Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Stepwise backward regression fails when model formula contains inline functions or interaction variables #7

Closed
aravindhebbali opened this issue Jun 3, 2017 · 1 comment

Comments

Projects
None yet
1 participant
@aravindhebbali
Copy link
Member

commented Jun 3, 2017

ols_step_backward() returns an error when the model formula contains inline functions or interaction variables.

>library(caret)
>data("Sacramento")
>lm_fit2 <- lm(price  ~ beds + baths + log(sqft), data = Sacramento)
> ols_step_backward(lm_fit2)
We are eliminating variables based on p value...
Error in eval(predvars, data, env) : object 'sqft' not found
Called from: eval(predvars, data, env)

lm_fit1 <- lm(log(price)  ~ . - city, data = Sacramento)
> ols_step_backward(lm_fit1)
We are eliminating variables based on p value...
Error in eval(predvars, data, env) : object 'price' not found
Called from: eval(predvars, data, env)


# interaction variables
> lm_fit3 <- lm(mpg ~ disp + hp + wt + am * disp, data = mtcars)
> ols_step_backward(lm_fit3)
We are eliminating variables based on p value...
Error in ols_mallows_cp(fr$model, model) : 
  model must be a subset of full model
Called from: ols_mallows_cp(fr$model, model)

Session Info

> sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_India.1252  LC_CTYPE=English_India.1252   
[3] LC_MONETARY=English_India.1252 LC_NUMERIC=C                  
[5] LC_TIME=English_India.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] Rcpp_0.12.7     gridExtra_2.0.0 tidyr_0.6.0     tibble_1.2     
[5] purrr_0.2.2     dplyr_0.5.0     caret_6.0-76    ggplot2_2.2.1  
[9] lattice_0.20-35

loaded via a namespace (and not attached):
 [1] magrittr_1.5       splines_3.4.0      MASS_7.3-47       
 [4] munsell_0.4.3      colorspace_1.2-7   R6_2.2.1          
 [7] foreach_1.4.3      minqa_1.2.4        stringr_1.1.0     
[10] car_2.1-2          plyr_1.8.4         tools_3.4.0       
[13] parallel_3.4.0     nnet_7.3-12        pbkrtest_0.4-6    
[16] grid_3.4.0         gtable_0.2.0       nlme_3.1-125      
[19] mgcv_1.8-17        quantreg_5.19      DBI_0.5-1         
[22] MatrixModels_0.4-1 iterators_1.0.8    lme4_1.1-11       
[25] lazyeval_0.2.0     assertthat_0.2.0   Matrix_1.2-9      
[28] nloptr_1.0.4       reshape2_1.4.2     ModelMetrics_1.1.0
[31] codetools_0.2-15   stringi_1.1.2      compiler_3.4.0    
[34] scales_0.4.1       stats4_3.4.0       SparseM_1.7  

@aravindhebbali aravindhebbali added the bug label Jun 3, 2017

@aravindhebbali aravindhebbali self-assigned this Jun 3, 2017

@aravindhebbali aravindhebbali added this to the v0.2.0 milestone Jun 5, 2017

aravindhebbali added a commit that referenced this issue Jun 5, 2017

@aravindhebbali

This comment has been minimized.

Copy link
Member Author

commented Jun 5, 2017

ols_step_backward() does not return an error when the model formula contains inline functions or interaction variables.

> library(olsrr)
> library(caret)
> data("Sacramento")

> lm_fit2 <- lm(price  ~ beds + baths + log(sqft), data = Sacramento)
> ols_step_backward(lm_fit2)
We are eliminating variables based on p value...
No more variables satisfy the condition of prem: 0.3
Backward Elimination Method                                                  

Candidate Terms:                                                             

1 . beds                                                                     
2 . baths                                                                    
3 . log(sqft)                                                                

----------------------------------------------------------------------------
                            Elimination Summary                              
----------------------------------------------------------------------------
        Variable                  Adj.                                          
Step    Removed     R-Square    R-Square     C(p)       AIC          RMSE       
----------------------------------------------------------------------------
   1    baths          0.591       0.590    2.9559    23784.5900    83981.7543    
----------------------------------------------------------------------------

# interaction variables
> lm_fit3 <- lm(mpg ~ disp + hp + wt + am * disp, data = mtcars)
> ols_step_backward(lm_fit3)
We are eliminating variables based on p value...
No more variables satisfy the condition of prem: 0.3
Backward Elimination Method                                              

Candidate Terms:                                                         

1 . disp                                                                 
2 . hp                                                                   
3 . wt                                                                   
4 . am                                                                   
5 . disp:am                                                              

------------------------------------------------------------------------
                          Elimination Summary                            
------------------------------------------------------------------------
        Variable                  Adj.                                      
Step    Removed     R-Square    R-Square     C(p)       AIC        RMSE     
------------------------------------------------------------------------
   1    disp           0.853       0.831    4.0081    155.3638    2.4747    
------------------------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.