
Algorithms and Data Structures
Second practical assignment

Rowan Goemans (s4375238) and Ties Klappe (s1030293)

January 8, 2019

1 Explanation

1.1 The problem

The problem states that the students of the course Algorithms and Data Struc-
tures in the year 2021 want to figure out the correct answers to the latest
(multiple-choice) exam. The information they have, for each student, are the
answers that he/she gave for all the questions as well as the total number of
correct answers. If there is no solution or more than one, the algorithm must
compute the total number of solutions that is consistent with the information
the students have.

1.2 The algorithm

Our algorithm reads a n × m matrix A existing out of 1 ≤ n ≤ 12 students
and 1 ≤ m ≤ 40 questions. First, we split m in two halves (

⌊
m
2

⌋
and

⌈
m
2

⌉
)

m = m1 + m2, and divide A into a n×m1 matrix A1 and a n×m2 matrix A2.
For A1 we generate all the 2m1 possible solutions X1, and for A2 we generate all
the 2m2 possible solutions X2. Now, we add the vector x1 ∈ X1 to the possible
solutions P1 of A1 if for every student n it holds that:

A1[n]� x1 ≤ r(A1[n]) ≤ s(n)

Here we have defined the following operations:

• A1[n]� x1: the number of correct answers given to each question q ∈ m1

by student n using response model x1

• r(A1[n]): the minimum number of answers student n must have answered
correct of the questions m1, calculated by s(n)− |m2|

• s(n): the total score of student n

1

Similarly, we add the vector x2 ∈ X2 to the possible solutions P2 of A2 if for
every student n it holds that A2[n] � x2 ≤ r(A2[n]) ≤ s(n). Here we have
defined the following operations:

• A2[n]� x2: the number of correct answers given to each question q ∈ m2

by student n using response model x2

• r(A2[n]): the minimum number of answers student n must have answered
correct of the questions m2, calculated by s(n)− |m1|

Now that we have two lists of vectors (P1 and P2) that contain the possible
response models for A1 and A2, we can start combining the partial solution in
P1 and P2. For each pj ∈ P2 we look for matching solutions pi ∈ P1 such that
for each student n the sum of the partial scores based on pi and pj for n equal
s(n). Finally, we output the number of solutions or print the solution if there
is precisely one solution.

1.3 Data structures

The possible solutions P1 and P2, mentioned in the previous paragraph, are
stored in a hash table (C++ unordered map), where the scores of each student
are used as the key and the associated solution(s) as the value. The hashes
are generated by a perfect hashing function: since we split each exam into two,
each student has a maximum partial score of 20 (since 1 ≤ m

2 ≤ 20). This
score can be stored in 5 bits (since 25 = 32). Now, the maximum number of
students is 12, so the information of one set of scores for each student can be
stored in 12 · 5 = 60 bits. So this shows that the hash for a set of scores can be
stored in an uint 64 C++ datatype. In the case that a generated set of scores
already exists, we add the response model to the list of response models that al-
ready exist with that set of scores. This assures we can find matching solutions
pi ∈ P1 (if they exist) for every pj ∈ P2 in Θ(m). To store the set of scores for
a response model, we use C++’s valarray. When we have the possible response
models P1 and P2, we loop through each pj ∈ P2. The valarray allows us to,
without having to explicitly check the score of each student, find pi ∈ P1 such
that for every student n, the partial score of n of pi plus the partial score of n of
pj equals s(n). So instead of O(n×m) we have reduced the complexity to O(m).

The � operation we defined in the previous paragraph is implemented by two
binary operations. Given a partial solution of a student s and a response model
x, we first XOR the partial solution with x. This results in a bitstring where
we have a 0 at position i if question i was answered correctly by s according to
x and a 1 otherwise. The second operation is negating the bit string, flipping
all 1′s and 0′s resulting in a bit string with a 1 at every position i where i
is a correctly answered question. This allows us to use builtin popcount (to
count student s his score) that counts the number of flipped bits with a single
Assembly instruction.

2

https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/numeric/valarray

2 Correctness

We show correctness by proving our algorithm is equivalent to the complete
bruteforce appreach where all 2n bit sequences are tested and a solution is only
valid if ∀i ∈ {1, 2, · · · , n} [A[i]� x = s(i)].

When splitting the answer into two parts we know the following must hold for
our algorithm to be correct:

S := {1, 2, · · · , n}
∀i ∈ S [A1[i]� x1 + A2[i]� x2 = s(i)] ⇐⇒ ∀i ∈ S [A[i]� x = s(i)]

We can prove this using induction.

Theorem 1. let the predicate P be defined by:

P ((p, q)) := ∀i ∈ S [Ap
1[i]�x1+Aq

2[i]�x2 = s(i)] ⇐⇒ ∀i ∈ S [Ap+q[i]�x = s(i)]

Then P ((p, q)) holds for all (p, q) such that (p + q) ≥ 1.

Proof by induction on (p, q).

Basis step P ((p, q)) holds when p+q = 1. We make a case distinction between
when p = 1, q = 0 and p = 0, q = 1.

Case p = 0, q = 1:

∀i ∈ S [A0
1[i]� x1 + A1

2[i]� x2 = s(i)] ⇐⇒ ∀i ∈ S [A1[i]� x = s(i)]

=∀i ∈ S [0 + A1[i]� x = s(i)] ⇐⇒ ∀i ∈ S [A1[i]� x = s(i)]

=∀i ∈ S [A1[i]� x = s(i)] ⇐⇒ ∀i ∈ S [A1[i]� x = s(i)]

. Case p = 1, q = 0:

∀i ∈ S [A1
1[i]� x1 + A0

2[i]� x2 = s(i)] ⇐⇒ ∀i ∈ S [A1[i]� x = s(i)]

=∀i ∈ S [A[i]� x + 0 = s(i) + 0] ⇐⇒ ∀i ∈ S [A1[i]� x = s(i)]

=∀i ∈ S [A[i]� x = s(i)] ⇐⇒ ∀i ∈ S [A1[i]� x = s(i)]

Inductive step

Let (k, r) with k + r ≥ 1 such that P ((k, r)) holds.

•• Hence P ((k, r)) := ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 = s(i)] ⇐⇒ ∀i ∈
S [Ak+r[i]� x = s(i)] holds. (IH).

3

• We have to prove that P ((k + 1, r)) holds and P ((k, r + 1)).

• Hence we have to prove that

P ((k + 1, r)) = ∀i ∈ S [Ak+1
1 [i]� x1 + Ar

2[i]� x2 = s(i)] ⇐⇒ ∀i ∈ S [Ak+1+r[i]� x = s(i)]

holds, and that

P ((k, r + 1)) = ∀i ∈ S [Ak
1 [i]� x1 + Ar+1

2 [i]� x2 = s(i)] ⇐⇒ ∀i ∈ S [Ak+r+1[i]� x = s(i)]

holds.

• This holds because we can again make a case distinction between
when the new answer results in the student getting an extra point
and the student not getting an extra point.

Case P ((k + 1, r)) and student gets an extra point:

For every student it holds that when making the exam a single ques-
tion longer and this results in that student having a higher score then
s(i) is increased by one. Since we added that correct answer to Ak+1

1

this means Ak+1
1 � x1 = Ak

1 � x1 + 1 and the score for the other part
stays the same. However since the correct answer is also added to
Ak+r+1 this means, Ak+r+1 � x = Ak+r � x + 1

Thus:

P ((k + 1, r)) = ∀i ∈ S [Ak+1
1 [i]� x1 + Ar

2[i]� x2 = s(i) + 1]

⇐⇒ ∀i ∈ S [Ak+1+r[i]� x = s(i) + 1]

= ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 + 1 = s(i) + 1]

⇐⇒ ∀i ∈ S [Ak+r[i]� x + 1 = s(i) + 1]

= ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 = s(i)]

⇐⇒ ∀i ∈ S [Ak+r[i]� x = s(i)]

And by the induction hypothesis(IH) we know this holds.

Case P ((k + 1, r)) and student doesn’t get an extra point:

For every student it holds that when making the exam a single ques-
tion longer and this results in that student not getting a higher score
then s(i) stays the same. Since we added that wrong answer to Ak+1

1

this means Ak+1
1 � x1 = Ak

1 � x1 and the score for the other part
stays the same. However since the wrong answer was also added to
Ak+1+r that means Ak+1+r � x = Ak+r � x.

4

Thus:

P ((k + 1, r)) = ∀i ∈ S [Ak+1
1 [i]� x1 + Ar

2[i]� x2 = s(i)]

⇐⇒ ∀i ∈ S [Ak+1+r[i]� x = s(i)]

= ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 = s(i)]

⇐⇒ ∀i ∈ S [Ak+r[i]� x = s(i)]

And by the induction hypothesis(IH) we know this holds.

Case P ((k, r + 1)) and student gets an extra point:

For every student it holds that when making the exam a single ques-
tion longer and this results in that student having a higher score then
s(i) is increased by one. Since we added that correct answer to Ar+1

1

this means Ar+1
1 � x1 = Ar

1 � x2 + 1 and the score for the other part
stays the same. However since the correct answer is also added to
Ak+1+r this means, Ak+r+1 � x = Ak+r � x + 1

Thus:

P ((k, r + 1)) = ∀i ∈ S [Ak
1 [i]� x1 + Ar+1

2 [i]� x2 = s(i) + 1]

⇐⇒ ∀i ∈ S [Ak+r+1[i]� x = s(i) + 1]

= ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 + 1 = s(i) + 1]

⇐⇒ ∀i ∈ S [Ak+r[i]� x + 1 = s(i) + 1]

= ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 = s(i)]

⇐⇒ ∀i ∈ S [Ak+r[i]� x = s(i)]

And by the induction hypothesis(IH) we know this holds.

Case P ((k, r + 1)) and student doesn’t get an extra point:

For every student it holds that when making the exam a single ques-
tion longer and this results in that student not getting a higher score
then s(i) stays the same. Since we added that wrong answer to Ar+1

1

this means Ar+1
1 � x1 = Ar

1 � x1 and the score for the other part
stays the same. However since the wrong answer was also added to
Ak+r+1 that means Ak+r+1 � x = Ak+r � x.

Thus:

P ((k, r + 1)) = ∀i ∈ S [Ak
1 [i]� x1 + Ar+1

2 [i]� x2 = s(i)]

⇐⇒ ∀i ∈ S [Ak+r+1[i]� x = s(i)]

= ∀i ∈ S [Ak
1 [i]� x1 + Ar

2[i]� x2 = s(i)]

⇐⇒ ∀i ∈ S [Ak+r[i]� x = s(i)]

5

And by the induction hypothesis(IH) we know this holds.

This completes the Inductive step.

Now the principe of mathematical induction tells us that P (p, q) holds for every
p, q ∈ N where p + q ≥ 1

3 Complexity

We will show our algorithm has a worst-case time complexity of O(n · 2dm
2 e),

where m is the amount of questions and n is the amount of students. The
algorithm runs through the following steps:

1) Reading input from standard in and putting it into arrays. This is linear
in the amount of students O(n).

2) Calculating where to split the answers into two parts. This is O(1).

3) Computing the maps of scores for the first part. We loop over each binary
sequence from 0 up to but not including 2d

m
2 e and for each sequence we

loop through all n students and check if that score is a score that could
lead to a solution. If this is the case we add it to the map of solutions we
have. We can check this in O(1) since this are just some bit operations.
Adding to the map of solutions is O(n) since our hash function loops over
the score of each student to create the hash. The total complexity of this
is thus: O(2n · 2dm

2 e).

4) Similarly, we do this for the second part of the answer. This is identical
to item 3), however this time we loop over binary sequences from 0 up to
but not including 2b

m
2 c. Thus the complexity is: O(2n · 2bm

2 c).

5) We now start looping over every solution found for the second part and use
the scores of that solution to find matching scores in the second part with
associated solutions. Generating the key for the second map can be done
in O(1) using the valarray data structure. A lookup of that key in the first
map is O(n), since a lookup includes computing the hash. Combining the
solution for the left part and right part into a complete solution is some
bit fiddling and thus O(1). The total complexity of this operation is thus
the number of solutions in the second part times n. In the worst case this
is equal to n · 2bm

2 c, if every student has exactly half the exam questions
correct. Thus the complexity of this operation is O(n · 2bm

2 c).

6) We now print the result, which is O(1).

Thus the total complexity of the algorithm is:

O(n) +O(1) +O(2n · 2dm
2 e) +O(2n · 2bm

2 c) +O(n · 2bm
2 c) +O(1)

The highest term dominates, so the complete algorithm has a complexity of:

O(n · 2dm
2 e)

6

	Explanation
	The problem
	The algorithm
	Data structures

	Correctness
	Complexity

