Join GitHub today
GitHub is home to over 50 million developers working together to host and review code, manage projects, and build software together.
Sign upRegression fails when model formula contains inline functions #21
Comments
|
> library(olsrr)
> library(caret)
> data("Sacramento")
> lm_fit2 <- lm(price ~ beds + baths + log(sqft), data = Sacramento)
> ols_regress(lm_fit2)
Model Summary
--------------------------------------------------------------------
R 0.769 RMSE 83983.749
R-Squared 0.591 Coef. Var 34.048
Adj. R-Squared 0.59 MSE 7053270082.615
Pred R-Squared 0.586 MAE 60597.878
--------------------------------------------------------------------
RMSE: Root Mean Square Error
MSE: Mean Square Error
MAE: Mean Absolute Error
ANOVA
-------------------------------------------------------------------------------
Sum of
Squares DF Mean Square F Sig.
-------------------------------------------------------------------------------
Regression 9.462416e+12 3 3.154139e+12 447.188 0.0000
Residual 6.545435e+12 928 7053270082.615
Total 1.600785e+13 931
-------------------------------------------------------------------------------
Parameter Estimates
-----------------------------------------------------------------------------------------------------------
model Beta Std. Error Std. Beta t Sig lower upper
-----------------------------------------------------------------------------------------------------------
(Intercept) -1865620.150 79365.412 -23.507 0.000 -2021376.643 -1709863.658
beds -34469.923 4755.860 -0.233 -7.248 0.000 -43803.411 -25136.435
baths 5955.975 6091.903 0.033 0.978 0.328 -5999.529 17911.479
log(sqft) 301247.514 12725.005 0.903 23.674 0.000 276274.392 326220.635
----------------------------------------------------------------------------------------------------------- |
ols_regress()returns an error when model formula contains inline functions.