
IN4252 Web Science & Engineering

Hands-on Assignment - 1

Ke Tao (k.tao@tudelft.nl)

November 19, 2013

1 Task 1: Retrieving via Twitter API

This task is one part of preparation for Task 3. The objective is to get familiar
with Twitter API. It is an easy way for retrieving data from Social Web.

1.1 Start this task early

You are advised to finish the task regarding Streaming API within
3 days (by November 23rd, Saturday morning 0800 CET). The rea-
son is two-folded: (i) it is easy; (ii) you will need to collect your own data set
early enough so that you can collect corresponding information later for Task 3.
Why? When you start with Task 3, you need to evaluate a model with ground
truth that is dependent on this. However, the ground truth will not be accurate
enough until you wait a certain amount of time (like one week or so). Even
the ground truth is ready, you need to crawl them again from Twitter, and this
process takes time due to a limitation of Twitter API.

1.2 Twitter Streaming API

Twitter Streaming APIs provide developers with Twitter’s global stream of
Tweet data. If properly used, you can continuously receive Tweet data being
pushed to you, possibly with some supported filters. You can refer to the official
documentation1 for details.

There are a couple of endpoints in the Streaming API, including Public
Stream, User Stream, and Site Stream. In this assignment, you need to monitor
Public Stream.

As in March 2013, Twitter enforced OAuth authentication for using Stream-
ing API. That means you need to register an application on Twitter Developers
in order to use it. You can access the application page via the following link (a
Twitter account needed):

https://dev.twitter.com/apps

1https://dev.twitter.com/docs/streaming-apis

1

https://dev.twitter.com/apps
https://dev.twitter.com/docs/streaming-apis


By clicking on Create an application, you would need to offer some basic
information about the application. After that, you will be able to get following
parameters:

• Consumer Key;

• Consumer secret;

• Access token;

• Access token secret.

You will need them to get your application authenticated with OAuth. Then
you can crawl the public streams via the sample endpoint:

https://dev.twitter.com/docs/api/1.1/get/statuses/sample You can
choose between calling the API with code or console.

1.2.1 Using code

The advantage of using code is that you can directly add some event processing
code, e.g. for detecting the language2, writing to a file, or reporting on crawling
progress.

Java You can use twitter4j for monitor public stream. The code example can
be found via following link:

http://twitter4j.org/en/code-examples.html

Python You can make use of tweepy3 package for accessing Twitter Streaming
API.

NB: the given example is using filter endpoint, you need to use sample
endpoint by invoking stream.sample().

1.2.2 Using console

In the application page, you can generate a cURL command after filling the
Request URI field with the above url to the endpoint. If you have a Unix-like
OS4, you can execute it in a console and redirect it to a file. It may look like
following (no line break in between):

curl --get ’https://stream.twitter.com/1.1/statuses/sample.json’

--header ’Authorization: OAuth

oauth_consumer_key="[your_consumer_key]",

oauth_nonce="[something_generated_automatically]",

2For Task 3, you can consider only English tweets if you want to exploit the semantic
information.

3https://github.com/tweepy/tweepy/blob/master/examples/streaming.py
4If you are using a Windows machine, you can refer to this page for getting a cURL

program: http://curl.haxx.se/download.html

2

https://dev.twitter.com/docs/api/1.1/get/statuses/sample
http://twitter4j.org/en/code-examples.html
http://curl.haxx.se/download.html


oauth_signature="[something_generated_automatically]",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="[a_timestamp]", oauth_token="[your_access_token]",

oauth_version="1.0"’ --verbose

> sampling.json

For this part, you need to monitor the Public Stream for 10 mins and answer
following questions:

1. What is the starting and ending time of the data that you have
crawled?

2. What is the id of the first tweet you have got? And the last one?

3. How many tweets did you get?

4. How large is the result file (uncompressed file in JSON format)?

Optionally, you are encouraged to try use the filter endpoint. While using
this endpoint, you can specify the keywords that you want to monitor, the ids
that refers to the users to be followed, or the geo-locations from which the tweets
to be crawled are posted. More detailed information can be found at:

https://dev.twitter.com/docs/api/1.1/post/statuses/filter

1.3 Twitter REST API

Besides Streaming API, there are a set of REST APIs that provide most of
Twitter functionality. For example, given an id of the Tweet, you can use
Twitter REST API to retrieve the tweet including the metadata. Still, you
need to use OAuth for authentication. However, there is usually a rate-limit for
REST APIs. That means there is a certain limit on how frequent you can use
the APIs. For example, the API call of retrieving a tweet with a given tweet id
have a rate-limit of 180 times per 15 minutes5.

You may try a couple of these APIs by utilizing the API wrapper, either
twitter4j if you are using Java or tweepy for Python.

1.4 Language Detection

In the following analysis, we consider only English tweets. Therefore, we want
to filter out the non-English tweets. There are already very accurate tools for
this purpose. Python users may use langid6. Java users may use a similar
library7. Both library will return the language code with a probability value.
You can manually set a threshold, e.g. 0.9, which means if the probablity of
being English is above the threshold then we think it is in English.

After finishing with this, please answer following question:

5https://dev.twitter.com/docs/rate-limiting/1.1/limits
6https://github.com/saffsd/langid.py
7https://code.google.com/p/language-detection/

3

https://dev.twitter.com/docs/api/1.1/post/statuses/filter
https://github.com/saffsd/langid.py
https://code.google.com/p/language-detection/


1. What is the threshold you have chosen?

2. How many English tweets have you found in the data that you
have crawled with Streaming API?

2 Task 2: Getting started with Weka for Mining
Tweets

This task is another preparation for Task 3. The objective is to get to know
how to use Weka for utilizing logistic regression as classification algorithm. The
task is organized as a lightweight tutorial. Given a Twitter dataset as input for
Weka, you will use Weka to analyze the following research question: what are
the features of a tweet which allow for deciding whether the tweet is relevant to
a given topic or not (cf. example in the slides of the lecture and corresponding
research article [2]).

2.1 Download Weka

You can download Weka from the official website:
http://www.cs.waikato.ac.nz/ml/weka/

Weka is programmed in Java. Therefore, you have to install a Java Runtime
Environment before you can get Weka running on your machine.

2.2 Dataset

Weka allows for loading datasets as ARFF files. During the lecture, we already
introduced you to the format of ARFF files. For this task, the ARFF file is
available via the following link:

http://www.st.ewi.tudelft.nl/~ktao/wse2013/handson1-task2.arff

This is the dataset that we used for investigating what makes a tweet rele-
vant to a given topic [2]. For each (tweet, topic)-pair, the trained model should
be able to make a decision whether the tweet is relevant to the topic or not.
Each instance (= each line in the data part) in this dataset lists the 25 fea-
tures (25 columns) and the relevance judgement (the last field) for a (tweet,
topic)-pair. Please refer to Table 1 if you want to know the meaning of each
feature/column. A more detailed description of the features can be found in [2].

2.3 Experiment Procedure

1. Load the dataset from the file or the URL given before (see Fig. 1).

2. We use the logistic regression to classify each (tweet, topic) pair into the
relevant and the irrelevant instances. In the dataset, we only have 2817
(tweet, topic)-pairs (= 7% of all judged pairs) that are marked as relevant.
Therefore, we use a cost-sensitive meta-classifier to fix the bias caused

4

http://www.cs.waikato.ac.nz/ml/weka/
http://www.st.ewi.tudelft.nl/~ktao/wse2013/handson1-task2.arff


Table 1: Description of Columns in the ARFF Data File
Column name Description
text score Retrieval Score (based on some IR models)
text score expansion Retrieval Score using expansion on topic
hashtag If the tweet contains hashtag(s)
hasURL If the tweet contains URL(s)
isReply If the tweet is a reply to another tweet
length The length (in characters) of the tweet
sentiment The polarity of the sentiment of this tweet
tweet topic time diff The time difference between the tweet and the

query
semantic overlap Overlap of named entities between the topic the

tweet
types of entities #types of Named-Entities (NE) extracted from

tweet
number of entities #NEs extracted from tweet
organization entities #NEs with type of Orgranization extracted from

tweet
person entities #NEs with type of Person extracted from tweet
work entities #NEs with type of Work extracted from tweet
event entities #NEs with type of Event extracted from tweet
species entities #NEs with type of Species extracted from tweet
places entities #NEs with type of Places extracted from tweet
nFollowers #followers that the author has
nFriends #followees that the author has
nFavorties How many times has the tweets been marked as

favorite by others?
nListed How many lists has the author been listed in?
isVerified Whether the tweet is posted by a verified account

or not?
isGeoEnabled Is there a geolocation attached to this tweet?
twitterAge How many years has been since the author signed

up on Twitter?
tweetsPostedByAuthor How many tweets has the author posted on Twit-

ter?

by the class-imbalanced dataset (Why? → http://cling.csd.uwo.ca/

papers/cost_sensitive.pdf):

(a) Choose the tab of “Classify” (see Fig. 2).

(b) Choose “meta” → “CostSensitiveClassifier” as the Classifier.

(c) Click the area on the right side of the “Choose” button to modify the
configurations of this classifier. The cost matrix should be like fol-

5

http://cling.csd.uwo.ca/papers/cost_sensitive.pdf
http://cling.csd.uwo.ca/papers/cost_sensitive.pdf


Figure 1: Load a dataset

Figure 2: Select Classify tab

lowing (Click on “1x1 cost matrix” to modify the matrix, remember
to resize the classes to 2, see Fig. 3):(

0 3.5
1 0

)

6



Figure 3: Change the Cost Matrix

(d) Then in the same configuration dialogue, we choose “logistic regres-
sion” (“funtions” → “Logistic”) as the classifier. Click “Okay” to
finish the configuration.

3. The column of “relevanceJudge” is the last one. It is thus automatically
selected as the class that should be predicted. By default, Weka uses
10 folds cross-validation for training and testing the classification model,
i.e. just click on “Start” to obtain the results of the classification run.

2.4 Questions

Please answer each of the following questions in 2-3 sentences and include the
answers into the report of this homework (see Section 4 for what you should
deliver).

1. What does “10-folded cross-validation” mean?

2. Why are we using a cost-sensitive classifier?

3 Task 3: Retweet Prediction

The objective of this task is to design and implement your own strategies for
representing tweets via features that allow for predicting whether a given tweet
will be re-tweeted or not. You are recommended to start thinking about this
task immediately after Task 2. In practice, this means that you are asked to
generate an ARFF file by yourself and then use logistic regression as done in
Task 2. You can have a look at existing publications to get some idea about

7



the design of features that can be used for predicting whether a tweet will be
re-tweeted. For example, Naveed et al. [1] propose a set of features that can be
applied in order to characterize the interestingness of tweets and thus predict
which tweets are likely to be re-tweeted. Example features are: does the tweet
contains a URL, does the tweet includes a hashtag, does the tweet mention a
negative word.

In this task, you are expected to implement features that allow for predicting
whether a tweet will be re-tweeted. Using Weka, you should then analyze the
impact of your features on the prediction.

3.1 Training Dataset

You will be given a sqldump, from which you can find nearly 50,000 tweets.
They are crawled several weeks after being posted. All of them are identified
as in English. About 14% of them had been retweeted while being crawled.
Moreover, they were unlikely to be retweeted after that time because everyone is
consuming and interacting with rather new information on Twitter. Therefore,
it is reasonable to assume the rest 86% of tweets are not going to be retweeted
ever. For this reason, you can use this dataset as your training data set.

The sqldump is available via following link:
http://www.st.ewi.tudelft.nl/~ktao/wse2013/handson1-task3.sql.gz

3.2 Preparation

Before you start with the design and implementation of your features as well as
with the actual experiment with Weka in which you will analyze the features,
you should do the following:

1. Have a look at the features that Naveed et al. used in their paper [1].
Which features are (in your opinion) most important?

2. Besides the features that are mentioned in the paper by Naveed et al.,
what features do you think might be useful and important for predicting
whether a tweet will be retweeted or not?

3.3 Engineering Features and Generating ARFF File

You can select several features, either from the paper of Naveed et al. or based on
your own ideas. Please come up with at least 5 features. For EACH feature,
please answer following two questions:

1. What is the meaning of the feature?

2. Why might the feature be useful for the prediction? What is
your hypothesis for having this feature?

8

http://www.st.ewi.tudelft.nl/~ktao/wse2013/handson1-task3.sql.gz


You are encouraged to make use of the contextual information (Twitter
profile of users who published tweets).

Generating the ARFF file: each of the tweets in the training data set,
should be represented according the features that you selected so that you can
generate the ARFF file. In the data part of this file, each line stands for a single
tweet. The last column should be the class which the tweet should be classified
into (i.e. 1 = the tweet was retweeted, 0 = the tweet was not re-tweeted. Since it
might be too time-consuming to check for each tweet t that has been published
by one of your users whether t has been re-tweeted, you can do the following:

• if “retweetedFromPostId > 0” (in the table of “tweets sample”) then the
class should

• otherwise the class should be 0 (= tweet was not re-tweeted)

Basically, this means that you just check whether a given tweet t is a re-tweet
or not. Hence, you are not allowed to use “retweetedFromPostId”, “retweet-
Count”, information such as “does the tweet content start with ’RT’?” or other
information as a feature that directly marks the tweet as a re-tweet. Instead,
you should represent the tweet t so that it corresponds to the tweet toriginal
that was originally re-tweeted.

3.4 Training the Model via Logistic Regression

You have already used Logistic Regression in Task 2. For this task, please use
the ARFF file that you have just generated and follow the same procedure to
train the model as done in Task 2. However, for test data set, please Please be
careful when you configure the cost matrix: try to adjust the matrix and see
how this impacts the performance/quality of the predictions.

3.5 Test Dataset

In Task 2, due to limitation to relevance judgements, we applied cross-validations
to evaluate our model with relatively small data set. However, for Task 3, we
are not going to do the same thing. You will need to use your own test data set,
based on what you have crawled for Task 1. However, when you crawled the
data via Streaming API, the tweets were fresh. That also means, nobody knew
whether they would be re-tweeted or not. Therefore, you need to use REST
API (with limitation) to check those tweets again. Now (= one week after
you finish Task 1), you can crawl the English tweets that you have found in
Task 1. Be careful, because there is a rate limit on the REST API, you can
only get 720 (=180 times 4) tweets per hour. So, this will take roughly 8 10
hours, depending how many English tweets you have got from Task 1. Then by
checking the “retweet count” field in JSON format, you should be able to see
whether the tweets have been retweeted or not. After finishing with this, please
answer following questions:

9



1. How long did it take you to re-crawl the English tweets?

2. Are they all still available for crawling?8

3. If some of them are not available anymore, what are the reasons?

4. How many tweets do you get in the end?

Then, you can follow the same procedure in Section 3.3 to generate another
ARFF file. You can specify the test dataset as shown in the following:

Figure 4: Select a Test Dataset

3.6 Analyzing the Results

Given the model (coefficients of the logistic regression function) and the evalu-
ation results from the test data set, please answer the following questions:

1. Which features have (a) the highest positive impact, (b) the
highest negative impact and (c) the lowest impact? Discuss pos-
sible reasons for these observations and explain whether your
hypotheses on which you based the corresponding features was
validated or not?

8https://dev.twitter.com/docs/error-codes-responses

10

https://dev.twitter.com/docs/error-codes-responses


2. Optional: What impact do the contextual features have on the
classification results?

For each of the sub-questions (1(a), 1(b), 1(c) and optionally 2), try to limit
your answer to 3-5 sentences.

4 To be delivered

You are expected to compress following files in a zip file. Please name this
file as “[Lastname].[Firstname].zip”, e.g. Tao.Ke.zip, and upload it via the
BlackBoard platform.

• Report (in PDF) which includes the answers to the questions (in bold
font) of Task 1, Task 2, and Task 3.9

• The ARFF file (training dataset and test dataset) that you generated for
Task 3.

• A text file that lists the results of the experiment as outputted by Weka.

• A text file that includes the problems you encountered with while doing
the homework.

5 Deadline

Please submit your homework before December 2nd, 2013, 0800 (CET).
However, please try to finish Task 1 before November 23rd 0800 (see rea-
sons in the description of the task).

6 Q&A

If you have any question, make sure you have read this document and the FAQ
web page via following link:

http://www.st.ewi.tudelft.nl/~ktao/wse2013/faq-handson-1.html

If you still don’t get the answer after that, please send an email and good
luck!

References

[1] N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi. Bad news travel
fast: A content-based analysis of interestingness on twitter. In WebSci ’11:
Proceedings of the 3rd International Conference on Web Science, 2011.

9Pay attention to the questions in Sec. 3.3, for EACH feature, you have to answer two
questions.

11

http://www.st.ewi.tudelft.nl/~ktao/wse2013/faq-handson-1.html


[2] K. Tao, F. Abel, C. Hauff, and G.-J. Houben. What makes a tweet relevant
for a topic? In Proceedings, 2nd Workshop on Making Sense of Microposts
(#MSM2012): Big things come in small packages, Lyon, France, 16 April
2012, pages 49–56, April 2012.

12


	Task 1: Retrieving via Twitter API
	Start this task early
	Twitter Streaming API
	Using code
	Using console

	Twitter REST API
	Language Detection

	Task 2: Getting started with Weka for Mining Tweets
	Download Weka
	Dataset
	Experiment Procedure
	Questions

	Task 3: Retweet Prediction
	Training Dataset
	Preparation
	Engineering Features and Generating ARFF File
	Training the Model via Logistic Regression
	Test Dataset
	Analyzing the Results

	To be delivered
	Deadline
	Q&A

