity norm of the current
and past gradients. Here, we use the update rule θt+1 = θt − (α

1−βt
1
).mt

ut
.

2

2.6 AdaBelief

AdaBelief [11] is a relatively recent improvement on Adam that bases our step
size on the accuracy of our EMA estimate of the gradient. It replaces vt in the
Adam algorithm with st = β2st−1 + (1 − β2)(gt −mt)

2 + ε and ŝt = st
1−βt

2
. It

then uses the final update θt = θt−1 − α m̂t√
ŝt+ε

. Considering that mt ≈ E[gt],

this means that st approximates E[gt − E(gt)] = V ar[gt]. Thus, our step size
will be directly related to how accurately we can predict gt, or how much the
gradient varies in the neighborhood of θt.

3 Experimental Data

To assess the performance of these optimizers, we used each optimizer in a sep-
arate neural network that was trained to classify handwritten digits provided
by the MNIST data set and mutually exclusive object classes in the CIFAR-10
data set. These problems were deliberately selected because of prior knowl-
edge of the dichotomous performance of Adam on these two problems [10]. The
experiment allows all networks to train for 500 epochs on a batch size of 32.
This provides a superfluously sufficient environment for all optimizers to con-
verge on a minimizer for the loss function. Both the MNIST and CIFAR-10
data sets were split into training, validation, and test sets of sizes 55000, 5000,
and 10000, respectively. All the networks were implemented in Python primar-
ily utilizing the Pytorch and Pytorch Lightning modules, though a full list of
packages used is provided in the ”Packages Utilized” section. All models were
trained individually on a single NVIDIA GeForce GTX 1660 Ti graphics card.

4 Results and Discussion

We have several guarantees for Adam, AdaGrad, AdaBelief, etc. for convex
optimization problems under suitable regularity conditions, including bounded
gradients and bounded distance between iterates. We have included a theorem
showing this convergence for Adam in Appendix A (Theorem 4.1 and Corollary
4.2) that was proven in [6]. The theorem shows that the regret R(T), the sum of
the suboptimality gap at the first T iterates, is bounded by O(

√
T) for Adam.

This also holds for AdaGrad and AdaBelief due to their close relationship with
Adam. Thus, the average regret for all of these algorithms converges on the
order of O(1√

T
) for convex problems.

However, our loss-minimization problem is not convex since the cross-entropy
loss, which includes a softmax activation, is utilized in classification. Chen et
al. [1] give a theorem that provides some theoretical guarantees for convergence
in non-convex problems for ”Adam-type” optimization algorithms, including
Adam and AdaGrad. We have provided this theorem in Appendix A (Theorem
2.2), but it requires far stronger conditions than the theorem for convex prob-
lems, and these conditions, such as Lipschitz continuity of the gradient of the
loss function, are not met in our case. They show that the regret is bounded
by O(

√
T · log T) under these stronger conditions, which means the average re-

gret converges on the order of O(log T√
T

) [1]. Zhuang et al. use this theorem to

3

demonstrate that under the same conditions, AdaBelief also converges on this
order [11].

Figure 1 showcases the training and validation performance of all the optimizers
discussed on MNIST. Even though our classification problem does not satisfy
the conditions for the convergence of non-convex problems, we see that Adam,
AdaGrad, and AdaBelief are all very suitable to predict classes in the MNIST
case. This should not come as a surprise, as it is common for Adam and its
related derivations to achieve high performance on non-convex problems even
when no conditions are met for convergence [1].

Figure 2 is analogous to Figure 1 except all the metrics reflect performance
on the CIFAR-10 data set. These plots suggest that the hyperparameters are
improperly specified for a setting of 500 maximum training epochs. This is
discussed more elaborately in the ”Further Work” section.

Figure 1: Training and Validation Losses and Accuracy for Various Optimizers
on MNIST Neural Net Classification

For the MNIST data, the accuracy achieves near perfect rates almost immedi-
ately, with SGD taking a bit longer than the rest of the algorithms, and AdaGrad

4

Figure 2: Training and Validation Losses and Accuracy for Various Optimizers
on CIFAR-10 Neural Net Classification

not achieving similar rates until after 500 epochs. Figure 1 shows that the loss is
in harmony with the accuracy graphs, suggesting that all but SGD and AdaGrad
tend to reach an optimal state quickly and further training leads to overfitting.
The phenomena at play is that Adam (along with AdaMax, AdaBelief, and
RMSProp) suffers from overfitting as the significantly longer training duration
follows its quick convergence. This is in line with expected behavior because
each epoch has 55000/32 ≈ 1718 updates. Using the result in Theorem 4.2 of
Appendix A, the average suboptimality gap under Adam should be less than
0.01 within 10000 iterations, the equivalent of less than a 6 epochs represented
on the x-axes in Figure 1. This statement is true regarding the loss, but a
decreasing cross-entropy loss need not imply an increase in accuracy. However,
a well-defined model should follow this trend in practice and Figures 1 and 2
show our models exhibit this trend.

We would expect AdaBelief to achieve the best performance in terms of con-
vergence rate. Like Adam, AdaBelief also takes a large step in areas where
the gradient is small and relatively unchanging, and takes a small step in ar-
eas where the gradient is large and variable, such as when the loss function

5

rapidly approaches a local minimum. However, AdaBelief takes a larger step in
areas where the gradient is large and relatively constant since our prediction mt

should be close to gt, which is a key improvement over Adam [11]. Results on
the MNIST data appear to support this hypothesis, but RMSProp, AdaMax,
and Adam also showed superior performance here. Yet AdaBelief still generated
the highest testing accuracy in the MNIST case, as shown in Table 1. AdaBelief
really separated itself in terms of convergence rate on the CIFAR-10 data set,
where it was only matched by Adam, but it exhibited dramatic overfitting here
and ultimately generated one of the lowest validation and testing accuracies,
performing much worse than Adam in this regard.

Figure 3: Random Sample of ”8” Digits from MNIST

Figure 4: Random Sample of Horse Images from CIFAR-10

Figures 1 and 2 suggest that optimizers which make updates based on more
iterates than only the current one perform significantly worse on the CIFAR-10
data set than the MNIST data set. This result was already provided in [10],
but we propose a more intuitive possibility for this result. Figures 3 and 4
showcase some random samples of the MNIST and CIFAR-10 data sets, respec-
tively. There are many similar features between the MNIST samples: same
color, same curvature, similar orientation, and similar positioning. This shared
information could be a feature that allows momentum-based optimizers like
Adam to perform stronger than methods like SGD because their momentum
update structure allows for borrowed information across batches with similar
input data. The same cannot be said about CIFAR-10. The samples in Figure
4 all have different background colors, horse colors, extraneous objects, angles,
positioning, etc. In these situations, optimizers may not help the model learn the
new information provided by the diverse new samples because new iterates are
a convex combination that include the previous iterates. This weighted update
towards previous information makes learning new information that improves
classification more challenging. MNIST has similar samples across batches, so
it would make sense that the model can learn efficiently, while CIFAR-10s sam-
ples have drastically different inputs not only between groups, but within them
as well.

6

MNIST CIFAR
AdaBelief 99.10% 40.31%
AdaGrad 96.96% 42.59%
Adam 98.56% 42.66%
AdaMax 98.94% 40.53%
RMSProp 98.84% 39.92%
SGD 98.50% 42.57%

Table 1: Test Accuracy for Vanilla NN of Depth 3 on MNIST and CIFAR
Classification Problems

5 Conclusion

As we outlined in Section 2, all these methods have their own pros and cons
that contribute to their effectiveness in these two problems. All of the more
recent algorithms (those other than AdaGrad and RMSProp) perform well on
the MNIST data, and we see that when using β1 = 0.9, i.e. β1 close to 1, we get
near perfect validation accuracy for Adam in the MNIST data set. This is in line
with many previous works that showcase Adam performing well and converging
quickly on the MNIST classifier. We also found evidence of our hypothesis that
AdaBelief would achieve slightly better performance than Adam because of how
it optimizes step size choices.

For the CIFAR-10 data set, we achieved around 35-45% validation accuracy
using vanilla neural networks and similar performance for testing accuracy, sug-
gesting this problem can be better classified using convolutional neural networks
with Adam and RMSProp, as detailed in [3]. We found that Adam and Ad-
aBelief achieved the lowest training loss in 500 epochs, but Figure 2 showcases
how SGD was on pace to achieve lower training loss with more epochs and was
more robust against overfitting, providing evidence that SGD might significantly
outperform Adam given more epochs. After 500 epochs though, Adam, SGD,
and RMSProp achieved similar maximum testing accuracy, while AdaBelief did
not perform nearly as well in this case despite its promising convergence behav-
ior compared to Adam. We propose that Adam performs very well in general on
large data sets with similar input data but struggles on data sets with large con-
trasts, where making new updates based on previous ones hinders the learning
process rather than expediting it.

6 Further Work

While some progress has been made to establish Adam’s performance relative
to other optimization algorithms on arguably the two most common input data
sets for neural networks, there is much more to contribute to this work. We
found that Adam performs incredibly on MNIST, but struggles on CIFAR-10.
While we identified a potential cause for this behavior, it is still conjecture and
largely subjective to the idea of what images can be considered ”significantly
different,” but there is not much concrete on this in the literature yet.

Additionally, hyperparameter optimization can greatly increase the performance

7

of our model. Currently, the hyperparameters are set to their recommended
default values, but this does not ensure that our model is efficiently tuned. In
fact, SGD should have a much higher learning rate that allows the initial few
steps to make faster progress than what is presented in Figure 1. This issue
also involves the momentum structure that Adam utilizes (though this does not
conform to the usual idea of a hyperparameter). It is unlikely that expanding
the number of terms in the momentum structure would change the convergence
rate, but some interesting developments could occur with a structure that is
fractal or polynomial, and in the future, we could explore that potential.

8

References

[1] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence
of a class of adam-type algorithms for non-convex optimization. CoRR,
abs/1808.02941, 2018.

[2] Yuxin Chen. Stochastic gradient methods, 2019.

[3] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees
for rmsprop and adam in non-convex optimization and an empirical com-
parison to nesterov acceleration, 2018.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Technical Report
UCB/EECS-2010-24, EECS Department, University of California, Berke-
ley, Mar 2010.

[5] Geoffrey Hinton, Kevin Swersky, and Nitish Srivastava. Neural networks for
machine learning, 2012.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2017.

[7] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of
adam and beyond, 2019.

[8] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2017.

[9] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp
convergence over nonconvex landscapes, 2021.

[10] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Ben-
jamin Recht. The marginal value of adaptive gradient methods in machine
learning, 2018.

[11] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha
Dvornek, Xenophon Papademetris, and James S. Duncan. Adabelief op-
timizer: Adapting stepsizes by the belief in observed gradients, 2020.

9

Packages Utilized

[Package: adabelief pytorch] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda,
N. Dvornek, X. Papademetris, and J. Duncan. Ad-
abelief optimizer: Adapting stepsizes by the belief
in observed gradients. Conference on Neural In-
formation Processing Systems, 2020.

[Package: matplotlib] J. D. Hunter. Matplotlib: A 2d graphics envi-
ronment. Computing in science & engineering,
9(3):90–95, 2007.

[Package: numpy] C. R. Harris, K. J. Millman, S. J. van der
Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,
R. Kern, M. Picus, S. Hoyer, M. H. van Kerk-
wijk, M. Brett, A. Haldane, J. Fernández del
Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant. Array program-
ming with NumPy. Nature, 585:357–362, 2020.
doi:10.1038/s41586-020-2649-2.

[Package: pytorch] A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.,
2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

10

Appendix A: Theorems

The following theorems, which are referenced in the discussion, show conver-
gence guarantees for Adam originally proven by Kingma and Ba as Theorem
4.1 and Corollary 4.2, respectively, in [6].

Theorem 4.1. Let R(T) =
∑T
t=1[ft(θt) − ft(θ

∗)]. Assume that the func-
tion ft has bounded gradients, ‖∇ft(θ)‖2 ≤ G, ‖∇ft(θ)‖∞ G∞ for all θ ∈ Rd
and distance berween any θt generated by Adam is bounded, ‖θn − θm‖2 ≤ D,
‖θm − θn‖∞ ≤ D∞ for any m,n ∈ {1, . . . , T}, and β1, β2 ∈ [0, 1) satisfy
β2
1√
β2

< 1. Let αt = α√
t

and β1,t = β1λ
t−1, λ ∈ (0, 1). Adam achieves the fol-

lowing guarantee, for all T ≥ 1.

R(T) ≤ D2

2α(1−β1)

∑d
i=1

√
T v̂T,i+

α(1+β1)G∞
(1−β1)

√
1−β2(1−γ)2

∑d
i=1 ‖g1:T,i‖2+

∑d
i=1

D2
∞G∞

√
1−β2

2α(1−β1)(1−λ)2

Corollary 4.2. Assume that the function ft has bounded gradients, ‖∇ft(θ)‖2 ≤
G, ‖∇ft(θ)‖∞ ≤ G∞ for all θ ∈ Rd and distance between any θt generated
by Adam is bounded, ‖θn − θm‖2 ≤ D, ‖θm − θn‖∞ ≤ D∞ for any m,n ∈
{1, . . . , T}. Adam achieves the following guarantee, for all T ≥ 1

R(T)

T
= O

(
1√
T

)

The following theorem, which is also referenced in the discussion, shows a con-
vergence guarantee for AdaBelief in non-convex problems. The theorem appears
as Theorem 2.2 in [11] but was originally proven for classes of optimization al-
gorithms closely related to Adam by Chen et al. in [1].

Theorem 2.2. (Convergence for non-convex stochastic optimization) Under
the assumptions:

• f is differentiable; ‖∇f(x) − ∇f(y)‖] ≤ L‖x − y‖,∀x, y : f is also lower
bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt =
∇f (θt) + ζt,Eζt = 0, ζt ⊥ ζj ,∀t, j ∈ N, t 6= j

• At step t, the algorithm can access a bounded noisy gradient, and the true
gradient is also bounded. i.e. ‖∇f (θt)‖ I ≤ H, ‖gt‖ ≤ H,∀t > 1.

Assume minj∈[d] (s1)j ≥ c > 0, noise in gradient has bounded variance, Var (gt) =

σ2
t ≤ σ2, st ≤ st+1,∀t ∈ N, then the proposed algorithm satisfies:

min
t∈[T]

E||∇f (θt) ‖2 ≤
H√
Tα

[
C1α

2
(
H2 + σ2

)
(1 + log T)

ε
+ C2

dα√
c

+ C3
dα2

c
+ C4

]

as in [1] C1, C2, C3 are constants independent of d and T, and C4 is a constant
independent of T .

11

Appendix B: Supplementary Materials

The code, data, and figures used throughout this paper as well as instructions
to reproduce these results can be found at https://github.com/roromaniac/
project ceo.

12

