Skip to content
Group NMF with speaker and session similarity constraints
Python
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
README.md
base.py
base.pyc
beta_nmf.py
beta_nmf_class.py
costs.py
updates.py

README.md

beta_nmf_class: group NMF with beta-divergence

Theano based GPGPU implementation of group-NMF with class and session similarity constraints. The NMF works with beta-diveregence and multiplicative updates.

Dependencies

beta_nmf_class need Python >= 2.7, numpy >= 10.1, Theano >= 0.8, scikit-learn >= 0.17.1, h5py >= 2.5, itertools and more_itertools

Documentation

Documentation available at http://rserizel.github.io/groupNMF/

Citation

If you are using this source code please consider citing the following paper:

R. Serizel, S. Essid, and G. Richard. “Group nonnegative matrix factorisation with speaker and session variability compensation for speaker identification”. In Proc. of ICASSP, pp. 5470-5474, 2016.

Bibtex

	@inproceedings{serizel2016group,
  	title={Group nonnegative matrix factorisation with speaker and session variability compensation for speaker identification},
  	author={Serizel, Romain and Essid, Slim and Richard, Ga{\"e}l},
  	booktitle={2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  	pages={5470--5474},
  	year={2016},
  	organization={IEEE}
	}

Author

Romain Serizel, 2014 -- Present

License

Copyright 2014-2017 Romain Serizel

This software is distributed under the terms of the GNU Public License version 3 (http://www.gnu.org/licenses/gpl.txt)

You can’t perform that action at this time.