
Regulated Pure Pursuit Algorithm for Robot Path
Tracking

Steve Macenski
R&D Innovations
Samsung Research

s.macenski@samsung.com

Francisco Martı́n
Intelligent Robotics Lab

Rey Juan Carlos University
francisco.rico@urjc.es

Abstract—The accelerated deployment of service and industrial
robot assets has spawned a number of robotic algorithm varia-
tions to better handle the real-world conditions on the ground.
Several different local trajectory planning techniques have been
deployed on practical robot systems successfully - including the
Dynamic Window Approach (DWA), Pure Pursuit, and Model
Predictive Control (MPC). While DWA and some formulations
of MPC can progress along paths and deviate in the presence of
dynamic obstacles, the use of pure path tracking algorithms is still
very commonplace. Decades after its introduction, Pure Pursuit
and its variants continues to be one of the most commonly utilized
classes of local trajectory planners. However, few approaches
have been proposed with schema for variable linear velocities -
most Pure Pursuit work has assumed a constant translational
velocity or fails to address the point at all. This paper presents
a new variant of the Pure Pursuit algorithm designed with
additional heuristics to regulate linear velocities, built atop the
existing Adaptive variant. The Regulated Pure Pursuit algorithm
makes incremental improvements on state of the art by adjusting
linear velocities to significantly reduce tracking overshoot with
particular focus on safety in constrained and partially observable
spaces commonly negotiated by service robots.

We present experiments with the Regulated Pure Pursuit
algorithm on industrial-grade service robots in a campus setting.
This work was built to be production-grade and is freely
available at https://github.com/ros-planning/navigation2 for fast
evaluation. It is included with the new and improved ROS 2
Navigation Stack (Nav2).

Index Terms—Service Robots; Mobile Robots; Motion and
Path Planning

I. INTRODUCTION

Many different path tracking and local trajectory planning
algorithms have been proposed to aid in creating robust robot
navigation systems. There is a wide diversity of approaches to
this fundamental problem, although a few common techniques
are commonly employed on modern mobile robots. Dynamic
Window Approach (DWA), Pure Pursuit, and Model Predictive
Control (MPC) are by far the most commonly deployed path
trackers on service and industrial robots. They all have a
strong heritage for reliably tracking paths in a wide range of
environmental conditions.

DWA and MPC are often, but not always, formulated as
multi-objective trajectory generation problems to maximize
criteria such as avoiding dynamic obstacle collisions on top of
path tracking. This has made them particularly well suited for
many robotics applications where dynamic robot behaviors are

rewarded. A great deal of academic work has been conducted
on these methodologies allowing them to reach the point of
maturity where they can be found on many commercially
available robots today.

However, there still exist many applications of deployed
robot systems where the multi-objective trajectory generation
problem can be considered a downside. Notably, service and
industrial robots have begun to be developed and deployed at
an accelerated pace. The variety of problems and industries
they support demand a variety of different behaviors - includ-
ing pure path tracking. Surveyed among high-end research and
service robot navigation systems, pure path tracking continues
to be a common theme in many practical robot environments,
which was surprising to the authors. Among single-objective
path trackers, a simple and reliable method continues to be
exploited decades after its initial development: Pure Pursuit.

Pure Pursuit uses simple geometry to find the curvature of
a path required to drive a robot towards a given point on
the path. The algorithm itself does not place any restrictions
on the translational velocities during operation, however it
also lacks any schema for adjusting them. Near-universally,
implementations use a fixed speed. It also has a known issue
of overshooting in the presence of sharp changes in path
curvature at speed due to imperfect actuators and vehicle
dynamics. Many variations of Pure Pursuit exist, however most
address the more obvious area of the selection of lookahead
points which largely aids in stabilizing convergence behaviors
towards the path at a larger range of velocities. The Pure
Pursuit algorithm was not developed with service and indus-
trial robots in mind, which have additional safety requirements
making it further unrealistic to move at a fixed velocity and
literature lacks any formal description of a solution to regulate
translational velocities.

This work proposes an incremental improvement on the
Pure Pursuit path tracking algorithm by describing a method
of adjusting translational velocities to improve safety and
operability in a broad range of common service robot appli-
cations. We improve the Adaptive Pure Pursuit algorithm by
additionally regulating linear velocities by applying heuristics
around path curvature and proximity to obstacles - two of
the most common events requiring conscientious navigation
behaviors in dynamic environments. This Regulated Pure
Pursuit algorithm addresses one of Pure Pursuit’s known

https://github.com/ros-planning/navigation2


issues; it slows a robot proportional to path curvature during
a sharp turn, largely solving the overshoot issue in practical
application. This has the additional impact of slowing on
turns into partially observable dynamic environments (aisles,
hallways, intersections) to perform safer service robot opera-
tions when also paired with our algorithm’s collision detection
methodology reducing the likelihood and impact of potential
collisions. The Regulated Pure Pursuit algorithm also contains
a regulation heuristic for linear velocity in close proximity to
obstacles such as people and fixed infrastructure to reduce
likelihood of collision in constrained indoor environments.

This work is freely available with a high quality imple-
mentation available for evaluation and integration in the Nav-
igation2 (Nav2) mobile robot navigation system. This work
is well documented, tested, and is in use on several robots
deployed today.

II. RELATED WORK

The Pure Pursuit algorithm has been used for path tracking
for over 30 years on autonomous cars and mobile robots and
is still a mainstay in many autonomous systems. It uses a
geometric approach to drive a robot towards a local-goal point
on a given path, dubbed the lookahead point at a given linear
velocity. As the vehicle moves towards this lookahead point,
a new point is selected on the path to drive towards. The
continual update of the robot pose and lookahead ”carrot”
creates a solution to the canonical path tracking problem [1].

The essential steps are as follows, outlined in [2]:
1) Find the path pose closest to the robot’s position
2) Select a path point to use as the lookahead carrot
3) Compute the curvature required to drive the robot to the

lookahead carrot
4) Send commands to robot base controller
5) Repeat at desired update rate

Fig. 1: Geometry of Finding the Lookahead Point.

Figure 1 and Figure 2 shows visual geometric representa-
tions of how Pure Pursuit functions. Figure 1 displays how

the Pure Pursuit algorithm finds the lookahead point. First,
it determines the closest point on the path to the vehicle.
Using a given lookahead distance, it searches for the first
point forward on the path that is at least that distance away.
With a known lookahead point and a robot position, we can
determine curvature of the circle (recall, R = 1/κ) using
simple geometry. If the path can be represented in vehicle
base coordinates, where the robot position is the origin, then
the curvature can be represented as

κ = 2y/L2 (1)

Where κ is the path curvature required to drive the robot
from its starting position to the lookahead carrot, y is the
lateral coordinate of the lookahead point, and L is the actual
distance between the robot and the lookahead point. Figure 2
shows this visually, where L is represented geometrically as
the circle’s chord.

Fig. 2: Geometry of Finding the Path Curvature.

Since the Pure Pursuit algorithm is geometrically derived,
the primary parameters of the Pure Pursuit path tracker are
simply the translational velocity of travel and the distance
along the path used to select the lookahead point. In the
standard formulation, this lookahead point is a distance from
the robot tuned to achieve an acceptable trade-off between
oscillations centered around the path (shorter distances) and
slower convergence (longer distances). There exists a broad
range of admissible lookahead distances [1].

While geometrically simple, there are several known down-
sides of this approach. In high curvature situations, Pure
Pursuit is known to have overshoot behaviors resulting in
significant path deviations, even in a well tuned system [1].
This is typically not a major concern for autonomous driving
applications which naturally has a minimum turning radius
limit, but a more substantive issue for smaller-scale appli-
cations like industrial and consumer robots utilizing differ-
ential and omni-directional drive systems. It also does not
specify any methods regarding translational velocities during
execution or a relationship between the lookahead distance



and velocity. While this can be beneficial as it allows for a
great deal of flexibility with different linear velocity profiles, in
practice, without described methods, nearly all known variants
use a constant translational velocity profile. Finally, it fails to
specify any collision detection - which is of special importance
due to the known overshoot behavior in when following high
curvature paths.

Over time, many variants of this algorithm have been
proposed to increase path tracking stability by varying com-
putations of the lookahead point. MIT’s entry into the DARP
Urban Challenge implemented the Pure Pursuit algorithm for
lane following with the most common variation: varying the
lookahead distance changes proportionally to the translational
velocity [3]. This variation allows a vehicle to travel at a
broader range of velocities and maintain stability of the pure
pursuit algorithm. For velocities in the operating range, a
mapping of lookahead distances is required such that they have
a lookahead distance with an acceptable trade-off between
oscillation and slower convergence to the path. A common
formulation for this is L = vclt, where L is the lookahead
distance, vc is the translational velocity, and lt is a lookahead
gain representing the time to project vc forward by [4]. This
is also referred to as the ”Adaptive” Pure Pursuit algorithm
[5].

Another variation that is particularly beneficial in urban
environments is interpolating between path via-points to de-
termine the closest robot pose to the path and the lookahead
point. Small variations are present in the actual lookahead
distance utilized to compute angular velocities without inter-
polation between via-points. These small variations can create
discontinuous jumps in the angular velocity output while
traveling on a constant curvature path [4]. By interpolating
between waypoints on a path, the pure pursuit algorithm can
use exact values of the desired lookahead distance and smooth
out the rate of change between iterations of the algorithm.

Beyond path tracking, Pure Pursuit has also been adapted
for other tasks such as wall and person following [6]. Using
the same ideas, it has been shown that the geometry of the
algorithm can be adapted for a variety of non-path following
applications.

However, none of the variants found address translational
velocity behaviors or specifies preemptive collision detection
to avoid catastrophic failure. Several variations on Adaptive
Pure Pursuit have been proposed aimed at stabilizing path
tracking, but none have targeted a solution to fix the overshoot
found on particularly high curvature paths. This problem
disproportionately impacts the most common robot platform
types that can perform sharp turning maneuvers: differential
and omni-directional drives.

This paper proposes a new variant on Pure Pursuit, Regu-
lated Pure Pursuit, targeting these problems. It builds on the
existing variants with heuristics for regulating translational ve-
locities focusing on modern service, consumer, and industrial
robotics needs.

III. REGULATED PURE PURSUIT ALGORITHM

IV. IMPLEMENTATION

V. EXPERIMENTS AND ANALYSIS

VI. LIMITATIONS

VII. CONCLUSION

ACKNOWLEDGEMENTS

Other contributors to this work include Shrijit Singh and
Ramon Wijnands.

REFERENCES

[1] Coulter, R., ”Implementation of the Pure Pursuit Path Tracking Algo-
rithm”. Carnegie Mellon University, Pittsburgh, Pennsylvania, Jan 1990.

[2] Samuel, M., Hussein, M., Mohamad, M., ”A Review of some Pure-
Pursuit based Path Tracking Techniques for Control of Autonomous
Vehicle”. International Journal of Computer Applications, 2006.

[3] Campbell, S., ”Steering control of an autonomous ground vehicle with
application to the DARPA Urban Challenge”. University of Notre Dame,
2005.

[4] H. Ohta, N. Akai, E. Takeuchi, S. Kato and M. Edahiro, ”Pure Pursuit
Revisited: Field Testing of Autonomous Vehicles in Urban Areas”,
Cyber-Physical Systems Networks and Applications (CPSNA) 2016
IEEE 4th International Conference on, pp. 7-12, 2016.

[5] H. Ohta, N. Akai, E. Takeuchi, S. Kato and M. Edahiro, ”Adaptive Pure
Pursuit Model for Autonomous Vehicle Path Tracking”, International
Journal of Science, Vol. 4, No. 3, 2017.

[6] Morales, J., Martı́nez, J.L., Martı́nez, M.A. et al. ”Pure-Pursuit Reactive
Path Tracking for Nonholonomic Mobile Robots with a 2D Laser
Scanner”. EURASIP J. Adv. Signal Process. 2009, 935237 (2009).


	Introduction
	Related Work
	Regulated Pure Pursuit Algorithm
	Implementation
	Experiments and Analysis
	Limitations
	Conclusion
	References

