

 Skip to content

 Toggle navigation

 Sign in

 	

 Product

 	

 Actions

 Automate any workflow

	

 Packages

 Host and manage packages

	

 Security

 Find and fix vulnerabilities

	

 Codespaces

 Instant dev environments

	

 Copilot

 Write better code with AI

	

 Code review

 Manage code changes

	

 Issues

 Plan and track work

	

 Discussions

 Collaborate outside of code

 Explore
 	

 All features

	

 Documentation

	

 GitHub Skills

	

 Blog

	

 Solutions

 For
 	

 Enterprise

	

 Teams

	

 Startups

	

 Education

 By Solution
 	

 CI/CD & Automation

	

 DevOps

	

 DevSecOps

 Resources
 	

 Learning Pathways

	

 White papers, Ebooks, Webinars

	

 Customer Stories

	

 Partners

	

 Open Source

 	

 GitHub Sponsors

 Fund open source developers

 	

 The ReadME Project

 GitHub community articles

 Repositories
 	

 Topics

	

 Trending

	

 Collections

	
 Pricing

 Search or jump to...

 Search code, repositories, users, issues, pull requests...

 Search

 Clear

 Search syntax tips

 Provide feedback

 We read every piece of feedback, and take your input very seriously.

 Include my email address so I can be contacted

 Cancel

 Submit feedback

 Saved searches

 Use saved searches to filter your results more quickly

 Name

 Query

 To see all available qualifiers, see our documentation.

 Cancel

 Create saved search

 Sign in

 Sign up

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.
 You switched accounts on another tab or window. Reload to refresh your session.

Dismiss alert

 {{ message }}

 rototor

 /

 pdfbox-graphics2d

 Public

 	

Notifications

	

Fork
 19

	

 Star
 58

	

 Graphics2D Bridge for pdfbox

 58
 stars

 19
 forks

 Branches

 Tags

 Activity

 Star

Notifications

 	

 Code

	

 Issues
 8

	

 Pull requests
 1

	

 Discussions

	

 Actions

	

 Projects
 0

	

 Security

	

 Insights

Additional navigation options

 	

 Code

	

 Issues

	

 Pull requests

	

 Discussions

	

 Actions

	

 Projects

	

 Security

	

 Insights

 rototor/pdfbox-graphics2d

 This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 master

BranchesTags

Go to file

Code

Folders and files
	Name	Name	Last commit message
	Last commit date

	Latest commit

History
480 Commits

	
.github/workflows

	
.github/workflows

	
	

	
extended-tests

	
extended-tests

	
	

	
graphics2d

	
graphics2d

	
	

	
.gitignore

	
.gitignore

	
	

	
.travis.yml

	
.travis.yml

	
	

	
LICENSE-2.0.txt

	
LICENSE-2.0.txt

	
	

	
README.md

	
README.md

	
	

	
pom.xml

	
pom.xml

	
	

	View all files

Repository files navigation
	README

pdfbox-graphics2d

Graphics2D Bridge for Apache PDFBox

Intro

Using this library you can use any Graphics2D API based SVG / graph / chart library to embed those
graphics as vector
drawing in a PDF. In combination with PDFBox PDFRenderer/PageDrawer you can also "rerender" PDF
pages and change certain aspects. E.g.
change the color mapping and perform an overfill.
Now also it's possible to setup masking of all draw()/fill() calls. Think of this like an
additional clipping, just that this supports bitmap images and complete complex drawings (XForm's)
as alpha masks. See
here
how that works.

The following features are supported:

	Drawing any shape using draw...() and fill...() methods from Graphics2D.
	Drawing images. The default is to always lossless compress them. You could plugin your
own Image
-> PDImageXObject conversion if you want to encode the images as jpeg.
	All BasicStroke attributes.
	Paint:
	Color. You can specify your own color mapping implementation to special map the (RGB)
colors to PDColor. Beside using CMYK colors you can also use spot colors.
	GradientPaint, LinearGradientPaint and RadialGradientPaint. There are some
restrictions:
	GradientPaint always generates acyclic gradients.

	TexturePaint.

	Drawing text. By default, all text is drawn as vector shapes, so no fonts are embedded. RTL
languages are supported.
It's possible to use fonts, but this loses some features (especially RTL support)
and you must provide the TTF files of the fonts if the default PDF fonts are not enough.

The following features are not supported (yet):

	(Alpha-)Composite with a rule different then AlphaComposite.SRC_OVER.
	copyArea(). This is not possible to implement.
	hit(). Why would you want to use that?
	setXORMode(). Their is no blend mode in PDF which would allow to emulate this, so this is
not possible to be implemeted.

Download

This library is available through Maven:

For PDFBox 2.0.x:

<dependency>
	<groupId>de.rototor.pdfbox</groupId>
	<artifactId>graphics2d</artifactId>
	<version>0.43</version>
</dependency>

This library targets Java 1.6 and should work with Java 1.6. But at the moment it is only tested
with Java 8, Java 11 and Java 17.

For PDFBox 3.0.x:

<dependency>
	<groupId>de.rototor.pdfbox</groupId>
	<artifactId>graphics2d</artifactId>
	<version>3.0.0</version>
</dependency>

This version targets Java 8. It should be identical to the 2.0.x version. If not, than thats a bug. The 3.0.x
version is maintained in the pdfbox-3.0.0 branch. For now, maintance is done in the 2.0.x branch and the merged into then
3.0.x branch.

Example Usage

public class PDFGraphics2DSample
{
 public static main(String[] argv)
 {
 PDDocument document = new PDDocument();
 PDPage page = new PDPage(PDRectangle.A4);
 document.addPage(page);

 /*
 * Creates the Graphics and sets a size in pixel. This size is used for the BBox of the XForm.
 * So everything drawn outside (0x0)-(width,height) will be clipped.
 */
 PdfBoxGraphics2D pdfBoxGraphics2D = new PdfBoxGraphics2D(document, 400, 400);

 /*
 * Now do your drawing. By default all texts are rendered as vector shapes
 */

 /* ... */

 /*
 * Dispose when finished
 */
 pdfBoxGraphics2D.dispose();

 /*
 * After dispose() of the graphics object we can get the XForm.
 */
 PDFormXObject xform = pdfBoxGraphics2D.getXFormObject();

 /*
 * Build a matrix to place the form
 */
 Matrix matrix = new Matrix();
 /*
 * Note: As PDF coordinates start at the bottom left corner, we move up from there.
 */
 matrix.translate(0, 20);
 PDPageContentStream contentStream = new PDPageContentStream(document, page);
 contentStream.transform(matrix);

 /*
 * Now finally draw the form. As we not do any scaling, the form drawn has a size of 5,5 x 5,5 inches,
 * because PDF uses 72 DPI for its lengths by default. If you want to scale, skew or rotate the form you can
 * of course do this. And you can also draw the form more then once. Think of the XForm as a stamper.
 */
 contentStream.drawForm(xform);

 contentStream.close();

 document.save(new File("mysample.pdf"));
 document.close();
 }
}

See
also manual drawing
and drawing SVGs. The
testdrivers are only
smoke tests, i.e. they don't explicit test the result, they just run and test if the their are
crashes. You have to
manually compare the PDF result of the testdriver with the also generated PNG compare image.

Rendering text using fonts vs vectors

When rendering a text in a PDF file you can choose two methods:

	Render the text using a font as text.
	Render the text using TextLayout as vector graphics.

Rendering a text using a font is the normal and preferred way to display a text:

	The text can be copied and is searchable.
	Usually it takes less space then when using vector shapes.
	When printing in PrePress (Digital / Offset Print) the RIP usually handles text special to ensure
the best possible
reading experience. E.g. RGB Black is usually mapped to a black with some cyan. This gives a "
deeper" black,
especially if you have a large black area. But if you use a RGB black to render text it is usually
mapped to pure
black to avoid any printing registration mismatches, which would be very bad for reading the text.
	Note: When rendering a text using a font you should always embed the needed subset of the font
into the PDF. Otherwise
not every (=most) PDF viewers will be able to display the text correctly, if they don't have the
font or have a
different version of the font, which can happen across different OS and OS versions.
	Note: Not all PDF viewer can handle all fonts correctly. E.g. PDFBox 1.8 was not able to handle
fonts right. But
nowadays all PDF viewers should be able to handle fonts fine.
	Note: TextAttribute.LIGATURES is currently not supported.
	Note: TextAttribute.BACKGROUND is currently not supported.
	Note: There is no Bidi support at the moment. See
the problems
PDFBox has with rendering RTL languages at the moment.

On the other site rendering a text using vector shapes has the following properties:

	The text is always displayed the same. They will be no differences between the PDF viewers.
	The text is not searchable and can not be copied.
	Note: Vector shapes take more space than a embedded font.
	Note: You may want to manually alter the color mapping to e.g. ensure a black text is printed
using pure CMYK black.
If you do not plan to print the PDF in offset or digital print you can ignore that. This will make
no difference for
your normal desktop printer.
	Note: When using Apache Batik to draw SVGs the text will always be drawn as vector shape. Batik
always converts texts
to vector shapes first and then applies the transforms on it (if there are any). So
PdfBoxGraphics2D never even gets a
chance to draw the text using a PDF font. In theory, this could be solved by installing an
appropriate text painter on
the Batik bridge context. But no one has created such a text painter yet.

If you want to get a 1:1 mapping of your Graphics2D drawing in the PDF you should use the
vector mode. If you want
to have the text searchable and only use LTR languanges (i.e. latin-based)
you may try the text mode. For this mode to work you need the font files (.ttf / .ttc) of the fonts
you want to use and
must register it with this library. Using the normal Java font API it is not possible to access the
underlying font
file. So a manual mapping of Font to PDFont is needed.

Example how to use the font mapping

The font mapping is done using the PdfBoxGraphics2DFontTextDrawer class. There you register
the fonts you have. By
default the mapping tries to only use fonts when all features used by the drawn text are supported.
If your text uses a
features which is not supported (e.g. RTL text) then it falls back to using vectorized text.

If you always want to force the use of fonts you can use the
class PdfBoxGraphics2DFontTextForcedDrawer. But this
is unsafe and not recommend, because if some text can not be rendered using the given fonts it will
not be drawn at all
(e.g. if a font misses a needed glyph).

If you want to use the default PDF fonts as much as possible to have no embedded fonts you can use
the class
PdfBoxGraphics2DFontTextDrawerDefaultFonts. This class will always use a default PDF font, but
you can also
register additional fonts.

public class PDFGraphics2DSample
{
 public static main(String[] argv)
 {
 /*
 * Document creation and init as in the example above
 */

 // ...

 /*
 * Register your fonts
 */
 PdfBoxGraphics2DFontTextDrawer fontTextDrawer = new PdfBoxGraphics2DFontTextDrawer();
 try
 {
 /*
 * Register the font using a file
 */
 fontTextDrawer.registerFont(new File("..path..to../DejaVuSerifCondensed.ttf"));

 /*
 * Or register the font using a stream
 */
 fontTextDrawer.registerFont(
 PDFGraphics2DSample.class.getResourceAsStream("DejaVuSerifCondensed.ttf"));

 /*
 * You already have a PDFont in the document? Then make it known to the library.
 */
 fontTextDrawer.registerFont("My Custom Font", pdMyCustomFont);

 /*
 * Create the graphics
 */
 PdfBoxGraphics2D pdfBoxGraphics2D = new PdfBoxGraphics2D(document, 400, 400);

 /*
 * Set the fontTextDrawer on the Graphics2D. Note:
 * You can and should reuse the PdfBoxGraphics2DFontTextDrawer
 * within the same PDDocument if you use multiple PdfBoxGraphics2D.
 */
 pdfBoxGraphics2D.setFontTextDrawer(fontTextDrawer);

 /* Do you're drawing */

 /*
 * Dispose when finished
 */
 pdfBoxGraphics2D.dispose();

 /*
 * Use the result as above
 */
 // ...
 }
 finally
 {
 /*
 * If you register a font using a stream then a tempfile
 * will be created in the background.
 * Close the PdfBoxGraphics2DFontTextDrawer to free any
 * tempfiles created for the fonts.
 */
 fontTextDrawer.close();
 }

 }
}

You can also complete customize the font mapping if you derive
from PdfBoxGraphics2DFontTextDrawer:

class MyPdfBoxGraphics2DFontTextDrawer extends PdfBoxGraphics2DFontTextDrawer
{
 @Override
 protected PDFont mapFont(Font font, IFontTextDrawerEnv env)
 throws IOException, FontFormatException
 {
 // Using the font, especially the font.getFontName() or font.getFamily() to determine which
 // font to use... return null if the font can not be mapped. You can also call registerFont() here.

 // Default lookup in the registered fonts
 return super.mapFont(font, env);
 }
}

This allows you to load the fonts on demand.

Compression

By default the content stream data is compressed using the zlib default level 6. If you want to get
the maximum
compression out of PDFBox you should set a system property before generating your PDF:

 System.setProperty(Filter.SYSPROP_DEFLATELEVEL,"9");

Creating PDF reports

If you want to create complex PDF reports with text and graphs mixed it is recommend to not use
PDFBox and this library
directly, as both are very low level. Instead you should use
OpenHtmlToPdf. OpenHtmlToPdf allows you to build your
reports using HTML (
which you can generate with any template engine you like, e.g. Apache FreeMarker) and place custom
graphs
(which are draw using Graphics2D using this library) with <object> HTML tags.

Changes

Version 0.43:

	Upgraded PDFBox to 2.0.28
	#50: Use the Java logger API instead of System.err.
Thanks @pmds-martins for the PR.

Version 0.42:

	Upgraded PDFBox to 2.0.27
	#46: Also override drawRect() and use a
Rectangle with drawShape(). Thanks @fransbouwmans for the report.
	#40: Correctly implement image
interpolation and respect the chosen interpolation when caching an image. NOTE: This is a
API breaking change on the IPdfBoxGraphics2DImageEncoder. So if you have implemented this interface
you need to adapt to the new signature (env parameter).

Version 0.41:

	#45 Copy & paste error in drawImage() call forwarding. sy1 should be passed for sy1, not sy2...
Thanks @fransbouwmans for pointing this out. This affected one
specifc drawImage() overload.

Version 0.40:

	Messed up the access permissions
for PdfBoxGraphics2DPaintApplier.PaintApplierState::setupLuminosityMasking. They are
now accessible.

Version 0.39:

	Extended the PdfBoxGraphics2DPaintApplier to allow overriding
PdfBoxGraphics2DPaintApplier::applyPaint(Paint, PdfBoxGraphics2DPaintApplier.PaintApplierState).
	Made a PdfBoxGraphics2DPaintApplier.PaintApplierState::setupLuminosityMasking, which allows to
setup a masking for the next fill / draw operations. You can mask all fill / draw operations using
a bitmap or XForm based mask.
	Initial basic support for opacity in gradients. At the moment this does not correctly work for
every case. More work is needed here. Thanks @iocoker for bringing this
up. (#37)

Version 0.38:

	Fix for line width of stroks in the case there is a rotation transform on the Graphics2D. Thanks
@jonmccracken-wf for
reporting and fixing this bug (#36)
	Upgrade to PDFBox 2.0.26

Version 0.37:

	Make PdfBoxGraphics2DFontTextDrawer.getFontMetrics::stringWidth() behave like the
JDK. Thanks @Lorgod (#35)

Version 0.36:

	API breakage: Changed the IPdfBoxGraphics2DColorMapper::mapColor() signatur to get a
IColorMapperEnv instead of a
PDPageContentStream. The env provides access to the PDPageContentStream and the PDResources
	It is now possible to get the associated PDResources by using PdfBoxGraphics2D::getResources().

Version 0.35:

	Temporary workaround for PDFBOX-5361. PDFBOX
currently sets the OverprintMode (/OPM) in the
Extended Graphics State as float - which is a spec violation.
	Fixed some dependency bugs in the extended tests, thanks
@pgrt (#33,
#34).

Version 0.34:

	Per default specify the rendering
hint RenderingHints.KEY_FRACTIONALMETRICS=RenderingHints.VALUE_FRACTIONALMETRICS_ON.
We always render into a vector space, so we don't have to round to ints while drawing text. Thanks
to @paatero for bringing this up (#32).
	Upgrade to PDFBox 2.0.25
	It is not allowed to make state changes after defining a path and before clipping / drawing, at
least acording to the PDF specification
PDFBOX-5322. Fixed the ordering here.

Version 0.33:

	Don't crash when drawString() is called with an empty
string #31.
Thanks @Kischloren for the report.

Version 0.32:

	It is now possible to draw within a marked content sequence. PdfBoxGraphics2D got a new

drawInMarkedContentSequence() method for this. This is usefull if you want to mark some parts of a
drawing so that you
can later do some special processing on it. Or if you simply want to provide

accesibility information for the content you draw. See also
e.g. https://www.w3.org/TR/WCAG20-TECHS/PDF21.html or the
section 14.8.4.3.3 in the PDF specification.
	Upgrade to PDFBox 2.0.24

Version 0.31:

	Support for colors with overprint.
	New PdfBoxGraphics2DColor class to allow using any kind of color. E.g. PDSeperation based colors.

Version 0.30:

	Clip invalid miter limit values #29.
Thanks to @kiwiwings
for reporting this.
	Added a new module for extended-tests. This module will contain tests with 3rdparty library which
by themself depend
on pdfbox-graphics2d. It also now contains a new class DebugCodeGeneratingGraphics2d
(by @kiwiwings) which helps to create isolated testcases.
	Upgrade to PDFBox 2.0.22

Version 0.29:

	Fix a bug where the AlphaComposite alpha value would be mixed with a color alpha value when
drawing images. When
setting a transparent color this had resulted in a invisible image. Thanks to @kiwiwings for
reporting this.
	Initial support for TextAttribute.UNDERLINE and Textattribute.STRIKETHROUGH when using
a font to render a
text.

Version 0.28:

	Fix handling of AttributedString (off-by-one error). Thanks for @kiwiwings for pointing out the
error and providing a
fix #27.
	Upgrade to PDFBox 2.0.21
	Respect that default fonts may not allow to be embedded. (PDFBox 2.0.21 now respects the flags
within a TTF font, so
we also must do this)
	When painting an image with an AlphaComposite the alpha is now respected correctly.

Version 0.27:

	Internal API breakage to implement getFontMetrics().stringWidth() correctly in the case a PDFont
is used to draw the
text #16. Thanks to @megri for reporting
this problem.
	Reverted back to PDFBox 2.0.19 because of rendering
issues PDFBOX-4886.

Version 0.26:

	Added
a CMYK color mapper
, which
converts the paint colors to CMYK using an ICC Profile. Thanks to @larrylynn-wf for providing this
feature #22.
	Upgrade to PDFBox 2.0.20
	Initial support
for Apache PDFBox TilingPaint. Thanks to
@p1xel. Currently this is not clean and also not correct in many cases.

Version 0.25:

	Upgrade to PDFBox 2.0.17
	Correctly handle GradientPaint fractions.
	Correctly handle SVG LinearGradientPaint's in ObjectBoundingBox
mode #19. Thanks to @larrylynn-wf for
the report and the
idea how to fix it.
	Internal API breakage to support non quadratic SVG gradients
correctly #19.

Version 0.24:

	Upgrade to PDFBox 2.0.16

Version 0.23:

	Correctly handle even odd winding rules when clipping and filling shapes.

Version 0.22:

	Upgrade the PDFBox version to 2.0.15

Version 0.21:

	Provide the current XORMode color in the IPaintEnv. And document that XORMode is not working as
it's not possible to
emulate. Thanks @gredler for pointing this
out #14. But you
can do whatever you want with that information in your IPdfBoxGraphics2DPaintAplier subclass.
	Upgrade the PDFBox version to 2.0.14
	Handle PDFBox ShadingPaint's.

Version 0.20:

	Handle null transforms in drawImage() correctly. I.e. dont throw a NullPointerException, just
ignore the not existing
transform.
	Cache the different environments for the mapper/drawer/applier. This is a minor memory saving.

Version 0.19:

	You can now influence the shape fill/draw operations by setting a custom
IPdfBoxGraphics2DDrawControl. This allows to
do different things like e.g. draw an overfill for shapes (i.e. make shapes have a additional
border). This can be
useful if you need to preprocess a PDF for pre-press.

Version 0.18:

	setPaint(null) will cause the following fillXXX() and drawXXX() operations to be ignored. This
allows in combination
with PDFRenderer/PageDrawer to extract parts of a PDF page. E.g. you can draw only certain
seperation colors into the
resulting PDF if you filter the paints in PageDrawer.getPaint() and extract a seperation color
from a PDF in that way.
	New class PdfBoxGraphics2DCMYKColor() which derives from java.awt.Color to be able to specify a
CMYK color when
painting.
	The default PdfBoxGraphics2DColorMapper now also supports mapping of "legacy" old iText 2
CMYKColor's.

Version 0.17:

	Upgrade the PDFBox version to 2.0.12

Versoin 0.16:

	Added new method disposeDanglingChildGraphics() to cleanup all dangling child graphics. This
allows to use this
graphics adapter with old legacy code which does not correctly call dispose() on the
graphics it used.

Version 0.15:

	Upgrade the PDFBox version to 2.0.11

Version 0.14:

	Don't write invalid path commands into the stream, as this will break rendering in Acrobat Reader.
Thanks
@FabioVassallo #12

Version 0.13:

	Ugraded the PDFBox version to 2.0.9

Version 0.12:

	Don't share resources between XForm's, as Acrobat Reader does not like that.

Version 0.11:

	Support Batik SVG PatternPaint. Thanks @vipcxj
for pointing this out and providing a testfile
.
	Compress embedded image ICC Profile Data

Version 0.10:

	Don't export the same extended graphics state over and over again. Same for
shadings. #8

Version 0.9:

	Compress the content stream generated for the XForm.
	When drawing the same image multiple times, it is only encoded once now.

Version 0.8:

	Implemented PdfBoxGraphics2DFontTextDrawerDefaultFonts to allow preferring default PDF fonts
over vectorized
text #5.

Version 0.7:

	Bugfixes on the font based text support. Now also gradients can be used to paint text.

Version 0.6:

	Implemented basic support for using fonts to render texts.

Version 0.5:

	Fixed getClip() and clip(Shape) handling. Both did not correctly handle transforms.
This bug was exposed
by Batik 1.9 and found by @ketanmpandya. Thanks
@ketanmpandya #2,
OpenHtmlToPdf #99

Version 0.4:

	Initial support for basic AlphaComposite. Thanks
@FabioVassallo #1
	When drawing a shape with a zero or negative size don't use PDShadings, as they won't
work. Thanks
@FabioVassallo #1

Version 0.3:

	Fix for a NPE when calling setClip() with null.
	Upgrade to PDFBox 2.0.5, replacing the usage of appendRawCommands()
with setMiterLimit().

Version 0.2:

	The paint applier (Mapping of java.awt.Paint to PDF) can be customized, so you can map
special paints if needed.
	Support for TexturePaint

Licence

Licenced using the Apache Licence 2.0.

 About

 Graphics2D Bridge for pdfbox

 Topics

 pdfbox

 graphics2d

 Resources

 Readme

 Activity

 Stars

 58
 stars

 Watchers

 14
 watching

 Forks

 19
 forks

 Report repository

 Releases

 49
 tags

 Packages
 0

 No packages published

 Contributors
 9

 	

	

	

	

	

	

	

	

	

 Languages

	

 Java
 100.0%

 Footer

 © 2024 GitHub, Inc.

 Footer navigation

 	
 Terms

	
 Privacy

	
 Security

	
 Status

	
 Docs

	
 Contact

	

 Manage cookies

	

 Do not share my personal information

 You can’t perform that action at this time.

