
bookdown: Authoring Books and 

Technical Documents with R 

Markdown 

This is only a test for pagedown::book_crc(). If you are interested by

the bookdown documentation, please read

https://bookdown.org/yihui/bookdown/bookdown.pdf

Yihui Xie

https://bookdown.org/yihui/bookdown/bookdown.pdf


To Shao Yong (邵雍), 

for sharing a secret joy with simple words;

月到天心处,  风来水面时。 

一般清意味,  料得少人知。

and

To Hongzhi Zhengjue (宏智禅师), 

for sharing the peace of an ending life with simple words.

梦幻空华,  六十七年; 

   白鸟淹没,  秋水连天。



iii

vii

ix

xi

xix

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

List of Tables

List of Figures

Preface

About the Author

1  Introduction

1.1  Motivation

1.2  Get started

1.3  Usage

1.4  Two rendering approaches

1.5  Some tips

2  Components

2.1  Markdown syntax

2.1.1  Inline formatting

2.1.2  Block-level elements

2.1.3  Math expressions

2.2  Markdown extensions by bookdown

2.2.1  Number and reference equations

2.2.2  Theorems and proofs

2.2.3  Special headers

2.2.4  Text references

2.3  R code

2.4  Figures

Contents



iv Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

51

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

71

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

81

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

93

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.5  Tables

2.6  Cross-references

2.7  Custom blocks

2.8  Citations

2.9  Index

2.10  HTML widgets

2.11  Web pages and Shiny apps

3  Output Formats

3.1  HTML

3.1.1  GitBook style

3.1.2  Bootstrap style

3.1.3  Tufte style

3.2  LaTeX/PDF

3.3  E-Books

3.3.1  EPUB

3.3.2  MOBI

3.4  A single document

4  Customization

4.1  YAML options

4.2  Theming

4.3  Templates

4.4  Configuration

4.5  Internationalization

5  Editing

5.1  Build the book

5.2  Preview a chapter

5.3  Serve the book

5.4  RStudio IDE

5.5  Collaboration

6  Publishing

6.1  RStudio Connect

6.2  GitHub



Contents v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

107

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

111

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

117

119

6.3  Publishers

Appendix

A  Software Tools

A.1  R and R packages

A.2  Pandoc

A.3  LaTeX

B  Software Usage

B.1  knitr

B.2  R Markdown

C  FAQ

References





vii

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

2.1 Theorem environments in bookdown.

2.2 A table of the first 10 rows of the mtcars data.

2.4 A table generated by the longtable package.

List of Tables





ix

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

2.1 A figure example with the specified aspect ratio, width, and

alignment.

2.2 A figure example with a relative width 70%.

2.3 Two plots placed side by side.

2.4 Three knitr logos included in the document from an external PNG

image file.

2.5 A table widget rendered via the DT package.

2.6 A Shiny app created via the miniUI package; you can see a live

version at https://yihui.shinyapps.io/miniUI/.

3.1 The GitBook toolbar.

5.1 The RStudio addin to help input LaTeX math.

5.2 The RStudio addin to help insert citations.

5.3 A book page with a discussion area.

List of Figures





xi

This short book introduces an R package, bookdown, to change your
workflow of writing books. It should be technically easy to write a book,

visually pleasant to view the book, fun to interact with the book,

convenient to navigate through the book, straightforward for readers to
contribute or leave feedback to the book author(s), and more importantly,

authors should not always be distracted by typesetting details.

The bookdown package is built on top of R Markdown
(http://rmarkdown.rstudio.com), and inherits the simplicity of the
Markdown syntax (you can learn the basics in five minutes; see Section
2.1), as well as the possibility of multiple types of output formats
(PDF/HTML/Word/…). It has also added features like multi-page HTML
output, numbering and cross-referencing
figures/tables/sections/equations, inserting parts/appendices, and
imported the GitBook style (https://www.gitbook.com) to create elegant
and appealing HTML book pages. This book itself is an example of how you
can produce a book from a series of R Markdown documents, and both the
printed version and the online version can look professional. You can find
more examples at https://bookdown.org.

Despite the package name containing the word “book”, bookdown is not
only for books. The “book” can be anything that consists of multiple R
Markdown documents meant to be read in a linear sequence, such as
course handouts, study notes, a software manual, a thesis, or even a diary.

In fact, many bookdown features apply to single R Markdown documents
as well (see Section 3.4).

 

The online version of this book is licensed under the Creative Commons

Preface

http://rmarkdown.rstudio.com/
https://www.gitbook.com/
https://bookdown.org/


xii Preface

Attribution-NonCommercial-ShareAlike 4.0 International License1. You
can purchase a hardcopy from Chapman & Hall2 or Amazon.

Can we write a book in one source format, and generate the output to
multiple formats? Traditionally books are often written with LaTeX or
Microsoft Word. Either of these tools will make writing books a one-way
trip and you cannot turn back: if you choose LaTeX, you typically end up
only with a PDF document; if you work with Word, you are likely to have to
stay in Word forever, and may also miss the many useful features and
beautiful PDF output from LaTeX.

Can we focus on writing the content without worrying too much about
typesetting? There seems a natural contradiction between content and
appearance, and we always have to balance our time spent on these two
aspects. No one can have a cake and eat it too, but it does not mean we
cannot have a half and eat a half. We want our book to look reasonably
pretty, and we also want to focus on the content. One possibility is to give
up PDF temporarily, and what you may have in return is a pretty preview
of your book as HTML web pages. LaTeX is an excellent typesetting tool,
but you can be easily buried in the numerous LaTeX commands and
typesetting details while you are working on the book. It is just so hard to
refrain from previewing the book in PDF, and unfortunately also so
common to find certain words exceed the page margin, certain figures
float to a random page, five or six stray words at the very end of a chapter
proudly take up a whole new page, and so on. If the book is to be printed,

we will have to deal with these issues eventually, but it is not worth being
distracted over and over again while you are writing book. The fact that the
Markdown syntax is simpler and has fewer features than LaTeX also helps
you focus on the content. Do you really have to define a new command like
\myprecious{} that applies \textbf{\textit{\textsf{}}} to your text?
Does the letter “R” have to be enclosed in \proglang{} when readers can

1http://creativecommons.org/licenses/by-nc-sa/4.0/
2https://www.crcpress.com/product/isbn/9781138700109

Why read this book

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.crcpress.com/product/isbn/9781138700109


Preface xiii

easily figure out it stands for the R language? It does not make much
difference whether everything, or nothing, needs the reader’s attention.

Can readers interact with examples in our book as they read it? The answer
is certainly no if the book is printed on paper, but it is possible if your book
has an HTML version that contains live examples, such as Shiny
applications (https://shiny.rstudio.com) or HTML widgets
(https://htmlwidgets.org). For example, readers may immediately
know what happens if they change certain parameters of a statistical
model.

Can we get feedback and even contributions from readers as we develop
the book? Traditionally the editor will find a small number of anonymous
reviewers to review your book. Reviewers are often helpful, but you may
still miss the wisdom of more representative readers. It is too late after the
first edition is printed, and readers may need to wait for a few years before
the second edition is ready. There are some web platforms that make it
easy for people to provide feedback and contribute to your projects.

GitHub (https://github.com) is one prominent example. If anyone finds
a typo in your book, he/she can simply correct it online and submit the
change back to you for your approval. It is a matter of clicking a button to
merge the change, with no questions asked or emails back and forth. To be
able to use these platforms, you need to learn the basics of version control
tools like GIT, and your book source files should be in plain text.

The combination of R (https://www.r-project.org), Markdown, and
Pandoc (http://pandoc.org) makes it possible to go from one simple
source format (R Markdown) to multiple possible output formats (PDF,

HTML, EPUB, and Word, etc.). The bookdown package is based on R
Markdown, and provides output formats for books and long-form articles,

including the GitBook format, which is a multi-page HTML output format
with a useful and beautiful user interface. It is much easier to typeset in
HTML than LaTeX, so you can always preview your book in HTML, and
work on PDF after the content is mostly done. Live examples can be easily
embedded in HTML, which can make the book more attractive and useful.
R Markdown is a plain-text format, so you can also enjoy the benefits of
version control, such as collaborating on GitHub. We have also tried hard
to port some important features from LaTeX to HTML and other output
formats, such as figure/table numbering and cross-references.

https://shiny.rstudio.com/
https://htmlwidgets.org/
https://github.com/
https://www.r-project.org/
http://pandoc.org/


xiv Preface

In short, you just prepare a few R Markdown book chapters, and
bookdown can help you turn them into a beautiful book.

Chapters 1 and 2 introduce the basic usage and syntax, which should be
sufficient to get most readers started in writing a book. Chapters 3 and 4

are for those who want to fine-tune the appearance of their books. They
may look very technical if you are not familiar with HTML/CSS and LaTeX.

You do not need to read these two chapters very carefully for the first time.

You can learn what can be possibly changed, and come back later to know
how. For Chapter 5, the technical details are not important unless you do
not use the RStudio IDE (Section 5.4). Similarly, you may feel overwhelmed
by the commands presented in Chapter 6 to publish your book, but again,

we have tried to make it easy to publish your book online via the RStudio
IDE. The custom commands and functions are only for those who choose
not to use RStudio’s service or want to understand the technical details.

To sum it up, this book is a comprehensive reference of the bookdown
package. You can follow the 80/20 rule when reading it. Some sections are
there for the sake of completeness, and not all sections are equally useful to
the particular book(s) that you intend to write.

This book is primarily about the R package bookdown, so you need to at
least install R and the bookdown package. However, your book does not
have to be related to the R language at all. It can use other computing
languages (C++, SQL, Python, and so on; see Appendix B), and it can even
be totally irrelevant to computing (e.g., you can write a novel, or a
collection of poems). The software tools required to build a book are
introduced in Appendix A.

Structure of the book

Software information and conventions



Preface xv

The R session information when compiling this book is shown below:

sessionInfo()

## R version 3.5.2 (2018-12-20) 
## Platform: x86_64-pc-linux-gnu (64-bit) 
## Running under: Ubuntu 16.04.5 LTS 
##  
## Matrix products: default 
##  
## locale: 
##  [1] LC_CTYPE=fr_FR.UTF-8       
##  [2] LC_NUMERIC=C               
##  [3] LC_TIME=fr_FR.UTF-8        
##  [4] LC_COLLATE=fr_FR.UTF-8     
##  [5] LC_MONETARY=fr_FR.UTF-8    
##  [6] LC_MESSAGES=fr_FR.UTF-8    
##  [7] LC_PAPER=fr_FR.UTF-8       
##  [8] LC_NAME=C                  
##  [9] LC_ADDRESS=C               
## [10] LC_TELEPHONE=C             
## [11] LC_MEASUREMENT=fr_FR.UTF-8 
## [12] LC_IDENTIFICATION=C        
##  
## attached base packages: 
## [1] stats     graphics  grDevices utils     datasets  
## [6] methods   base      
##  
## loaded via a namespace (and not attached): 
## [1] bookdown_0.9    miniUI_0.1.1.1  rmarkdown_1.11  
## [4] tools_3.5.2     shiny_1.2.0     htmltools_0.3.6 
## [7] knitr_1.21

We do not add prompts (> and +) to R source code in this book, and we
comment out the text output with two hashes ## by default, as you can see
from the R session information above. This is for your convenience when
you want to copy and run the code (the text output will be ignored since it
is commented out). Package names are in bold text (e.g., rmarkdown), and
inline code and filenames are formatted in a typewriter font (e.g.,

knitr::knit('foo.Rmd')). Function names are followed by parentheses



xvi Preface

(e.g., bookdown::render_book()). The double-colon operator :: means
accessing an object from a package.

First I’d like to thank my employer, RStudio, for providing me the
opportunity to work on this exciting project. I was hoping to work on it
when I first saw the GitBook project in 2013, because I immediately
realized it was a beautiful book style and there was a lot more power we
could add to it, judging from my experience of writing the knitr book (Xie
2015) and reading other books. R Markdown became mature after two
years, and luckily, bookdown became my official job in late 2015. There are
not many things in the world better than the fact that your job happens to
be your hobby (or vice versa). I totally enjoyed messing around with
JavaScript libraries, LaTeX packages, and endless regular expressions in R.

Honestly I should also thank StackOverflow
(http://stackoverflow.com), and I believe you all know what I mean,3 if
you have ever written any program code.

This project is certainly not a single person’s effort. Several colleagues at
RStudio have helped me along the way. Hadley Wickham provided a huge
amount of feedback during the development of bookdown, as he was
working on his book R for Data Science with Garrett Grolemund. JJ Allaire
and Jonathan McPherson provided a lot of technical help directly to this
package as well as support in the RStudio IDE. Jeff Allen, Chaita
Chaudhari, and the RStudio Connect team have been maintaining the
https://bookdown.org website. Robby Shaver designed a nice cover
image for this book. Both Hadley Wickham and Mine Cetinkaya-Rundel
reviewed the manuscript and gave me a lot of helpful comments. Tareef
Kawaf tried his best to help me become a professional software engineer. It
is such a blessing to work in this company with enthusiastic and smart
people. I remember once I told Jonathan, “hey I found a problem in
caching HTML widgets dependencies and finally figured out a possible

3http://bit.ly/2cWbiAp

Acknowledgments

http://stackoverflow.com/
https://bookdown.org/
http://bit.ly/2cWbiAp


Preface xvii

solution”. Jonathan grabbed his beer and said, “I already solved it.” “Oh,

nice, nice.”

I also received a lot of feedback from book authors outside RStudio,

including Jan de Leeuw, Jenny Bryan, Dean Attali, Rafael Irizarry, Michael
Love, Roger Peng, Andrew Clark, and so on. Some users also contributed
code to the project and helped revise the book. Here is a list of all
contributors:

https://github.com/rstudio/bookdown/graphs/contributors. It feels
good when you invent a tool and realize you are also the beneficiary of your
own tool. As someone who loves the GitHub pull request model, I wished
readers did not have to email me there was a typo or obvious mistake in my
book, but could just fix it via a pull request. This was made possible in
bookdown. You can see how many pull requests on typos I have merged:

https://github.com/rstudio/bookdown/pulls. It is nice to have so
many outsourced careful human spell checkers. It is not that I do not know
how to use a real spell checker, but I do not want to do this before the book
is finished, and the evil Yihui also wants to leave a few simple tasks to the
readers to engage them in improving the book.

Callum Webb kindly designed a nice hexbin sticker for bookdown.

The bookdown package is not possible without a few open-source software
packages. In particular, Pandoc, GitBook, jQuery, and the dependent R
packages, not to mention R itself. I thank the developers of these packages.

I moved to Omaha, Nebraska, in 2015, and enjoyed one year at
Steeplechase Apartments, where I lived comfortably while developing the
bookdown package, thanks to the extremely friendly and helpful staff.
Then I met a professional and smart realtor, Kevin Schaben, who found a
fabulous home for us in an amazingly short period of time, and I finished
this book in our new home.

John Kimmel, the editor from Chapman & Hall/CRC, helped me publish
my first book. It is my pleasure to work with him again. He generously
agreed to let me keep the online version of this book for free, so I can
continue to update it after it is printed and published (i.e., you do not have
to wait for years for the second edition to correct mistakes and introduce
new features). I wish I could be as open-minded as he is when I’m his age.

Rebecca Condit and Suzanne Lassandro proofread the manuscript, and

https://github.com/rstudio/bookdown/graphs/contributors
https://github.com/rstudio/bookdown/pulls


xviii Preface

their suggestions were professional and helpful. Shashi Kumar solved
some of my technical issues with the publisher’s LaTeX class (krantz.cls)

when I was trying to integrate it with bookdown. I also appreciate the very
helpful comments from the reviewers Jan de Leeuw, Karl Broman, Brooke
Anderson, Michael Grayling, Daniel Kaplan, and Max Kuhn.

Lastly I want to thank my family, in particular, my wife and son, for their
support. The one-year-old has discovered that my monitor will light up
when he touches my keyboard, so occasionally he just creeps into my office
and presses randomly on the keyboard when I’m away. I’m not sure if this
counts as his contribution to the book… @)!%)&@*

Yihui Xie 

Elkhorn, Nebraska



xix

Yihui Xie (http://yihui.name) is a software engineer at RStudio
(http://www.rstudio.com). He earned his PhD from the Department of
Statistics, Iowa State University. He is interested in interactive statistical
graphics and statistical computing. As an active R user, he has authored
several R packages, such as knitr, bookdown, blogdown, animation, DT,

tinytex, tufte, formatR, fun, mime, highr, servr, and Rd2roxygen, among
which the animation package won the 2009 John M. Chambers Statistical
Software Award (ASA). He also co-authored a few other R packages,

including shiny, rmarkdown, and leaflet.

In 2006, he founded the Capital of Statistics (https://cosx.org), which
has grown into a large online community on statistics in China. He
initiated the Chinese R conference in 2008, and has been involved in
organizing R conferences in China since then. During his PhD training at
Iowa State University, he won the Vince Sposito Statistical Computing
Award (2011) and the Snedecor Award (2012) in the Department of
Statistics.

He occasionally rants on Twitter (https://twitter.com/xieyihui), and
most of the time you can find him on GitHub
(https://github.com/yihui).

He enjoys spicy food as much as classical Chinese literature.

About the Author

http://yihui.name/
http://www.rstudio.com/
https://cosx.org/
https://twitter.com/xieyihui
https://github.com/yihui




1

This book is a guide to authoring books and technical documents with R
Markdown (Allaire, Xie, McPherson, et al. 2018) and the R package
bookdown (Xie 2018a). It focuses on the features specific to writing books,

long-form articles, or reports, such as:

how to typeset equations, theorems, figures and tables, and cross-

reference them;

how to generate multiple output formats such as HTML, PDF, and e-

books for a single book;

how to customize the book templates and style different elements in

a book;

editor support (in particular, the RStudio IDE); and

how to publish a book.

It is not a comprehensive introduction to R Markdown or the knitr
package (Xie 2018b), on top of which bookdown was built. To learn more
about R Markdown, please check out the online documentation
http://rmarkdown.rstudio.com. For knitr, please see Xie (2015). You do
not have to be an expert of the R language (R Core Team 2018) to read this
book, but you are expected to have some basic knowledge about R
Markdown and knitr. For beginners, you may get started with the
cheatsheets at https://www.rstudio.com/resources/cheatsheets/. The
appendix of this book contains brief introductions to these software
packages. To be able to customize the book templates and themes, you
should be familiar with LaTeX, HTML and CSS.

Introduction

1 

http://rmarkdown.rstudio.com/
https://www.rstudio.com/resources/cheatsheets/


2 1 Introduction

Markdown is a wonderful language to write relatively simple documents
that contain elements like sections, paragraphs, lists, links, and images,

etc. Pandoc (http://pandoc.org) has greatly extended the original
Markdown syntax,4 and added quite a few useful new features, such as
footnotes, citations, and tables. More importantly, Pandoc makes it
possible to generate output documents of a large variety of formats from
Markdown, including HTML, LaTeX/PDF, Word, and slides.

There are still a few useful features missing in Pandoc’s Markdown at the
moment that are necessary to write a relatively complicated document like
a book, such as automatic numbering of figures and tables in the HTML
output, cross-references of figures and tables, and fine control of the
appearance of figures (e.g., currently it is impossible to specify the
alignment of images using the Markdown syntax). These are some of the
problems that we have addressed in the bookdown package.

Under the constraint that we want to produce the book in multiple output
formats, it is nearly impossible to cover all possible features specific to
these diverse output formats. For example, it may be difficult to reinvent a
certain complicated LaTeX environment in the HTML output using the (R)

Markdown syntax. Our main goal is not to replace everything with
Markdown, but to cover most common functionalities required to write a
relatively complicated document, and make the syntax of such
functionalities consistent across all output formats, so that you only need
to learn one thing and it works for all output formats.

Another goal of this project is to make it easy to produce books that look
visually pleasant. Some nice existing examples include GitBook
(https://www.gitbook.com), Tufte CSS
(http://edwardtufte.github.io/tufte-css/), and Tufte-LaTeX
(https://tufte-latex.github.io/tufte-latex/). We hope to integrate
these themes and styles into bookdown, so authors do not have to dive into

4http://daringfireball.net/projects/markdown/

1.1  Motivation

http://pandoc.org/
https://www.gitbook.com/
http://edwardtufte.github.io/tufte-css/
https://tufte-latex.github.io/tufte-latex/
http://daringfireball.net/projects/markdown/


1.2 Get started 3

the details of how to use a certain LaTeX class or how to configure CSS for
HTML output.

The easiest way for beginners to get started with writing a book with R
Markdown and bookdown is through the demo bookdown-demo on
GitHub:

1. Download the GitHub repository

https://github.com/rstudio/bookdown-demo as a Zip file,5 then

unzip it locally.

2. Install the RStudio IDE. Note that you need a version higher than

1.0.0. Please download the latest version6 if your RStudio version is

lower than 1.0.0.

3. Install the R package bookdown:

# stable version on CRAN 
install.packages('bookdown') 
# or development version on GitHub 
# devtools::install_github('rstudio/bookdown')

4. Open the bookdown-demo repository you downloaded in RStudio by

clicking bookdown-demo.Rproj.

5. Open the R Markdown file index.Rmd and click the button Build
Book on the Build tab of RStudio.

5https://github.com/rstudio/bookdown-demo/archive/master.zip
6https://www.rstudio.com/products/rstudio/download/

1.2  Get started

https://github.com/rstudio/bookdown-demo
https://github.com/rstudio/bookdown-demo/archive/master.zip
https://www.rstudio.com/products/rstudio/download/


4 1 Introduction

If you are planning on printing your book to PDF, you will need a LaTeX

distribution. We recommend that you install TinyTeX (which includes

XeLaTeX): https://yihui.name/tinytex/.

Now you should see the index page of this book demo in the RStudio
Viewer. You may add or change the R Markdown files, and hit the Knit
button again to preview the book. If you prefer not to use RStudio, you
may also compile the book through the command line. See the next section
for details.

Although you see quite a few files in the bookdown-demo example, most of
them are not essential to a book. If you feel overwhelmed by the number of
files, you can use this minimal example instead, which is essentially one
file index.Rmd: https://github.com/yihui/bookdown-minimal. The
bookdown-demo example contains some advanced settings that you may
want to learn later, such as how to customize the LaTeX preamble, tweak
the CSS, and build the book on GitHub, etc.

A typical bookdown book contains multiple chapters, and one chapter lives
in one R Markdown file, with the filename extension .Rmd. Each R
Markdown file must start immediately with the chapter title using the
first-level heading, e.g., # Chapter Title. All R Markdown files must be
encoded in UTF-8, especially when they contain multi-byte characters such
as Chinese, Japanese, and Korean. Here is an example (the bullets are the
filenames, followed by the file content):

index.Rmd

# Preface {-} 
 
In this book, we will introduce an interesting 
method.

1.3  Usage

https://yihui.name/tinytex/
https://github.com/yihui/bookdown-minimal


1.3 Usage 5

01-intro.Rmd

# Introduction 
 
This chapter is an overview of the methods that 
we propose to solve an **important problem**.

02-literature.Rmd

# Literature 
 
Here is a review of existing methods.

03-method.Rmd

# Methods 
 
We describe our methods in this chapter.

04-application.Rmd

# Applications 
 
Some _significant_ applications are demonstrated 
in this chapter. 
 
## Example one 
 
## Example two

05-summary.Rmd

# Final Words 
 
We have finished a nice book.



6 1 Introduction

By default, bookdown merges all Rmd files by the order of filenames, e.g.,

01-intro.Rmd will appear before 02-literature.Rmd. Filenames that
start with an underscore _ are skipped. If there exists an Rmd file named
index.Rmd, it will always be treated as the first file when merging all Rmd
files. The reason for this special treatment is that the HTML file
index.html to be generated from index.Rmd is usually the default index
file when you view a website, e.g., you are actually browsing
http://yihui.name/index.html when you open http://yihui.name/.

You can override the above behavior by including a configuration file
named _bookdown.yml in the book directory. It is a YAML file
(https://en.wikipedia.org/wiki/YAML), and R Markdown users should
be familiar with this format since it is also used to write the metadata in
the beginning of R Markdown documents (you can learn more about
YAML in Section B.2). You can use a field named rmd_files to define your
own list and order of Rmd files for the book. For example,

rmd_files: ["index.Rmd", "abstract.Rmd", "intro.Rmd"]

In this case, bookdown will just use whatever you defined in this YAML
field without any special treatments of index.Rmd or underscores. If you
want both HTML and LaTeX/PDF output from the book, and use different
Rmd files for HTML and LaTeX output, you may specify these files for the
two output formats separately, e.g.,

rmd_files: 
  html: ["index.Rmd", "abstract.Rmd", "intro.Rmd"] 
  latex: ["abstract.Rmd", "intro.Rmd"]

Although we have been talking about R Markdown files, the chapter files
do not actually have to be R Markdown. They can be plain Markdown files
(.md), and do not have to contain R code chunks at all. You can certainly
use bookdown to compose novels or poems!

At the moment, the major output formats that you may use include
bookdown::pdf_book, bookdown::gitbook, bookdown::html_book, and
bookdown::epub_book. There is a bookdown::render_book() function

http://yihui.name/index.html
http://yihui.name/
https://en.wikipedia.org/wiki/YAML


1.3 Usage 7

similar to rmarkdown::render(), but it was designed to render multiple
Rmd documents into a book using the output format functions. You may
either call this function from command line directly, or click the relevant
buttons in the RStudio IDE. Here are some command-line examples:

bookdown::render_book('foo.Rmd', 'bookdown::gitbook') 
bookdown::render_book('foo.Rmd', 'bookdown::pdf_book') 
bookdown::render_book('foo.Rmd', bookdown::gitbook(lib_dir = 'libs')) 
bookdown::render_book('foo.Rmd', bookdown::pdf_book(keep_tex = TRUE))

To use render_book and the output format functions in the RStudio IDE,

you can define a YAML field named site that takes the value
bookdown::bookdown_site,7 and the output format functions can be used
in the output field, e.g.,

--- 
site: "bookdown::bookdown_site" 
output: 
  bookdown::gitbook: 
    lib_dir: "book_assets" 
  bookdown::pdf_book: 
    keep_tex: yes 
---

Then you can click the Build Book button in the Build pane in RStudio to
compile the Rmd files into a book, or click the Knit button on the toolbar
to preview the current chapter.

More bookdown configuration options in _bookdown.yml are explained in
Section 4.4. Besides these configurations, you can also specify some
Pandoc-related configurations in the YAML metadata of the first Rmd file
of the book, such as the title, author, and date of the book, etc. For
example:

---  
title: "Authoring A Book with R Markdown" 
author: "Yihui Xie" 

7This function calls bookdown::render_book().



8 1 Introduction

date: "`r Sys.Date()`" 
site: "bookdown::bookdown_site" 
output: 
  bookdown::gitbook: default 
documentclass: book 
bibliography: ["book.bib", "packages.bib"] 
biblio-style: apalike 
link-citations: yes 
---

Merging all chapters into one Rmd file and knitting it is one way to render
the book in bookdown. There is actually another way: you may knit each
chapter in a separate R session, and bookdown will merge the Markdown
output of all chapters to render the book. We call these two approaches
“Merge and Knit” (M-K) and “Knit and Merge” (K-M), respectively. The
differences between them may seem subtle, but can be fairly important
depending on your use cases.

The most significant difference is that M-K runs all code chunks in

all chapters in the same R session, whereas K-M uses separate R

sessions for individual chapters. For M-K, the state of the R session

from previous chapters is carried over to later chapters (e.g., objects

created in previous chapters are available to later chapters, unless

you deliberately deleted them); for K-M, all chapters are isolated

from each other.8 If you want each chapter to compile from a clean

state, use the K-M approach. It can be very tricky and difficult to

restore a running R session to a completely clean state if you use the

M-K approach. For example, even you detach/unload packages

8Of course, no one can stop you from writing out some files in one chapter, and reading them in another

chapter. It is hard to isolate these kinds of side-effects.

1.4  Two rendering approaches



1.5 Some tips 9

loaded in a previous chapter, R will not clean up the S3 methods

registered by these packages.

Because knitr does not allow duplicate chunk labels in a source

document, you need to make sure there are no duplicate labels in

your book chapters when you use the M-K approach, otherwise

knitr will signal an error when knitting the merged Rmd file. Note

that this means there must not be duplicate labels throughout the

whole book. The K-M approach only requires no duplicate labels

within any single Rmd file.

K-M does not allow Rmd files to be in subdirectories, but M-K does.

The default approach in bookdown is M-K. To switch to K-M, you either
use the argument new_session = TRUE when calling render_book(), or
set new_session: yes in the configuration file _bookdown.yml.

You can configure the book_filename option in _bookdown.yml for the K-

M approach, but it should be a Markdown filename, e.g., _main.md,

although the filename extension does not really matter, and you can even
leave out the extension, e.g., just set book_filename: _main. All other
configurations work for both M-K and K-M.

Typesetting under the paging constraint (e.g., for LaTeX/PDF output) can
be an extremely tedious and time-consuming job. I’d recommend you not
to look at your PDF output frequently, since most of the time you are very
unlikely to be satisfied: text may overflow into the page margin, figures
may float too far away, and so on. Do not try to make things look right
immediately, because you may be disappointed over and over again as you
keep on revising the book, and things may be messed up again even if you
only made some minor changes (see http://bit.ly/tbrLtx for a nice
illustration).

If you want to preview the book, preview the HTML output. Work on the
PDF version after you have finished the content of the book, and are very

1.5  Some tips

http://bit.ly/tbrLtx


10 1 Introduction

sure no major revisions will be required.

If certain code chunks in your R Markdown documents are time-

consuming to run, you may cache them by adding the chunk option cache
= TRUE in the chunk header, and you are recommended to label such code
chunks as well, e.g.,

```{r important-computing, cache=TRUE}

In Chapter 5, we will talk about how to quickly preview a book as you edit .
In short, you can use the preview_chapter() function to render a single
chapter instead of the whole book. The function serve_book() makes it
easy to live-preview HTML book pages: whenever you modify an Rmd file,

the book can be recompiled and the browser can be automatically
refreshed accordingly.



11

This chapter demonstrates the syntax of common components of a book
written in bookdown, including code chunks, figures, tables, citations,

math theorems, and equations. The approach is based on Pandoc, so we
start with the syntax of Pandoc’s flavor of Markdown.

In this section, we give a very brief introduction to Pandoc’s Markdown.

Readers who are familiar with Markdown can skip this section. The
comprehensive syntax of Pandoc’s Markdown can be found on the Pandoc
website http://pandoc.org.

2.1.1  Inline formatting

You can make text italic by surrounding it with underscores or asterisks,

e.g., _text_ or *text*. For bold text, use two underscores (__text__) or
asterisks (**text**). Text surrounded by ~ will be converted to a subscript
(e.g., H~2~SO~4~ renders H2SO4), and similarly, two carets (^) produce a

superscript (e.g., Fe^2+^ renders Fe2+). To mark text as inline code, use a
pair of backticks, e.g., `code`.9 Small caps can be produced by the HTML
tag span, e.g., <span style="font-variant:small-caps;">Small
Caps</span> renders SMALL CAPS. Links are created using [text](link),

9To include literal backticks, use more backticks outside, e.g., you can use two backticks to preserve one

backtick inside: `` `code` ``.

Components

2 

2.1  Markdown syntax

http://pandoc.org/


12 2 Components

e.g., [RStudio](https://www.rstudio.com), and the syntax for images is
similar: just add an exclamation mark, e.g., ![alt text or image title]
(path/to/image). Footnotes are put inside the square brackets after a
caret ^[], e.g., ^[This is a footnote.]. We will talk about citations in
Section 2.8.

2.1.2  Block-level elements

Section headers can be written after a number of pound signs, e.g.,

# First-level header 
 
## Second-level header 
 
### Third-level header

If you do not want a certain heading to be numbered, you can add {-}
after the heading, e.g.,

# Preface {-}

Unordered list items start with *, -, or +, and you can nest one list within
another list by indenting the sub-list by four spaces, e.g.,

- one item 
- one item 
- one item 
    - one item 
    - one item

The output is:

one item

one item

one item

one item

one item



2.1 Markdown syntax 13

Ordered list items start with numbers (the rule for nested lists is the same
as above), e.g.,

1. the first item 
2. the second item 
3. the third item

The output does not look too much different with the Markdown source:

1. the first item

2. the second item

3. the third item

Blockquotes are written after >, e.g.,

> "I thoroughly disapprove of duels. If a man should challenge me, 
  I would take him kindly and forgivingly by the hand and lead him 
  to a quiet place and kill him." 
> 
> --- Mark Twain

The actual output (we customized the style for blockquotes in this book):

“I thoroughly disapprove of duels. If a man should challenge
me, I would take him kindly and forgivingly by the hand and
lead him to a quiet place and kill him.”

— Mark Twain

Plain code blocks can be written after three or more backticks, and you can
also indent the blocks by four spaces, e.g.,

``` 
This text is displayed verbatim / preformatted 
``` 
 
Or indent by four spaces: 
 
    This text is displayed verbatim / preformatted



14 2 Components

2.1.3  Math expressions

Inline LaTeX equations can be written in a pair of dollar signs using the
LaTeX syntax, e.g., $f(k) = {n \choose k} p^{k} (1-p)^{n-k}$ (actual
output: ); math expressions of the display style

can be written in a pair of double dollar signs, e.g., $$f(k) = {n \choose
k} p^{k} (1-p)^{n-k}$$, and the output looks like this:

You can also use math environments inside $ $ or $$ $$, e.g.,

$$\begin{array}{ccc} 
x_{11} & x_{12} & x_{13}\\ 
x_{21} & x_{22} & x_{23} 
\end{array}$$

$$X = \begin{bmatrix}1 & x_{1}\\ 
1 & x_{2}\\ 
1 & x_{3} 
\end{bmatrix}$$

$$\Theta = \begin{pmatrix}\alpha & \beta\\ 
\gamma & \delta 
\end{pmatrix}$$

f(k) = ( )pk(1 − p)n−kn
k

f (k) = ( )pk(1 − p)n−kn

k

x11 x12 x13

x21 x22 x23

X =
⎡
⎢
⎣

1 x1

1 x2

1 x3

⎤
⎥
⎦



2.2 Markdown extensions by bookdown 15

$$\begin{vmatrix}a & b\\ 
c & d 
\end{vmatrix}=ad-bc$$

Although Pandoc’s Markdown is much richer than the original Markdown
syntax, it still lacks a number of things that we may need for academic
writing. For example, it supports math equations, but you cannot number
and reference equations in multi-page HTML or EPUB output. We have
provided a few Markdown extensions in bookdown to fill the gaps.

2.2.1  Number and reference equations

To number and refer to equations, put them in the equation environments
and assign labels to them using the syntax (\#eq:label), e.g.,

\begin{equation}  
  f\left(k\right) = \binom{n}{k} p^k\left(1-p\right)^{n-k} 
  (\#eq:binom) 
\end{equation} 

It renders the equation below:

Θ = (
α β

γ δ
)

∣
∣
∣

a b

c d

∣
∣
∣

= ad − bc

2.2  Markdown extensions by bookdown

f (k) = ( )pk(1 − p)n−k (2.1)
n

k



16 2 Components

You may refer to it using \@ref(eq:binom), e.g., see Equation (2.1).

Equation labels must start with the prefix eq: in bookdown. All labels in

bookdown must only contain alphanumeric characters, :, -, and/or /.

Equation references work best for LaTeX/PDF output, and they are not

well supported in Word output or e-books. For HTML output, bookdown

can only number the equations with labels. Please make sure equations

without labels are not numbered by either using the equation*

environment or adding \nonumber or \notag to your equations. The same

rules apply to other math environments, such as eqnarray, gather, align,

and so on (e.g., you can use the align* environment).

We demonstrate a few more math equation environments below. Here is
an unnumbered equation using the equation* environment:

\begin{equation*}  
\frac{d}{dx}\left( \int_{a}^{x} f(u)\,du\right)=f(x) 
\end{equation*} 

Below is an align environment (2.2):

\begin{align}  
g(X_{n}) &= g(\theta)+g'({\tilde{\theta}})(X_{n}-\theta) \notag \\ 
\sqrt{n}[g(X_{n})-g(\theta)] &= g'\left({\tilde{\theta}}\right) 
  \sqrt{n}[X_{n}-\theta ] (\#eq:align) 
\end{align} 

You can use the split environment inside equation so that all lines share
the same number (2.3). By default, each line in the align environment will
be assigned an equation number. We suppressed the number of the first

(∫
x

a

f(u) du) = f(x)
d

dx

g(Xn) = g(θ) + g′(
~
θ)(Xn − θ)

√n[g(Xn) − g(θ)] = g′ (
~
θ)√n[Xn − θ] (2.2)



2.2 Markdown extensions by bookdown 17

line in the previous example using \notag. In this example, the whole
split environment was assigned a single number.

\begin{equation}  
\begin{split} 
\mathrm{Var}(\hat{\beta}) & =\mathrm{Var}((X'X)^{-1}X'y)\\ 
 & =(X'X)^{-1}X'\mathrm{Var}(y)((X'X)^{-1}X')'\\ 
 & =(X'X)^{-1}X'\mathrm{Var}(y)X(X'X)^{-1}\\ 
 & =(X'X)^{-1}X'\sigma^{2}IX(X'X)^{-1}\\ 
 & =(X'X)^{-1}\sigma^{2} 
\end{split} 
(\#eq:var-beta) 
\end{equation} 

2.2.2  Theorems and proofs

Theorems and proofs are commonly used in articles and books in
mathematics. However, please do not be misled by the names: a “theorem”

is just a numbered/labeled environment, and it does not have to be a
mathematical theorem (e.g., it can be an example irrelevant to
mathematics). Similarly, a “proof” is an unnumbered environment. In this
section, we always use the general meanings of a “theorem” and “proof”
unless explicitly stated.

In bookdown, the types of theorem environments supported are in Table
2.1. To write a theorem, you can use the syntax below:

```{theorem} 
Here is my theorem. 
```

Table

Var(β̂) = Var((X ′
X)−1

X
′
y)

= (X ′X)−1X ′Var(y)((X ′X)−1X ′)′

= (X ′X)−1X ′Var(y)X(X ′X)−1

= (X ′X)−1X ′σ2IX(X ′X)−1

= (X ′X)−1σ2

(2.3)



18 2 Components

2.1: Theorem environments in bookdown.

Environment Printed Name Label Prefix

theorem Theorem thm

lemma Lemma lem

corollary Corollary cor

proposition Proposition prp

conjecture Conjecture cnj

definition Definition def

example Example exm

exercise Exercise exr

To write other theorem environments, replace ```{theorem} with other
environment names in Table 2.1, e.g., ```{lemma}.

A theorem can have a name option so its name will be printed, e.g.,

```{theorem, name="Pythagorean theorem"} 
For a right triangle, if $c$ denotes the length of the hypotenuse 
and $a$ and $b$ denote the lengths of the other two sides, we have 
$$a^2 + b^2 = c^2$$ 
```

If you want to refer to a theorem, you should label it. The label can be
written after ```{theorem, e.g.,

```{theorem, label="foo"} 
A labeled theorem here. 
```

The label option can be implicit, e.g., the following theorem has the label
bar:

```{theorem, bar} 
A labeled theorem here. 
```



2.2 Markdown extensions by bookdown 19

After you label a theorem, you can refer to it using the syntax
\@ref(prefix:label). See the column Label Prefix in Table 2.1 for the
value of prefix for each environment. For example, we have a labeled and
named theorem below, and \@ref(thm:pyth) gives us its theorem number
2.1:

```{theorem, pyth, name="Pythagorean theorem"} 
For a right triangle, if $c$ denotes the length of the hypotenuse 
and $a$ and $b$ denote the lengths of the other two sides, we have 
 
$$a^2 + b^2 = c^2$$ 
```

Theorem 2.1 (Pythagorean theorem) For a right triangle, if  denotes the
length of the hypotenuse and  and  denote the lengths of the other two
sides, we have

The proof environments currently supported are proof, remark, and
solution. The syntax is similar to theorem environments, and proof
environments can also be named. The only difference is that since they are
unnumbered, you cannot reference them.

We have tried to make all these theorem and proof environments work out
of the box, no matter if your output is PDF, HTML, or EPUB. If you are a
LaTeX or HTML expert, you may want to customize the style of these
environments anyway (see Chapter 4). Customization in HTML is easy
with CSS, and each environment is enclosed in <div></div> with the CSS
class being the environment name, e.g., <div class="lemma"></div>. For
LaTeX output, we have predefined the style to be definition for
environments definition, example, and exercise, and remark for
environments proof and remark. All other environments use the plain
style. The style definition is done through the \theoremstyle{} command
of the amsthm package.

Theorems are numbered by chapters by default. If there are no chapters in
your document, they are numbered by sections instead. If the whole
document is unnumbered (the output format option number_sections =

c

a b

a2 + b2 = c2



20 2 Components

FALSE), all theorems are numbered sequentially from 1, 2, …, N. LaTeX
supports numbering one theorem environment after another, e.g., let
theorems and lemmas share the same counter. This is not supported for
HTML/EPUB output in bookdown. You can change the numbering scheme
in the LaTeX preamble by defining your own theorem environments, e.g.,

\newtheorem{theorem}{Theorem} 
\newtheorem{lemma}[theorem]{Lemma}

When bookdown detects \newtheorem{theorem} in your LaTeX preamble,

it will not write out its default theorem definitions, which means you have
to define all theorem environments by yourself. For the sake of simplicity
and consistency, we do not recommend that you do this. It can be
confusing when your Theorem 18 in PDF becomes Theorem 2.4 in HTML.

Theorem and proof environments will be hidden if the chunk option echo
is set to FALSE. To make sure they are always shown, you may add the
chunk option echo=TRUE, e.g.,

```{theorem, echo=TRUE} 
Here is my theorem. 
```

Below we show more examples10 of the theorem and proof environments,

so you can see the default styles in bookdown.

Definition 2.1 The characteristic function of a random variable  is
defined by

Example 2.1 We derive the characteristic function of  with the

probability density function .

10Some examples are adapted from the Wikipedia page

https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)

X

φX(t) = E[eitX], t ∈ R

X ∼ U(0, 1)

f(x) = 1x∈[0,1]

https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)


2.2 Markdown extensions by bookdown 21

Note that we used the fact  twice.

Lemma 2.1 For any two random variables , , they both have the same
probability distribution if and only if

Theorem 2.2 If , …,  are independent random variables, and , …, 

are some constants, then the characteristic function of the linear
combination  is

Proposition 2.1 The distribution of the sum of independent Poisson

random variables  is .

Proof. The characteristic function of  is . Let 

. We know from Theorem 2.2 that

φX(t) = E[eitX]

= ∫ eitxf(x)dx

= ∫
1

0

eitxdx

= ∫
1

0

(cos(tx) + i sin(tx)) dx

= ( − i )
∣
∣
∣

1

0

= − i( )

= +

=

sin(tx)

t

cos(tx)

t

sin(t)

t

cos(t) − 1

t

i sin(t)

it

cos(t) − 1

it

eit − 1

it

eix = cos(x) + i sin(x)

X1 X2

φX1(t) = φX2(t)

X1 Xn a1 an

Sn = ∑n
i=1 aiXi

φSn
(t) =

n

∏
i=1

φXi
(ait) = φX1(a1t) ⋯φXn

(ant)

Xi ∼ Pois(λi), i = 1, 2, ⋯ ,n Pois(∑n

i=1 λi)

X ∼ Pois(λ) φX(t) = eλ(eit−1)

Pn = ∑n
i=1 Xi



22 2 Components

This is the characteristic function of a Poisson random variable with the

parameter . From Lemma 2.1, we know the distribution of 

is .

Remark. In some cases, it is very convenient and easy to figure out the

distribution of the sum of independent random variables using

characteristic functions.

Corollary 2.1 The characteristic function of the sum of two independent
random variables  and  is the product of characteristic functions of 

 and , i.e.,

Exercise 2.1 (Characteristic Function of the Sample Mean) Let 

 be the sample mean of  independent and identically

distributed random variables, each with characteristic function .

Compute the characteristic function of .

Solution. Applying Theorem 2.2, we have

2.2.3  Special headers

There are a few special types of first-level headers that will be processed
differently in bookdown. The first type is an unnumbered header that
starts with the token (PART). This kind of headers are translated to part
titles. If you are familiar with LaTeX, this basically means \part{}. When

φPn(t) =
n

∏
i=1

φXi
(t)

=
n

∏
i=1

eλi(eit−1)

= e∑
n
i=1 λi(e

it−1)

λ = ∑n
i=1 λi Pn

Pois(∑n
i=1 λi)

X1 X2

X1 X2

φX1+X2(t) = φX1(t)φX2(t)

X̄ = ∑n

i=1 Xi
1
n

n

φX

X̄

φX̄(t) =
n

∏
i=1

φXi
( ) = [φX ( )]

n

.
t

n

t

n



2.2 Markdown extensions by bookdown 23

your book has a large number of chapters, you may want to organize them
into parts, e.g.,

# (PART) Part I {-}  
 
# Chapter One 
 
# Chapter Two 
 
# (PART) Part II {-}  
 
# Chapter Three

A part title should be written right before the first chapter title in this part.
You can use (PART\*) (the backslash before * is required) instead of
(PART) if a part title should not be numbered.

The second type is an unnumbered header that starts with (APPENDIX),

indicating that all chapters after this header are appendices, e.g.,

# Chapter One  
 
# Chapter Two 
 
# (APPENDIX) Appendix {-}  
 
# Appendix A 
 
# Appendix B

The numbering style of appendices will be automatically changed in
LaTeX/PDF and HTML output (usually in the form A, A.1, A.2, B, B.1, …).

This feature is not available to e-books or Word output.

2.2.4  Text references

You can assign some text to a label and reference the text using the label
elsewhere in your document. This can be particularly useful for long
figure/table captions (Section 2.4 and 2.5), in which case you normally will
have to write the whole character string in the chunk header (e.g., fig.cap



24 2 Components

= "A long long figure caption.") or your R code (e.g., kable(caption
= "A long long table caption.")). It is also useful when these
captions contain special HTML or LaTeX characters, e.g., if the figure
caption contains an underscore, it works in the HTML output but may not
work in LaTeX output because the underscore must be escaped in LaTeX.

The syntax for a text reference is (ref:label) text, where label is a
unique label11 throughout the document for text. It must be in a separate
paragraph with empty lines above and below it. The paragraph must not be
wrapped into multiple lines, and should not end with a white space. For
example,

(ref:foo) Define a text reference **here**. 

Then you can use (ref:foo) in your figure/table captions. The text can
contain anything that Markdown supports, as long as it is one single
paragraph. Here is a complete example:

A normal paragraph. 
 
(ref:foo) A scatterplot of the data `cars` using **base** R graphics. 
 
```{r foo, fig.cap='(ref:foo)'} 
plot(cars)  # a scatterplot 
```

Text references can be used anywhere in the document (not limited to
figure captions). It can also be useful if you want to reuse a fragment of
text in multiple places.

11You may consider using the code chunk labels.

2.3  R code



2.4 Figures 25

There are two types of R code in R Markdown/knitr documents: R code
chunks, and inline R code. The syntax for the latter is `r R_CODE`, and it
can be embedded inline with other document elements. R code chunks
look like plain code blocks, but have {r} after the three backticks and
(optionally) chunk options inside {}, e.g.,

```{r chunk-label, echo = FALSE, fig.cap = 'A figure caption.'} 
1 + 1 
rnorm(10)  # 10 random numbers 
plot(dist ~ speed, cars)  # a scatterplot 
```

To learn more about knitr chunk options, see Xie (2015) or the web page
http://yihui.name/knitr/options. For books, additional R code can be
executed before/after each chapter; see before_chapter_script and
after_chapter_script in Section 4.4.

By default, figures have no captions in the output generated by knitr,

which means they will be placed wherever they were generated in the R
code. Below is such an example.

par(mar = c(4, 4, .1, .1)) 
plot(pressure, pch = 19, type = 'b')

2.4  Figures

http://yihui.name/knitr/options


26 2 Components

The disadvantage of typesetting figures in this way is that when there is
not enough space on the current page to place a figure, it may either reach
the bottom of the page (hence exceeds the page margin), or be pushed to
the next page, leaving a large white margin at the bottom of the current
page. That is basically why there are “floating environments” in LaTeX:

elements that cannot be split over multiple pages (like figures) are put in
floating environments, so they can float to a page that has enough space to
hold them. There is also a disadvantage of floating things forward or
backward, though. That is, readers may have to jump to a different page to
find the figure mentioned on the current page. This is simply a natural
consequence of having to typeset things on multiple pages of fixed sizes.

This issue does not exist in HTML, however, since everything can be placed
continuously on one single page (presumably with infinite height), and
there is no need to split anything across multiple pages of the same page
size.

If we assign a figure caption to a code chunk via the chunk option fig.cap,

R plots will be put into figure environments, which will be automatically
labeled and numbered, and can also be cross-referenced. The label of a
figure environment is generated from the label of the code chunk, e.g., if
the chunk label is foo, the figure label will be fig:foo (the prefix fig: is
added before foo). To reference a figure, use the syntax \@ref(label),12

where label is the figure label, e.g., fig:foo.

To take advantage of Markdown formatting within the figure caption, you
12Do not forget the leading backslash! And also note the parentheses () after ref; they are not curly

braces {}.



2.4 Figures 27

will need to use text references (see Section 2.2.4). For example, a figure
caption that contains _italic text_ will not work when the output
format is LaTeX/PDF, since the underscore is a special character in LaTeX,

but if you use text references, _italic text_ will be translated to LaTeX
code when the output is LaTeX.

If you want to cross-reference figures or tables generated from a code

chunk, please make sure the chunk label only contains alphanumeric

characters (a-z, A-Z, 0-9), slashes (/), or dashes (-).

The chunk option fig.asp can be used to set the aspect ratio of plots, i.e.,

the ratio of figure height/width. If the figure width is 6 inches (fig.width
= 6) and fig.asp = 0.7, the figure height will be automatically calculated
from fig.width * fig.asp = 6 * 0.7 = 4.2. Figure 2.1 is an example
using the chunk options fig.asp = 0.7, fig.width = 6, and fig.align
= 'center', generated from the code below:

par(mar = c(4, 4, .1, .1)) 
plot(pressure, pch = 19, type = 'b')



28 2 Components

Figure 2.1: A figure example with the specified aspect ratio, width, and
alignment.

The actual size of a plot is determined by the chunk options fig.width and
fig.height (the size of the plot generated from a graphical device), and
we can specify the output size of plots via the chunk options out.width
and out.height. The possible value of these two options depends on the
output format of the document. For example, out.width = '30%' is a
valid value for HTML output, but not for LaTeX/PDF output. However,
knitr will automatically convert a percentage value for out.width of the
form x% to (x / 100) \linewidth, e.g., out.width = '70%' will be
treated as .7\linewidth when the output format is LaTeX. This makes it
possible to specify a relative width of a plot in a consistent manner. Figure
2.2 is an example of out.width = 70%.

par(mar = c(4, 4, .1, .1)) 
plot(cars, pch = 19)



2.4 Figures 29

Figure 2.2: A figure example with a relative width 70%.

If you want to put multiple plots in one figure environment, you must use
the chunk option fig.show = 'hold' to hold multiple plots from a code
chunk and include them in one environment. You can also place plots side
by side if the sum of the width of all plots is smaller than or equal to the
current line width. For example, if two plots have the same width 50%, they
will be placed side by side. Similarly, you can specify out.width = '33%'
to arrange three plots on one line. Figure 2.3 is an example of two plots,

each with a width of 50%.

par(mar = c(4, 4, .1, .1)) 
plot(pressure, pch = 19, type = 'b') 
plot(cars, pch = 19)



30 2 Components

Figure 2.3: Two plots placed side by side.

Sometimes you may have certain images that are not generated from R
code, and you can include them in R Markdown via the function
knitr::include_graphics(). Figure 2.4 is an example of three knitr logos
included in a figure environment. You may pass one or multiple image
paths to the include_graphics() function, and all chunk options that
apply to normal R plots also apply to these images, e.g., you can use
out.width = '33%' to set the widths of these images in the output
document.

knitr::include_graphics(rep('images/knit-logo.png', 3))

Figure 2.4: Three knitr logos included in the document from an external
PNG image file.

There are a few advantages of using include_graphics():

1. You do not need to worry about the document output format, e.g.,

when the output format is LaTeX, you may have to use the LaTeX

command \includegraphics{} to include an image, and when the

output format is Markdown, you have to use ![](). The function



2.5 Tables 31

include_graphics() in knitr takes care of these details

automatically.

2. The syntax for controlling the image attributes is the same as when

images are generated from R code, e.g., chunk options fig.cap,

out.width, and fig.show still have the same meanings.

3. include_graphics() can be smart enough to use PDF graphics

automatically when the output format is LaTeX and the PDF

graphics files exist, e.g., an image path foo/bar.png can be

automatically replaced with foo/bar.pdf if the latter exists. PDF

images often have better qualities than raster images in LaTeX/PDF

output. To make use of this feature, set the argument auto_pdf =

TRUE, or set the global option options(knitr.graphics.auto_pdf

= TRUE) to enable this feature globally in an R session.

4. You can easily scale these images proportionally using the same

ratio. This can be done via the dpi argument (dots per inch), which

takes the value from the chunk option dpi by default. If it is a

numeric value and the chunk option out.width is not set, the

output width of an image will be its actual width (in pixels) divided

by dpi, and the unit will be inches. For example, for an image with

the size 672 x 480, its output width will be 7 inches (7in) when dpi =

96. This feature requires the package png and/or jpeg to be

installed. You can always override the automatic calculation of

width in inches by providing a non-NULL value to the chunk option

out.width, or use include_graphics(dpi = NA).

For now, the most convenient way to generate a table is the function
knitr::kable(), because there are some internal tricks in knitr to make it
work with bookdown and users do not have to know anything about these
implementation details. We will explain how to use other packages and
functions later in this section.

2.5  Tables



32 2 Components

Like figures, tables with captions will also be numbered and can be
referenced. The kable() function will automatically generate a label for a
table environment, which is the prefix tab: plus the chunk label. For
example, the table label for a code chunk with the label foo will be tab:foo,

and we can still use the syntax \@ref(label) to reference the table. Table
2.2 is a simple example.

knitr::kable( 
  head(mtcars[, 1:8], 10), booktabs = TRUE, 
  caption = 'A table of the first 10 rows of the mtcars data.' 
)

Table 2.2: A table of the first 10 rows of the mtcars data.

mpg cyl disp hp drat wt qsec vs

Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0

Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0

Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1

Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1

Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0

Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1

Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0

Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1

Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1

Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1

If you want to put multiple tables in a single table environment, wrap the
data objects (usually data frames in R) into a list. See Table 2.3 for an
example. Please note that this feature is only available in HTML and PDF
output.

knitr::kable( 
  list( 
    head(iris[, 1:2], 3), 
    



2.5 Tables 33

head(mtcars[, 1:3], 5) 
  ), 
  caption = 'A Tale of Two Tables.', booktabs = TRUE 
)

Table 2.3: A Tale of Two Tables.

Sepal.Length Sepal.Width

5.1 3.5

4.9 3.0

4.7 3.2

mpg cyl disp

Mazda RX4 21.0 6 160

Mazda RX4 Wag 21.0 6 160

Datsun 710 22.8 4 108

Hornet 4 Drive 21.4 6 258

Hornet Sportabout 18.7 8 360

When you do not want a table to float in PDF, you may use the LaTeX
package longtable,13 which can break a table across multiple pages. To use
longtable, pass longtable = TRUE to kable(), and make sure to include
\usepackage{longtable} in the LaTeX preamble (see Section 4.1 for how
to customize the LaTeX preamble). Of course, this is irrelevant to HTML
output, since tables in HTML do not need to float.

knitr::kable( 
  iris[1:55, ], longtable = TRUE, booktabs = TRUE, 
  caption = 'A table generated by the longtable package.' 
)

Table 2.4: A table generated by the longtable package.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

13https://www.ctan.org/pkg/longtable

https://www.ctan.org/pkg/longtable


34 2 Components

5.0 3.6 1.4 0.2 setosa

5.4 3.9 1.7 0.4 setosa

4.6 3.4 1.4 0.3 setosa

5.0 3.4 1.5 0.2 setosa

4.4 2.9 1.4 0.2 setosa

4.9 3.1 1.5 0.1 setosa

5.4 3.7 1.5 0.2 setosa

4.8 3.4 1.6 0.2 setosa

4.8 3.0 1.4 0.1 setosa

4.3 3.0 1.1 0.1 setosa

5.8 4.0 1.2 0.2 setosa

5.7 4.4 1.5 0.4 setosa

5.4 3.9 1.3 0.4 setosa

5.1 3.5 1.4 0.3 setosa

5.7 3.8 1.7 0.3 setosa

5.1 3.8 1.5 0.3 setosa

5.4 3.4 1.7 0.2 setosa

5.1 3.7 1.5 0.4 setosa

4.6 3.6 1.0 0.2 setosa

5.1 3.3 1.7 0.5 setosa

4.8 3.4 1.9 0.2 setosa

5.0 3.0 1.6 0.2 setosa

5.0 3.4 1.6 0.4 setosa

5.2 3.5 1.5 0.2 setosa

5.2 3.4 1.4 0.2 setosa

4.7 3.2 1.6 0.2 setosa

4.8 3.1 1.6 0.2 setosa

5.4 3.4 1.5 0.4 setosa



2.5 Tables 35

5.2 4.1 1.5 0.1 setosa

5.5 4.2 1.4 0.2 setosa

4.9 3.1 1.5 0.2 setosa

5.0 3.2 1.2 0.2 setosa

5.5 3.5 1.3 0.2 setosa

4.9 3.6 1.4 0.1 setosa

4.4 3.0 1.3 0.2 setosa

5.1 3.4 1.5 0.2 setosa

5.0 3.5 1.3 0.3 setosa

4.5 2.3 1.3 0.3 setosa

4.4 3.2 1.3 0.2 setosa

5.0 3.5 1.6 0.6 setosa

5.1 3.8 1.9 0.4 setosa

4.8 3.0 1.4 0.3 setosa

5.1 3.8 1.6 0.2 setosa

4.6 3.2 1.4 0.2 setosa

5.3 3.7 1.5 0.2 setosa

5.0 3.3 1.4 0.2 setosa

7.0 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor

5.5 2.3 4.0 1.3 versicolor

6.5 2.8 4.6 1.5 versicolor

Pandoc supports several types of Markdown tables,14 such as simple tables,

multiline tables, grid tables, and pipe tables. What knitr::kable()
generates is a simple table like this:

14http://pandoc.org/MANUAL.html#tables

http://pandoc.org/MANUAL.html#tables


36 2 Components

Table: A simple table in Markdown. 
 
 Sepal.Length   Sepal.Width   Petal.Length   Petal.Width 
-------------  ------------  -------------  ------------ 
          5.1           3.5            1.4           0.2 
          4.9           3.0            1.4           0.2 
          4.7           3.2            1.3           0.2 
          4.6           3.1            1.5           0.2 
          5.0           3.6            1.4           0.2 
          5.4           3.9            1.7           0.4

You can use any types of Markdown tables in your document. To be able to
cross-reference a Markdown table, it must have a labeled caption of the
form Table: (\#label) Caption here, where label must have the
prefix tab:, e.g., tab:simple-table.

If you decide to use other R packages to generate tables, you have to make
sure the label for the table environment appears in the beginning of the
table caption in the form (\#label) (again, label must have the prefix
tab:). You have to be very careful about the portability of the table
generating function: it should work for both HTML and LaTeX output
automatically, so it must consider the output format internally (check
knitr::opts_knit$get('rmarkdown.pandoc.to')). When writing out an
HTML table, the caption must be written in the <caption></caption> tag.

For simple tables, kable() should suffice. If you have to create
complicated tables (e.g., with certain cells spanning across multiple
columns/rows), you will have to take the aforementioned issues into
consideration.

We have explained how cross-references work for equations (Section
2.2.1), theorems (Section 2.2.2), figures (Section 2.4), and tables (Section
2.5). In fact, you can also reference sections using the same syntax
\@ref(label), where label is the section ID. By default, Pandoc will

2.6  Cross-references



2.6 Cross-references 37

generate an ID for all section headers, e.g., a section # Hello World will
have an ID hello-world. We recommend you to manually assign an ID to
a section header to make sure you do not forget to update the reference
label after you change the section header. To assign an ID to a section
header, simply add {#id} to the end of the section header. Further
attributes of section headers can be set using standard Pandoc syntax15.

When a referenced label cannot be found, you will see two question marks
like ??, as well as a warning message in the R console when rendering the
book.

You can also create text-based links using explicit or automatic section IDs
or even the actual section header text.

If you are happy with the section header as the link text, use it inside

a single set of square brackets:

[Section header text]: example “A single document” via

[A single document]

There are two ways to specify custom link text:

[link text][Section header text], e.g., “non-English

books” via [non-English books][Internationalization]

[link text](#ID), e.g., “Table stuff” via [Table stuff]

(#tables)

The Pandoc documentation provides more details on automatic section
IDs16 and implicit header references.17

Cross-references still work even when we refer to an item that is not on the
current page of the PDF or HTML output. For example, see Equation (2.1)

and Figure 2.4.

15http://pandoc.org/MANUAL.html#header-identifiers
16http://pandoc.org/MANUAL.html#extension-auto_identifiers
17http://pandoc.org/MANUAL.html#extension-implicit_header_references

http://pandoc.org/MANUAL.html#header-identifiers
http://pandoc.org/MANUAL.html#extension-auto_identifiers
http://pandoc.org/MANUAL.html#extension-implicit_header_references


38 2 Components

You can generate custom blocks using the block engine in knitr, i.e., the
chunk option engine = 'block', or the more compact syntax
```{block}. This engine should be used in conjunction with the chunk
option type, which takes a character string. When the block engine is
used, it generates a <div> to wrap the chunk content if the output format
is HTML, and a LaTeX environment if the output is LaTeX. The type
option specifies the class of the <div> and the name of the LaTeX
environment. For example, the HTML output of this chunk

{block, type='FOO'} Some text for this block.

will be this:

<div class="FOO"> 
Some text for this block. 
</div>

and the LaTeX output will be this:

\begin{FOO} 
Some text for this block. 
\end{FOO}

It is up to the book author how to define the style of the block. You can
define the style of the <div> in CSS and include it in the output via the
includes option in the YAML metadata. Similarly, you may define the
LaTeX environment via \newenvironment and include the definition in the
LaTeX output via the includes option. For example, we may save the
following style in a CSS file, say, style.css:

div.FOO { 
  font-weight: bold; 
  color: red; 
}

2.7  Custom blocks



2.7 Custom blocks 39

And the YAML metadata of the R Markdown document can be:

--- 
output: 
  bookdown::html_book: 
    includes: 
      in_header: style.css 
---

We have defined a few types of blocks for this book to show notes, tips, and
warnings, etc. Below are some examples:

R is free software and comes with ABSOLUTELY NO WARRANTY. You are

welcome to redistribute it under the terms of the GNU General Public

License versions 2 or 3. For more information about these matters see

http://www.gnu.org/licenses/.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are

welcome to redistribute it under the terms of the GNU General Public

License versions 2 or 3. For more information about these matters see

http://www.gnu.org/licenses/.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are

welcome to redistribute it under the terms of the GNU General Public

License versions 2 or 3. For more information about these matters see

http://www.gnu.org/licenses/.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are

welcome to redistribute it under the terms of the GNU General Public

License versions 2 or 3. For more information about these matters see

http://www.gnu.org/licenses/.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are

welcome to redistribute it under the terms of the GNU General Public

License versions 2 or 3. For more information about these matters see

http://www.gnu.org/licenses/.

The knitr block engine was designed to display simple content (typically a
paragraph of plain text). You can use simple formatting syntax such as
making certain words bold or italic, but more advanced syntax such as

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/


40 2 Components

citations and cross-references will not work. However, there is an
alternative engine named block2 that supports arbitrary Markdown
syntax, e.g.,

```{block2, type='FOO'} 
Some text for this block [@citation-key]. 
 
- a list item 
- another item 
 
More text. 
```

The block2 engine should also be faster than the block engine if you have
a lot of custom blocks in the document, but its implementation was based
on a hack,18 so we are not 100% sure if it is always going to work in the
future. We have not seen problems with Pandoc v1.17.2 yet.

One more caveat for the block2 engine: if the last element in the block is
not an ordinary paragraph, you must leave a blank line at the end, e.g.,

```{block2, type='FOO'} 
Some text for this block [@citation-key]. 
 
- a list item 
- another item 
- end the list with a blank line 
 
```

The theorem and proof environments in Section 2.2.2 are actually
implemented through the block2 engine.

For all custom blocks based on the block or block2 engine, there is one
chunk option echo that you can use to show (echo = TRUE) or hide (echo =
FALSE) the blocks.

18https://github.com/jgm/pandoc/issues/2453

https://github.com/jgm/pandoc/issues/2453


2.8 Citations 41

Although Pandoc supports multiple ways of writing citations, we
recommend you to use BibTeX databases because they work best with
LaTeX/PDF output. Pandoc can process other types of bibliography
databases with the utility pandoc-citeproc
(https://github.com/jgm/pandoc-citeproc), but it may not render
certain bibliography items correctly (especially in case of multiple authors
per item), and BibTeX can do a better job when the output format is
LaTeX. With BibTeX databases, you will be able to define the bibliography
style if it is required by a certain publisher or journal.

A BibTeX database is a plain-text file (with the conventional filename
extension .bib) that consists of bibliography entries like this:

@Manual{R-base, 
  title = {R: A Language and Environment for Statistical 
    Computing}, 
  author = {{R Core Team}}, 
  organization = {R Foundation for Statistical Computing}, 
  address = {Vienna, Austria}, 
  year = {2016}, 
  url = {https://www.R-project.org/}, 
}

A bibliography entry starts with @type{, where type may be article,

book, manual, and so on.19 Then there is a citation key, like R-base in the
above example. To cite an entry, use @key or [@key] (the latter puts the
citation in braces), e.g., @R-base is rendered as R Core Team (2018), and
[@R-base] generates “(R Core Team 2018)”. If you are familiar with the
natbib package in LaTeX, @key is basically \citet{key}, and [@key] is
equivalent to \citep{key}.

19The type name is case-insensitive, so it does not matter if it is manual, Manual, or MANUAL.

2.8  Citations

https://github.com/jgm/pandoc-citeproc


42 2 Components

There are a number of fields in a bibliography entry, such as title,

author, and year, etc. You may see
https://en.wikipedia.org/wiki/BibTeX for possible types of entries
and fields in BibTeX.

There is a helper function write_bib() in knitr to generate BibTeX entries
automatically for R packages. Note that it only generates one BibTeX entry
for the package itself at the moment, whereas a package may contain
multiple entries in the CITATION file, and some entries are about the
publications related to the package. These entries are ignored by
write_bib().

# the second argument can be a .bib file 
knitr::write_bib(c('knitr', 'stringr'), '', width = 60)

@Manual{R-knitr, 
  title = {knitr: A General-Purpose Package for Dynamic Report 
    Generation in R}, 
  author = {Yihui Xie}, 
  year = {2018}, 
  note = {R package version 1.21}, 
  url = {https://CRAN.R-project.org/package=knitr}, 
} 
@Manual{R-stringr, 
  title = {stringr: Simple, Consistent Wrappers for Common 
    String Operations}, 
  author = {Hadley Wickham}, 
  year = {2018}, 
  note = {R package version 1.3.1}, 
  url = {https://CRAN.R-project.org/package=stringr}, 
}

Once you have one or multiple .bib files, you may use the field
bibliography in the YAML metadata of your first R Markdown document
(which is typically index.Rmd), and you can also specify the bibliography
style via biblio-style (this only applies to PDF output), e.g.,

--- 
bibliography: ["one.bib", "another.bib", "yet-another.bib"] 

https://en.wikipedia.org/wiki/BibTeX


2.9 Index 43

biblio-style: "apalike" 
link-citations: true 
---

The field link-citations can be used to add internal links from the
citation text of the author-year style to the bibliography entry in the HTML
output.

When the output format is LaTeX, citations will be automatically put in a
chapter or section. For non-LaTeX output, you can add an empty chapter
as the last chapter of your book. For example, if your last chapter is the
Rmd file 06-references.Rmd, its content can be an inline R expression:

`r if (knitr::is_html_output()) '# References {-}'`

Currently the index is only supported for LaTeX/PDF output. To print an
index after the book, you can use the LaTeX package makeidx in the
preamble (see Section 4.1):

\usepackage{makeidx} 
\makeindex

Then insert \printindex at the end of your book through the YAML option
includes -> after_body. An index entry can be created via the \index{}
command in the book body, e.g., \index{GIT}.

2.9  Index

2.10  HTML widgets



44 2 Components

Although one of R’s greatest strengths is data visualization, there are a
large number of JavaScript libraries for much richer data visualization.

These libraries can be used to build interactive applications that can easily
render in web browsers, so users do not need to install any additional
software packages to view the visualizations. One way to bring these
JavaScript libraries into R is through the htmlwidgets20 package
(Vaidyanathan et al. 2018).

HTML widgets can be rendered as a standalone web page (like an R plot),

or embedded in R Markdown documents and Shiny applications. They
were originally designed for HTML output only, and they require the
availability of JavaScript, so they will not work in non-HTML output
formats, such as LaTeX/PDF. Before knitr v1.13, you will get an error when
you render HTML widgets to an output format that is not HTML. Since
knitr v1.13, HTML widgets will be rendered automatically as screenshots
taken via the webshot package (Chang 2018). Of course, you need to install
the webshot package. Additionally, you have to install PhantomJS
(http://phantomjs.org), since it is what webshot uses to capture
screenshots. Both webshot and PhantomJS can be installed automatically
from R:

install.packages('webshot') 
webshot::install_phantomjs()

The function install_phantomjs() works for Windows, OS X, and Linux.

You may also choose to download and install PhantomJS by yourself, if you
are familiar with modifying the system environment variable PATH.

When knitr detects an HTML widget object in a code chunk, it either
renders the widget normally when the current output format is HTML, or
saves the widget as an HTML page and calls webshot to capture the screen
of the HTML page when the output format is not HTML. Here is an
example of a table created from the DT package (Xie, Cheng, and Tan
2018):

20http://htmlwidgets.org

http://phantomjs.org/
http://htmlwidgets.org/


2.9 Index 45

DT::datatable(iris)

Figure 2.5: A table widget rendered via the DT package.

If you are reading this book as web pages now, you should see an
interactive table generated from the above code chunk, e.g., you may sort
the columns and search in the table. If you are reading a non-HTML
version of this book, you should see a screenshot of the table. The
screenshot may look a little different with the actual widget rendered in
the web browser, due to the difference between a real web browser and
PhantomJS’s virtual browser.

There are a number of knitr chunk options related to screen-capturing.

First, if you are not satisfied with the quality of the automatic screenshots,

or want a screenshot of the widget of a particular state (e.g., after you click
and sort a certain column of a table), you may capture the screen manually,

and provide your own screenshot via the chunk option screenshot.alt
(alternative screenshots). This option takes the paths of images. If you have
multiple widgets in a chunk, you can provide a vector of image paths.

When this option is present, knitr will no longer call webshot to take
automatic screenshots.



46 2 Components

Second, sometimes you may want to force knitr to use static screenshots
instead of rendering the actual widgets even on HTML pages. In this case,

you can set the chunk option screenshot.force = TRUE, and widgets will
always be rendered as static images. Note that you can still choose to use
automatic or custom screenshots.

Third, webshot has some options to control the automatic screenshots,

and you may specify these options via the chunk option screenshot.opts,

which takes a list like list(delay = 2, cliprect = 'viewport'). See
the help page ?webshot::webshot for the full list of possible options, and
the package vignette21 vignette('intro', package = 'webshot')
illustrates the effect of these options. Here the delay option can be
important for widgets that take long time to render: delay specifies the
number of seconds to wait before PhantomJS takes the screenshot. If you
see an incomplete screenshot, you may want to specify a longer delay (the
default is 0.2 seconds).

Fourth, if you feel it is slow to capture the screenshots, or do not want to do
it every time the code chunk is executed, you may use the chunk option
cache = TRUE to cache the chunk. Caching works for both HTML and non-

HTML output formats.

Screenshots behave like normal R plots in the sense that many chunk
options related to figures also apply to screenshots, including fig.width,

fig.height, out.width, fig.cap, and so on. So you can specify the size of
screenshots in the output document, and assign figure captions to them as
well. The image format of the automatic screenshots can be specified via
the chunk option dev, and possible values are pdf, png, and jpeg. The
default for PDF output is pdf, and it is png for other types of output. Note
that pdf may not work as faithfully as png: sometimes there are certain
elements on an HTML page that fail to render to the PDF screenshot, so
you may want to use dev = 'png' even for PDF output. It depends on
specific cases of HTML widgets, and you can try both pdf and png (or jpeg)

before deciding which format is more desirable.

21https://cran.rstudio.com/web/packages/webshot/vignettes/intro.html

https://cran.rstudio.com/web/packages/webshot/vignettes/intro.html


2.11 Web pages and Shiny apps 47

Similar to HTML widgets, arbitrary web pages can be embedded in the
book. You can use the function knitr::include_url() to include a web
page through its URL. When the output format is HTML, an iframe is
used;22 in other cases, knitr tries to take a screenshot of the web page (or
use the custom screenshot you provided). All chunk options are the same
as those for HTML widgets. One option that may require your special
attention is the delay option: HTML widgets are rendered locally, so
usually they are fast to load for PhantomJS to take screenshots, but an
arbitrary URL may take longer to load, so you may want to use a larger
delay value, e.g., use the chunk option screenshot.opts = list(delay
= 5).

A related function is knitr::include_app(), which is very similar to
include_url(), and it was designed for embedding Shiny apps via their
URLs in the output. Its only difference with include_url() is that it
automatically adds a query parameter ?showcase=0 to the URL, if no other
query parameters are present in the URL, to disable the Shiny showcase
mode, which is unlikely to be useful for screenshots or iframes. If you do
want the showcase mode, use include_url() instead of include_app().

Below is a Shiny app example (Figure 2.6):

knitr::include_app('https://yihui.shinyapps.io/miniUI/', height = '600

22An iframe is basically a box on one web page to embed another web page.

2.11  Web pages and Shiny apps



48 2 Components

(https://yihui.shinyapps.io/miniUI/)

Figure 2.6: A Shiny app created via the miniUI package; you can see a live
version at https://yihui.shinyapps.io/miniUI/.

Again, you will see a live app if you are reading an HTML version of this
book, and a static screenshot if you are reading other types of formats. The
above Shiny app was created using the miniUI package (Cheng 2018),

which provides layout functions that are particularly nice for Shiny apps
on small screens. If you use normal Shiny layout functions, you are likely to
see vertical and/or horizontal scrollbars in the iframes because the page
size is too big to fit an iframe. When the default width of the iframe is too
small, you may use the chunk option out.width to change it. For the
height of the iframe, use the height argument of
include_url()/include_app().

Shiny apps may take even longer to load than usual URLs. You may want to
use a conservative value for the delay option, e.g., 10. Needless to say,

include_url() and include_app() require a working Internet

https://yihui.shinyapps.io/miniUI/
https://yihui.shinyapps.io/miniUI/


2.11 Web pages and Shiny apps 49

connection, unless you have previously cached the chunk (but web pages
inside iframes still will not work without an Internet connection).





51

The bookdown package primarily supports three types of output formats:

HTML, LaTeX/PDF, and e-books. In this chapter, we introduce the possible
options for these formats. Output formats can be specified either in the
YAML metadata of the first Rmd file of the book, or in a separate YAML file
named _output.yml under the root directory of the book. Here is a brief
example of the former (output formats are specified in the output field of
the YAML metadata):

--- 
title: "An Impressive Book" 
author: "Li Lei and Han Meimei" 
output: 
  bookdown::gitbook: 
    lib_dir: assets 
    split_by: section 
    config: 
      toolbar: 
        position: static 
  bookdown::pdf_book: 
    keep_tex: yes 
  bookdown::html_book: 
    css: toc.css 
documentclass: book 
---

Here is an example of _output.yml:

bookdown::gitbook: 
  lib_dir: assets 
  split_by: section 
  

Output Formats

3 



52 3 Output Formats

config: 
    toolbar: 
      position: static 
bookdown::pdf_book: 
  keep_tex: yes 
bookdown::html_book: 
  css: toc.css

In this case, all formats should be at the top level, instead of under an
output field. You do not need the three dashes --- in _output.yml.

The main difference between rendering a book (using bookdown) with
rendering a single R Markdown document (using rmarkdown) to HTML is
that a book will generate multiple HTML pages by default — normally one
HTML file per chapter. This makes it easier to bookmark a certain chapter
or share its URL with others as you read the book, and faster to load a book
into the web browser. Currently we have provided a number of different
styles for HTML output: the GitBook style, the Bootstrap style, and the
Tufte style.

3.1.1  GitBook style

The GitBook style was borrowed from GitBook, a project launched by
Friendcode, Inc. (https://www.gitbook.com) and dedicated to helping
authors write books with Markdown. It provides a beautiful style, with a
layout consisting of a sidebar showing the table of contents on the left, and
the main body of a book on the right. The design is responsive to the
window size, e.g., the navigation buttons are displayed on the left/right of
the book body when the window is wide enough, and collapsed into the
bottom when the window is narrow to give readers more horizontal space
to read the book body.

We have made several improvements over the original GitBook project.
The most significant one is that we replaced the Markdown engine with R

3.1  HTML

https://www.gitbook.com/


3.1 HTML 53

Markdown v2 based on Pandoc, so that there are a lot more features for
you to use when writing a book:

You can embed R code chunks and inline R expressions in

Markdown, and this makes it easy to create reproducible documents

and frees you from synchronizing your computation with its actual

output (knitr will take care of it automatically).

The Markdown syntax is much richer: you can write anything that

Pandoc’s Markdown supports, such as LaTeX math expressions and

citations.

You can embed interactive content in the book (for HTML output

only), such as HTML widgets and Shiny apps.

We have also added some useful features in the user interface that we will
introduce in detail soon. The output format function for the GitBook style
in bookdown is gitbook(). Here are its arguments:

gitbook(fig_caption = TRUE, number_sections = TRUE, 
  self_contained = FALSE, lib_dir = "libs", 
  pandoc_args = NULL, ..., template = "default", 
  split_by = c("chapter", "chapter+number", "section", "section+number
  split_bib = TRUE, config = list(), table_css = TRUE)

Most arguments are passed to rmarkdown::html_document(), including
fig_caption, lib_dir, and .... You can check out the help page of
rmarkdown::html_document() for the full list of possible options. We
strongly recommend you to use fig_caption = TRUE for two reasons: 1) it
is important to explain your figures with captions; 2) enabling figure
captions means figures will be placed in floating environments when the
output is LaTeX, otherwise you may end up with a lot of white space on
certain pages. The format of figure/table numbers depends on if sections
are numbered or not: if number_sections = TRUE, these numbers will be
of the format X.i, where X is the chapter number, and i in an incremental
number; if sections are not numbered, all figures/tables will be numbered
sequentially through the book from 1, 2, …, N. Note that in either case,

figures and tables will be numbered independently.



54 3 Output Formats

Among all possible arguments in ..., you are most likely to use the css
argument to provide one or more custom CSS files to tweak the default
CSS style. There are a few arguments of html_document() that have been
hard-coded in gitbook() and you cannot change them: toc = TRUE (there
must be a table of contents), theme = NULL (not using any Bootstrap
themes), and template (there exists an internal GitBook template).

Please note that if you change self_contained = TRUE to make self-
contained HTML pages, the total size of all HTML files can be significantly
increased since there are many JS and CSS files that have to be embedded
in every single HTML file.

Besides these html_document() options, gitbook() has three other
arguments: split_by, split_bib, and config. The split_by argument
specifies how you want to split the HTML output into multiple pages, and
its possible values are:

rmd: use the base filenames of the input Rmd files to create the

HTML filenames, e.g., generate chapter3.html for chapter3.Rmd.

none: do not split the HTML file (the book will be a single HTML

file).

chapter: split the file by the first-level headers.

section: split the file by the second-level headers.

chapter+number and section+number: similar to chapter and

section, but the files will be numbered.

For chapter and section, the HTML filenames will be determined by the
header identifiers, e.g., the filename for the first chapter with a chapter
title # Introduction will be introduction.html by default. For
chapter+number and section+number, the chapter/section numbers will
be prepended to the HTML filenames, e.g., 1-introduction.html and 2-
1-literature.html. The header identifier is automatically generated



3.1 HTML 55

from the header text by default,23 and you can manually specify an
identifier using the syntax {#your-custom-id} after the header text, e.g.,

# An Introduction {#introduction} 
 
The default identifier is `an-introduction` but we changed 
it to `introduction`.

By default, the bibliography is split and relevant citation items are put at
the bottom of each page, so that readers do not have to navigate to a
different bibliography page to see the details of citations. This feature can
be disabled using split_bib = FALSE, in which case all citations are put
on a separate page.

There are several sub-options in the config option for you to tweak some
details in the user interface. Recall that all output format options (not only
for bookdown::gitbook) can be either passed to the format function if you
use the command-line interface bookdown::render_book(), or written in
the YAML metadata. We display the default sub-options of config in the
gitbook format as YAML metadata below (note that they are indented
under the config option):

bookdown::gitbook: 
  config: 
    toc: 
      collapse: subsection 
      scroll_highlight: yes 
      before: null 
      after: null 
    toolbar: 
      position: fixed 
    edit : null 
    download: null 
    search: yes 
    fontsettings: 
      

23To see more details on how an identifier is automatically generated, see the auto_identifiers
extension in Pandoc’s documentation http://pandoc.org/MANUAL.html#header-
identifiers

http://pandoc.org/MANUAL.html#header-identifiers


56 3 Output Formats

theme: white 
      family: sans 
      size: 2 
    sharing: 
      facebook: yes 
      twitter: yes 
      google: no 
      linkedin: no 
      weibo: no 
      instapaper: no 
      vk: no 
      all: ['facebook', 'google', 'twitter', 'linkedin', 'weibo', 'ins

The toc option controls the behavior of the table of contents (TOC). You
can collapse some items initially when a page is loaded via the collapse
option. Its possible values are subsection, section, none (or null). This
option can be helpful if your TOC is very long and has more than three
levels of headings: subsection means collapsing all TOC items for
subsections (X.X.X), section means those items for sections (X.X) so only
the top-level headings are displayed initially, and none means not
collapsing any items in the TOC. For those collapsed TOC items, you can
toggle their visibility by clicking their parent TOC items. For example, you
can click a chapter title in the TOC to show/hide its sections.

The scroll_highlight option in toc indicates whether to enable
highlighting of TOC items as you scroll the book body (by default this
feature is enabled). Whenever a new header comes into the current
viewport as you scroll down/up, the corresponding item in TOC on the left
will be highlighted.

Since the sidebar has a fixed width, when an item in the TOC is truncated
because the heading text is too wide, you can hover the cursor over it to see
a tooltip showing the full text.

You may add more items before and after the TOC using the HTML tag
<li>. These items will be separated from the TOC using a horizontal
divider. You can use the pipe character | so that you do not need to escape
any characters in these items following the YAML syntax, e.g.,

    toc: 
      before: | 



3.1 HTML 57

<li><a href="...">My Awesome Book</a></li> 
        <li><a href="...">John Smith</a></li> 
      after: | 
        <li><a href="https://github.com/rstudio/bookdown"> 
        Proudly published with bookdown</a></li>

As you navigate through different HTML pages, we will try to preserve the
scroll position of the TOC. Normally you will see the scrollbar in the TOC at
a fixed position even if you navigate to the next page. However, if the TOC
item for the current chapter/section is not visible when the page is loaded,

we will automatically scroll the TOC to make it visible to you.

Figure 3.1: The GitBook toolbar.

The GitBook style has a toolbar (Figure 3.1) at the top of each page that
allows you to dynamically change the book settings. The toolbar option
has a sub-option position, which can take values fixed or static. The
default is that the toolbar will be fixed at the top of the page, so even if you
scroll down the page, the toolbar is still visible there. If it is static, the
toolbar will not scroll with the page, i.e., once you scroll away, you will no
longer see it.

The first button on the toolbar can toggle the visibility of the sidebar. You
can also hit the S key on your keyboard to do the same thing. The GitBook
style can remember the visibility status of the sidebar, e.g., if you closed the
sidebar, it will remain closed the next time you open the book. In fact, the
GitBook style remembers many other settings as well, such as the search
keyword and the font settings.

The second button on the toolbar is the search button. Its keyboard
shortcut is F (Find). When the button is clicked, you will see a search box at



58 3 Output Formats

the top of the sidebar. As you type in the box, the TOC will be filtered to
display the sections that match the search keyword. Now you can use the
arrow keys Up/Down to highlight the next keyword on the current page.

When you click the search button again (or hit F outside the search box),

the search keyword will be emptied and the search box will be hidden. To
disable searching, set the option search: no in config.

The third button is for font/theme settings. You can change the font size
(bigger or smaller), the font family (serif or sans serif), and the theme
(White, Sepia, or Night). These settings can be changed via the
fontsettings option.

The edit option is the same as the option mentioned in Section 4.4. If it is
not empty, an edit button will be added to the toolbar. This was designed
for potential contributors to the book to contribute by editing the book on
GitHub after clicking the button and sending pull requests.

If your book has other output formats for readers to download, you may
provide the download option so that a download button can be added to
the toolbar. This option takes either a character vector, or a list of character
vectors with the length of each vector being 2. When it is a character
vector, it should be either a vector of filenames, or filename extensions,

e.g., both of the following settings are okay:

    download: ["book.pdf", "book.epub"] 
    download: ["pdf", "epub", "mobi"]

When you only provide the filename extensions, the filename is derived
from the book filename of the configuration file _bookdown.yml (Section
4.4). When download is null, gitbook() will look for PDF, EPUB, and
MOBI files in the book output directory, and automatically add them to the
download option. If you just want to suppress the download button, use
download: no. All files for readers to download will be displayed in a drop-

down menu, and the filename extensions are used as the menu text. When
the only available format for readers to download is PDF, the download
button will be a single PDF button instead of a drop-down menu.

An alternative form for the value of the download option is a list of length-2

vectors, e.g.,



3.1 HTML 59

    download: [["book.pdf", "PDF"], ["book.epub", "EPUB"]]

You can also write it as:

    download: 
      - ["book.pdf", "PDF"] 
      - ["book.epub", "EPUB"]

Each vector in the list consists of the filename and the text to be displayed
in the menu. Compared to the first form, this form allows you to customize
the menu text, e.g., you may have two different copies of the PDF for
readers to download and you will need to make the menu items different.

On the right of the toolbar, there are some buttons to share the link on
social network websites such as Twitter, Facebook, and Google+. You can
use the sharing option to decide which buttons to enable. If you want to
get rid of these buttons entirely, use sharing: null (or no).

Finally, there are a few more top-level options in the YAML metadata that
can be passed to the GitBook HTML template via Pandoc. They may not
have clear visible effects on the HTML output, but they may be useful when
you deploy the HTML output as a website. These options include:

description: A character string to be written to the content

attribute of the tag <meta name="description" content=""> in

the HTML head (if missing, the title of the book will be used). This

can be useful for search engine optimization (SEO). Note that it

should be plain text without any Markdown formatting such as

_italic_ or **bold**.

url: The URL of book’s website, e.g.,

https\://bookdown.org/yihui/bookdown/.24

24The backslash before : is due to a technical issue: we want to prevent Pandoc from translating the link

to HTML code <a href="..."></a>. More details at

https://github.com/jgm/pandoc/issues/2139.

https://github.com/jgm/pandoc/issues/2139


60 3 Output Formats

github-repo: The GitHub repository of the book of the form

user/repo.

cover-image: The path to the cover image of the book.

apple-touch-icon: A path to an icon (e.g., a PNG image). This is for

iOS only: when the website is added to the Home screen, the link is

represented by this icon.

apple-touch-icon-size: The size of the icon (by default, 152 x 152

pixels).

favicon: A path to the “favorite icon”. Typically this icon is displayed

in the browser’s address bar, or in front of the page title on the tab if

the browser support tabs.

Below we show some sample YAML metadata (again, please note that these
are top-level options):

--- 
title: "An Awesome Book" 
author: "John Smith" 
description: "This book introduces the ABC theory, and ..." 
url: 'https\://bookdown.org/john/awesome/' 
github-repo: "john/awesome" 
cover-image: "images/cover.png" 
apple-touch-icon: "touch-icon.png" 
apple-touch-icon-size: 120 
favicon: "favicon.ico" 
---

A nice effect of setting description and cover-image is that when you
share the link of your book on some social network websites such as
Twitter, the link can be automatically expanded to a card with the cover
image and description of the book.

3.1.2  Bootstrap style

If you have used R Markdown before, you should be familiar with the
Bootstrap style (http://getbootstrap.com), which is the default style of
the HTML output of R Markdown. The output format function in
rmarkdown is html_document(), and we have a corresponding format

http://getbootstrap.com/


3.1 HTML 61

html_book() in bookdown using html_document() as the base format. In
fact, there is a more general format html_chapters() in bookdown and
html_book() is just its special case:

html_chapters(toc = TRUE, number_sections = TRUE, 
  fig_caption = TRUE, lib_dir = "libs", 
  template = bookdown_file("templates/default.html"), 
  pandoc_args = NULL, ..., 
  base_format = rmarkdown::html_document, 
  split_bib = TRUE, page_builder = build_chapter, 
  split_by = c("section+number", "section", "chapter+number", "chapter

Note that it has a base_format argument that takes a base output format
function, and html_book() is basically html_chapters(base_format =
rmarkdown::html_document). All arguments of html_book() are passed
to html_chapters():

html_book(...)

That means that you can use most arguments of
rmarkdown::html_document, such as toc (whether to show the table of
contents), number_sections (whether to number section headings), and
so on. Again, check the help page of rmarkdown::html_document to see the
full list of possible options. Note that the argument self_contained is
hard-coded to FALSE internally, so you cannot change the value of this
argument. We have explained the argument split_by in the previous
section.

The arguments template and page_builder are for advanced users, and
you do not need to understand them unless you have strong need to
customize the HTML output, and those many options provided by
rmarkdown::html_document() still do not give you what you want.

If you want to pass a different HTML template to the template argument,
the template must contain three pairs of HTML comments, and each
comment must be on a separate line:

<!--bookdown:title:start--> and <!--bookdown:title:end-->

to mark the title section of the book. This section will be placed only



62 3 Output Formats

on the first page of the rendered book;

<!--bookdown:toc:start--> and <!--bookdown:toc:end--> to

mark the table of contents section, which will be placed on all HTML

pages;

<!--bookdown:body:start--> and <!--bookdown:body:end--> to

mark the HTML body of the book, and the HTML body will be split

into multiple separate pages. Recall that we merge all R Markdown

or Markdown files, render them into a single HTML file, and split it.

You may open the default HTML template to see where these comments
were inserted:

bookdown:::bookdown_file('templates/default.html') 
# you may use file.edit() to open this file

Once you know how bookdown works internally to generate multiple-page
HTML output, it will be easier to understand the argument page_builder,

which is a function to compose each individual HTML page using the
HTML fragments extracted from the above comment tokens. The default
value of page_builder is a function build_chapter in bookdown, and its
source code is relatively simple (ignore those internal functions like
button_link()):

function (head, toc, chapter, link_prev, link_next, rmd_cur, html_cur,
{ 
    toc = gsub("^(<li>)(.+<ul>)$", "<li class=\"has-sub\">\\2", toc) 
    paste(c(head, "<div class=\"row\">", "<div class=\"col-sm-12\">", 
}

Basically, this function takes a number of components like the HTML head,

the table of contents, the chapter body, and so on, and it is expected to
return a character string which is the HTML source of a complete HTML
page. You may manipulate all components in this function using text-
processing functions like gsub() and paste().

What the default page builder does is to put TOC in the first row, the body
in the second row, navigation buttons at the bottom of the body, and



3.1 HTML 63

concatenate them with the HTML head and foot. Here is a sketch of the
HTML source code that may help you understand the output of
build_chapter():

<html> 
  <head> 
    <title>A Nice Book</title> 
  </head> 
  <body> 
   
    <div class="row">TOC</div> 
     
    <div class="row"> 
      CHAPTER BODY 
      <p> 
        <button>PREVIOUS</button> 
        <button>NEXT</button> 
      </p> 
    </div> 
   
  </body> 
</html>

For all HTML pages, the main difference is the chapter body, and most of
the rest of the elements are the same. The default output from
html_book() will include the Bootstrap CSS and JavaScript files in the
<head> tag.

The TOC is often used for navigation purposes. In the GitBook style, the
TOC is displayed in the sidebar. For the Bootstrap style, we did not apply a
special style to it, so it is shown as a plain unordered list (in the HTML tag
<ul>). It is easy to turn this list into a navigation bar with some CSS
techniques. We have provided a CSS file toc.css in this package that you
can use, and you can find it here:

https://github.com/rstudio/bookdown/blob/master/inst/examples/css/toc.c

You may copy this file to the root directory of your book, and apply it to the
HTML output via the css option, e.g.,

--- 
output: 

https://github.com/rstudio/bookdown/blob/master/inst/examples/css/toc.css


64 3 Output Formats

bookdown::html_book: 
    toc: yes 
    css: toc.css 
---

There are many possible ways to turn <ul> lists into navigation menus if
you do a little bit searching on the web, and you can choose a menu style
that you like. The toc.css we just mentioned is a style with white menu
texts on a black background, and supports sub-menus (e.g., section titles
are displayed as drop-down menus under chapter titles).

As a matter of fact, you can get rid of the Bootstrap style in
html_document() if you set the theme option to null, and you are free to
apply arbitrary styles to the HTML output using the css option (and
possibly the includes option if you want to include arbitrary content in
the HTML head/foot).

3.1.3  Tufte style

Like the Bootstrap style, the Tufte style is provided by an output format
tufte_html_book(), which is also a special case of html_chapters()
using tufte::tufte_html() as the base format. Please see the tufte
package (Xie and Allaire 2018) if you are not familiar with the Tufte style.

Basically, it is a layout with a main column on the left and a margin
column on the right. The main body is in the main column, and the margin
column is used to place footnotes, margin notes, references, and margin
figures, and so on.

All arguments of tufte_html_book() have exactly the same meanings as
html_book(), e.g., you can also customize the CSS via the css option.

There are a few elements that are specific to the Tufte style, though, such
as margin notes, margin figures, and full-width figures. These elements
require special syntax to generate; please see the documentation of the
tufte package. Note that you do not need to do anything special to
footnotes and references (just use the normal Markdown syntax
^[footnote] and [@citation]), since they will be automatically put in the
margin. A brief YAML example of the tufte_html_book format:



3.2 LaTeX/PDF 65

--- 
output: 
  bookdown::tufte_html_book: 
    toc: yes 
    css: toc.css 
---

We strongly recommend that you use an HTML output format instead of
LaTeX when you develop a book, since you will not be too distracted by the
typesetting details, which can bother you a lot if you constantly look at the
PDF output of a book. Leave the job of careful typesetting to the very end
(ideally after you have really finished the content of the book).

The LaTeX/PDF output format is provided by pdf_book() in bookdown.

There is not a significant difference between pdf_book() and the
pdf_document() format in rmarkdown. The main purpose of pdf_book()
is to resolve the labels and cross-references written using the syntax
described in Sections 2.4, 2.5, and 2.6. If the only output format that you
want for a book is LaTeX/PDF, you may use the syntax specific to LaTeX,

such as \label{} to label figures/tables/sections, and \ref{} to cross-

reference them via their labels, because Pandoc supports LaTeX
commands in Markdown. However, the LaTeX syntax is not portable to
other output formats, such as HTML and e-books. That is why we
introduced the syntax (\#label) for labels and \@ref(label) for cross-

references.

There are some top-level YAML options that will be applied to the LaTeX
output. For a book, you may change the default document class to book
(the default is article), and specify a bibliography style required by your
publisher. A brief YAML example:

--- 
documentclass: book 

3.2  LaTeX/PDF



66 3 Output Formats

bibliography: [book.bib, packages.bib] 
biblio-style: apalike 
---

There are a large number of other YAML options that you can specify for
LaTeX output, such as the paper size, font size, page margin, line spacing,

font families, and so on. See
http://pandoc.org/MANUAL.html#variables-for-latex for a full list of
options.

The pdf_book() format is a general format like html_book(), and it also
has a base_format argument:

pdf_book(toc = TRUE, number_sections = TRUE, 
  fig_caption = TRUE, pandoc_args = NULL, ..., 
  base_format = rmarkdown::pdf_document, 
  toc_unnumbered = TRUE, toc_appendix = FALSE, 
  toc_bib = FALSE, quote_footer = NULL, 
  highlight_bw = FALSE)

You can change the base_format function to other output format
functions, and bookdown has provided a simple wrapper function
tufte_book2(), which is basically pdf_book(base_format =
tufte::tufte_book), to produce a PDF book using the Tufte PDF style
(again, see the tufte package).

Currently bookdown provides two e-book formats, EPUB and MOBI.
Books in these formats can be read on devices like smartphones, tablets, or
special e-readers such as Kindle.

3.3.1  EPUB

To create an EPUB book, you can use the epub_book() format. It has some
options in common with rmarkdown::html_document():

3.3  E-Books

http://pandoc.org/MANUAL.html#variables-for-latex


3.3 E-Books 67

epub_book(fig_width = 5, fig_height = 4, dev = "png", 
  fig_caption = TRUE, number_sections = TRUE, 
  toc = FALSE, toc_depth = 3, stylesheet = NULL, 
  cover_image = NULL, metadata = NULL, 
  chapter_level = 1, epub_version = c("epub3", "epub"), 
  md_extensions = NULL, pandoc_args = NULL, 
  template = "default")

The option toc is turned off because the e-book reader can often figure out
a TOC automatically from the book, so it is not necessary to add a few
pages for the TOC. There are a few options specific to EPUB:

stylesheet: It is similar to the css option in HTML output formats,

and you can customize the appearance of elements using CSS.

cover_image: The path to the cover image of the book.

metadata: The path to an XML file for the metadata of the book (see

Pandoc documentation for more details).

chapter_level: Internally an EPUB book is a series of “chapter”

files, and this option determines the level by which the book is split

into these files. This is similar to the split_by argument of HTML

output formats we mentioned in Section 3.1, but an EPUB book is a

single file, and you will not see these “chapter” files directly. The

default level is the first level, and if you set it to 2, it means the book

will be organized by section files internally, which may allow the

reader to load the book more quickly.

epub_version: Version 3 or 2 of EPUB.

An EPUB book is essentially a collection of HTML pages, e.g., you can apply
CSS rules to its elements, embed images, insert math expressions (because
MathML is partially supported), and so on. Figure/table captions, cross-

references, custom blocks, and citations mentioned in Chapter 2 also work
for EPUB. You may compare the EPUB output of this book to the HTML
output, and you will see that the only major difference is the visual
appearance.



68 3 Output Formats

There are several EPUB readers available, including Calibre
(https://www.calibre-ebook.com), Apple’s iBooks, and Google Play
Books.

3.3.2  MOBI

MOBI e-books can be read on Amazon’s Kindle devices. Pandoc does not
support MOBI output natively, but Amazon has provided a tool named
KindleGen (https://www.amazon.com/gp/feature.html?
docId=1000765211) to create MOBI books from other formats, including
EPUB and HTML. We have provided a simple wrapper function
kindlegen() in bookdown to call KindleGen to convert an EPUB book to
MOBI. This requires you to download KindleGen first, and make sure the
KindleGen executable can be found via the system environment variable
PATH.

Another tool to convert EPUB to MOBI is provided by Calibre. Unlike
KindleGen, Calibre is open-source and free, and supports conversion
among many more formats. For example, you can convert HTML to EPUB,

Word documents to MOBI, and so on. The function calibre() in
bookdown is a wrapper function of the command-line utility ebook-
convert in Calibre. Similarly, you need to make sure that the executable
ebook-convert can be found via the environment variable PATH. If you use
OS X, you can install both KindleGen and Calibre via Homebrew-Cask
(https://caskroom.github.io), so you do not need to worry about the
PATH issue.

Sometimes you may not want to write a book, but a single long-form
article or report instead. Usually what you do is call rmarkdown::render()
with a certain output format. The main features missing there are the
automatic numbering of figures/tables/equations, and cross-referencing
figures/tables/equations/sections. We have factored out these features

3.4  A single document

https://www.calibre-ebook.com/
https://www.amazon.com/gp/feature.html?docId=1000765211
https://caskroom.github.io/


3.4 A single document 69

from bookdown, so that you can use them without having to prepare a
book of multiple Rmd files.

The functions html_document2(), tufte_html2(), pdf_document2(),

word_document2(), tufte_handout2(), and tufte_book2() are designed
for this purpose. If you render an R Markdown document with the output
format, say, bookdown::html_document2, you will get figure/table
numbers and be able to cross-reference them in the single HTML page
using the syntax described in Chapter 2.

The above HTML and PDF output format functions are basically wrappers
of output formats bookdown::html_book and bookdown::pdf_book, in the
sense that they changed the base_format argument. For example, you can
take a look at the source code of pdf_document2:

bookdown::pdf_document2

## function (...)  
## { 
##     pdf_book(..., base_format = rmarkdown::pdf_document) 
## } 
## <bytecode: 0x55e6bc5456e8> 
## <environment: namespace:bookdown>

After you know this fact, you can apply the same idea to other output
formats by using the appropriate base_format. For example, you can port
the bookdown features to the jss_article format in the rticles package
(Allaire, Xie, R Foundation, et al. 2018) by using the YAML metadata:

output: 
  bookdown::pdf_book: 
    base_format: rticles::jss_article

Then you will be able to use all features we introduced in Chapter 2.

Although the gitbook() format was designed primarily for books, you can
actually also apply it to a single R Markdown document. The only
difference is that there will be no search button on the single page output,



70 3 Output Formats

because you can simply use the searching tool of your web browser to find
text (e.g., press Ctrl + F or Command + F). You may also want to set the
option split_by to none to only generate a single output page, in which
case there will not be any navigation buttons, since there are no other
pages to navigate to. You can still generate multiple-page HTML files if you
like. Another option you may want to use is self_contained = TRUE when
it is only a single output page.



71

As we mentioned in the very beginning of this book, you are expected to
have some basic knowledge about R Markdown, and we have been
focusing on introducing the bookdown features instead of rmarkdown. In
fact, R Markdown is highly customizable, and there are many options that
you can use to customize the output document. Depending on how much
you want to customize the output, you may use some simple options in the
YAML metadata, or just replace the entire Pandoc template.

For most types of output formats, you can customize the syntax
highlighting styles using the highlight option of the specific format.
Currently, the possible styles are default, tango, pygments, kate,

monochrome, espresso, zenburn, and haddock. For example, you can
choose the tango style for the gitbook format:

--- 
output: 
  bookdown::gitbook: 
    highlight: tango 
---

For HTML output formats, you are most likely to use the css option to
provide your own CSS stylesheets to customize the appearance of HTML
elements. There is an option includes that applies to more formats,

including HTML and LaTeX. The includes option allows you to insert

Customization

4 

4.1  YAML options



72 4 Customization

arbitrary custom content before and/or after the body of the output. It has
three sub-options: in_header, before_body, and after_body. You need to
know the basic structure of an HTML or LaTeX document to understand
these options. The source of an HTML document looks like this:

<html> 
   
  <head> 
  <!-- head content here, e.g. CSS and JS --> 
  </head> 
   
  <body> 
  <!-- body content here --> 
  </body> 
 
</html>

The in_header option takes a file path and inserts it into the <head> tag.

The before_body file will be inserted right below the opening <body> tag,

and after_body is inserted before the closing tag </body>.

A LaTeX source document has a similar structure:

\documentclass{book} 
 
% LaTeX preamble 
% insert in_header here 
 
\begin{document} 
% insert before_body here 
 
% body content here 
 
% insert after_body here 
\end{document}

The includes option is very useful and flexible. For HTML output, it
means you can insert arbitrary HTML code into the output. For example,

when you have LaTeX math expressions rendered via the MathJax library
in the HTML output, and want the equation numbers to be displayed on



4.1 YAML options 73

the left (default is on the right), you can create a text file that contains the
following code:

<script type="text/x-mathjax-config"> 
MathJax.Hub.Config({ 
  TeX: { TagSide: "left" } 
}); 
</script>

Let’s assume the file is named mathjax-number.html, and it is in the root
directory of your book (the directory that contains all your Rmd files). You
can insert this file into the HTML head via the in_header option, e.g.,

--- 
output: 
  bookdown::gitbook: 
    includes: 
      in_header: mathjax-number.html 
---

Another example is to enable comments or discussions on your HTML
pages. There are several possibilities, such as Disqus
(https://disqus.com) or Hypothesis (https://hypothes.is). These
services can be easily embedded in your HTML book via the includes
option (see Section 5.5 for details).

Similarly, if you are familiar with LaTeX, you can add arbitrary LaTeX code
to the preamble. That means you can use any LaTeX packages and set up
any package options for your book. For example, this book used the
in_header option to use a few more LaTeX packages like booktabs (for
better-looking tables) and longtable (for tables that span across multiple
pages), and applied a fix to an XeLaTeX problem that links on graphics do
not work:

\usepackage{booktabs} 
\usepackage{longtable} 
 
\ifxetex 
  

https://disqus.com/
https://hypothes.is/


74 4 Customization

\usepackage{letltxmacro} 
  \setlength{\XeTeXLinkMargin}{1pt} 
  \LetLtxMacro\SavedIncludeGraphics\includegraphics 
  \def\includegraphics#1#{% #1 catches optional stuff (star/opt. arg.)
    \IncludeGraphicsAux{#1}% 
  }% 
  \newcommand*{\IncludeGraphicsAux}[2]{% 
    \XeTeXLinkBox{% 
      \SavedIncludeGraphics#1{#2}% 
    }% 
  }% 
\fi

The above LaTeX code is saved in a file preamble.tex, and the YAML
metadata looks like this:

--- 
output: 
  bookdown::pdf_book: 
    includes: 
      in_header: preamble.tex 
---

Sometimes you may want to change the overall theme of the output, and
usually this can be done through the in_header option described in the
previous section, or the css option if the output is HTML. Some output
formats have their unique themes, such as gitbook, tufte_html_book,

and tufte_book2, and you may not want to customize these themes too
much. By comparison, the output formats html_book() and pdf_book()
are not tied to particular themes and more customizable.

As mentioned in Section 3.1.2, the default style for html_book() is the
Bootstrap style. The Bootstrap style actually has several built-in themes
that you can use, including default, cerulean, journal, flatly, darkly,

4.2  Theming



4.2 Theming 75

readable, spacelab, united, cosmo, lumen, paper, sandstone, simplex,

and yeti. You can set the theme via the theme option, e.g.,

--- 
output: 
  bookdown::html_book: 
    theme: united 
---

If you do not like any of these Bootstrap styles, you can set theme to null,

and apply your own CSS through the css or includes option.

For pdf_book(), besides the in_header option mentioned in the previous
section, another possibility is to change the document class. There are
many possible LaTeX classes for books, such as memoir
(https://www.ctan.org/pkg/memoir), amsbook
(https://www.ctan.org/pkg/amsbook), KOMA-Script
(https://www.ctan.org/pkg/koma-script) and so on. Here is a brief
sample of the YAML metadata specifying the scrbook class from the
KOMA-Script package:

--- 
documentclass: scrbook 
output: 
  bookdown::pdf_book: 
    template: null 
---

Some publishers (e.g., Springer and Chapman & Hall/CRC) have their own
LaTeX style or class files. You may try to change the documentclass option
to use their document classes, although typically it is not as simple as that.
You may end up using in_header, or even design a custom Pandoc LaTeX
template to accommodate these document classes.

Note that when you change documentclass, you are likely to specify an
additional Pandoc argument --top-level-division=chapter so that
Pandoc knows the first-level headers should be treated as chapters instead
of sections (this is the default when documentclass is book), e.g.,

https://www.ctan.org/pkg/memoir
https://www.ctan.org/pkg/amsbook
https://www.ctan.org/pkg/koma-script


76 4 Customization

documentclass: krantz 
output: 
  bookdown::pdf_book: 
    pandoc_args: --top-level-division=chapter

When Pandoc converts Markdown to another output format, it uses a
template under the hood. The template is a plain-text file that contains
some variables of the form $variable$. These variables will be replaced by
their values generated by Pandoc. Below is a very brief template for HTML
output:

<html> 
  <head> 
    <title>$title$</title> 
  </head> 
   
  <body> 
  $body$ 
  </body> 
</html>

It has two variables title and body. The value of title comes from the
title field of the YAML metadata, and body is the HTML code generated
from the body of the Markdown input document. For example, suppose we
have a Markdown document:

--- 
title: A Nice Book 
--- 
 
# Introduction 
 
This is a **nice** book!

4.3  Templates



4.4 Configuration 77

If we use the above template to generate an HTML document, its source
code will be like this:

<html> 
  <head> 
    <title>A Nice Book</title> 
  </head> 
   
  <body> 
   
  <h1>Introduction</h1> 
   
  <p>This is a <strong>nice</strong> book!</p> 
   
  </body> 
</html>

The actual HTML, LaTeX, and EPUB templates are more complicated, but
the idea is the same. You need to know what variables are available: some
variables are built-in Pandoc variables, and some can be either defined by
users in the YAML metadata, or passed from the command-line option -V
or --variable. Some variables only make sense in specific output formats,

e.g., the documentclass variable is only used in LaTeX output. Please see
the documentation of Pandoc to learn more about these variables, and you
can find all default Pandoc templates in the GitHub repository
https://github.com/jgm/pandoc-templates.

Note that for HTML output, bookdown requires some additional comment
tokens in the template, and we have explained them in Section 3.1.2.

We have mentioned rmd_files in Section 1.3, and there are more
(optional) settings you can configure for a book in _bookdown.yml:

4.4  Configuration

https://github.com/jgm/pandoc-templates


78 4 Customization

book_filename: the filename of the main Rmd file, i.e., the Rmd file

that is merged from all chapters; by default, it is named _main.Rmd.

delete_merged_file: whether to delete the main Rmd file if it

exists.

before_chapter_script: one or multiple R scripts to be executed

before each chapter, e.g., you may want to clear the workspace

before compiling each chapter, in which case you can use rm(list =

ls(all = TRUE)) in the R script.

after_chapter_script: similar to before_chapter_script, and

the R script is executed after each chapter.

edit: a link that collaborators can click to edit the Rmd source

document of the current page; this was designed primarily for

GitHub repositories, since it is easy to edit arbitrary plain-text files

on GitHub even in other people’s repositories (if you do not have

write access to the repository, GitHub will automatically fork it and

let you submit a pull request after you finish editing the file). This

link should have %s in it, which will be substituted by the actual Rmd

filename for each page.

rmd_subdir: whether to search for book source Rmd files in

subdirectories (by default, only the root directory is searched). This

may be either a boolean (e.g. true will search for book source Rmd

files in the project directory and all subdirectories) or list of paths if

you want to search for book source Rmd files in a subset of

subdirectories.

output_dir: the output directory of the book (_book by default); this

setting is read and used by render_book().

clean: a vector of files and directories to be cleaned by the

clean_book() function.

Here is a sample _bookdown.yml:

book_filename: "my-book.Rmd" 
before_chapter_script: ["script1.R", "script2.R"] 
after_chapter_script: "script3.R" 



4.5 Internationalization 79

edit: https://github.com/rstudio/bookdown-demo/edit/master/%s 
output_dir: "book-output" 
clean: ["my-book.bbl", "R-packages.bib"]

If the language of your book is not English, you will need to translate
certain English words and phrases into your language, such as the words
“Figure” and “Table” when figures/tables are automatically numbered in
the HTML output. Internationalization may not be an issue for LaTeX
output, since some LaTeX packages can automatically translate these
terms into the local language, such as the ctexcap package for Chinese.

For non-LaTeX output, you can set the language field in the configuration
file _bookdown.yml. Currently the default settings are:

language: 
  label: 
    fig: 'Figure ' 
    tab: 'Table ' 
    eq: 'Equation ' 
    thm: 'Theorem ' 
    lem: 'Lemma ' 
    cor: 'Corollary ' 
    prp: 'Proposition ' 
    cnj: 'Conjecture ' 
    def: 'Definition ' 
    exm: 'Example ' 
    exr: 'Exercise ' 
    proof: 'Proof. ' 
    remark: 'Remark. ' 
    solution: 'Solution. ' 
  ui: 
    edit: Edit 
    chapter_name: ''

For example, if you want FIGURE x.x instead of Figure x.x, you can
change fig to "FIGURE ":

4.5  Internationalization



80 4 Customization

language: 
  label: 
    fig: "FIGURE "

The fields under ui are used to specify some terms in the user interface.

The edit field specifies the text associated with the edit link in
_bookdown.yml (Section 4.4). The chapter_name field can be either a
character string to be prepended to chapter numbers in chapter titles (e.g.,

'CHAPTER '), or an R function that takes the chapter number as the input
and returns a string as the new chapter number (e.g., !expr function(i)
paste('Chapter', i)). If it is a character vector of length 2, the chapter
title prefix will be paste0(chapter_name[1], i, chapter_name[2]),

where i is the chapter number.

There is one caveat when you write in a language that uses multibyte
characters, such as Chinese, Japanese, and Korean (CJK): Pandoc cannot
generate identifiers from section headings that are pure CJK characters, so
you will not be able to cross-reference sections (they do not have labels),

unless you manually assign identifiers to them by appending
{#identifier} to the section heading, where identifier is an identifier
of your choice.



81

In this chapter, we explain how to edit, build, preview, and serve the book
locally. You can use any text editors to edit the book, and we will show
some tips for using the RStudio IDE. We will introduce the underlying R
functions for building, previewing, and serving the book before we
introduce the editor, so that you really understand what happens behind
the scenes when you click a certain button in the RStudio IDE, and can also
customize other editors calling these functions.

To build all Rmd files into a book, you can call the render_book() function
in bookdown. Below are the arguments of render_book():

render_book(input, output_format = NULL, ..., 
  clean = TRUE, envir = parent.frame(), 
  clean_envir = !interactive(), output_dir = NULL, 
  new_session = NA, preview = FALSE, 
  encoding = "UTF-8", config_file = "_bookdown.yml")

The most important argument is output_format, which can take a
character string of the output format (e.g., 'bookdown::gitbook'). You
can leave this argument empty, and the default output format will be the
first output format specified in the YAML metadata of the first Rmd file or
a separate YAML file _output.yml, as mentioned in Section 4.4. If you plan
to generate multiple output formats for a book, you are recommended to
specify all formats in _output.yml.

Editing

5 

5.1  Build the book



82 5 Editing

Once all formats are specified in _output.yml, it is easy to write an R or
Shell script or Makefile to compile the book. Below is a simple example of
using a Shell script to compile a book to HTML (with the GitBook style) and
PDF:

#!/usr/bin/env Rscript 
 
bookdown::render_book("index.Rmd", "bookdown::gitbook") 
bookdown::render_book("index.Rmd", "bookdown::pdf_book")

The Shell script does not work on Windows (not strictly true, though), but
hopefully you get the idea.

The argument ... is passed to the output format function. Arguments
clean and envir are passed to rmarkdown::render(), to decide whether
to clean up the intermediate files, and specify the environment to evaluate
R code, respectively.

The output directory of the book can be specified via the output_dir
argument. By default, the book is generated to the _book directory. This
can also be changed via the output_dir field in the configuration file
_bookdown.yml, so that you do not have to specify it multiple times for
rendering a book to multiple output formats. The new_session argument
has been explained in Section 1.4. When you set preview = TRUE, only the
Rmd files specified in the input argument are rendered, which can be
convenient when previewing a certain chapter, since you do not recompile
the whole book, but when publishing a book, this argument should
certainly be set to FALSE.

When you render the book to multiple formats in the same R session, you
need to be careful because the next format may have access to R objects
created from the previous format. You are recommended to render the
book with a clean environment for each output format. The argument
clean_envir can be used to clean all objects in the environment specified
by envir. By default, it is TRUE for non-interactive R sessions (e.g., in batch
mode). Note that even clean_envir = TRUE does not really guarantee the
R session is clean. For example, packages loaded when rendering the
previous format will remain in the session for the next output format. To



5.2 Preview a chapter 83

make sure each format is rendered in a completely clean R session, you
have to actually launch a new R session to build each format, e.g., use the
command line

Rscript -e "bookdown::render_book('index.Rmd', 'bookdown::gitbook')" 
Rscript -e "bookdown::render_book('index.Rmd', 'bookdown::pdf_book')"

A number of output files will be generated by render_book(). Sometimes
you may want to clean up the book directory and start all over again, e.g.,

remove the figure and cache files that were generated automatically from
knitr. The function clean_book() was designed for this purpose. By
default, it tells you which output files you can possibly delete. If you have
looked at this list of files, and are sure no files were mistakenly identified
as output files (you certainly do not want to delete an input file that you
created by hand), you can delete all of them using
bookdown::clean_book(TRUE). Since deleting files is a relatively
dangerous operation, we would recommend that you maintain your book
through version control tools such as GIT, or a service that supports
backup and restoration, so you will not lose certain files forever if you
delete them by mistake.

Building the whole book can be slow when the size of the book is big. Two
things can affect the speed of building a book: the computation in R code
chunks, and the conversion from Markdown to other formats via Pandoc.

The former can be improved by enabling caching in knitr using the chunk
option cache = TRUE, and there is not much you can do to make the latter
faster. However, you can choose to render only one chapter at a time using
the function preview_chapter() in bookdown, and usually this will be
much faster than rendering the whole book. Only the Rmd files passed to
preview_chapter() will be rendered.

Previewing the current chapter is helpful when you are only focusing on
that chapter, since you can quickly see the actual output as you add more

5.2  Preview a chapter



84 5 Editing

content or revise the chapter. Although the preview works for all output
formats, we recommend that you preview the HTML output.

One downside of previewing a chapter is that the cross-references to other
chapters will not work, since bookdown knows nothing about other
chapters in this case. That is a reasonably small price to pay for the gain in
speed. Since previewing a chapter only renders the output for that specific
chapter, you should not expect that the content of other chapters is
correctly rendered as well. For example, when you navigate to a different
chapter, you are actually viewing the old output of that chapter (which may
not even exist).

Instead of running render_book() or preview_chapter() over and over
again, you can actually live preview the book in the web browser, and the
only thing you need to do is save the Rmd file. The function serve_book()
in bookdown can start a local web server to serve the HTML output based
on the servr package (Xie 2018c).

serve_book(dir = ".", output_dir = "_book", 
  preview = TRUE, in_session = TRUE, quiet = FALSE, 
  ...)

You pass the root directory of the book to the dir argument, and this
function will start a local web server so you can view the book output using
the server. The default URL to access the book output is
http://127.0.0.1:4321. If you run this function in an interactive R
session, this URL will be automatically opened in your web browser. If you
are in the RStudio IDE, the RStudio Viewer will be used as the default web
browser, so you will be able to write the Rmd source files and preview the
output in the same environment (e.g., source on the left and output on the
right).

5.3  Serve the book



5.3 Serve the book 85

The server will listen to changes in the book root directory: whenever you
modify any files in the book directory, serve_book() can detect the
changes, recompile the Rmd files, and refresh the web browser
automatically. If the modified files do not include Rmd files, it just
refreshes the browser (e.g., if you only updated a certain CSS file). This
means once the server is launched, all you have to do next is simply write
the book and save the files. Compilation and preview will take place
automatically as you save files.

If it does not really take too much time to recompile the whole book, you
may set the argument preview = FALSE, so that every time you update the
book, the whole book is recompiled, otherwise only the modified chapters
are recompiled via preview_chapter().

The arguments in ... are passed to servr::httw(), and please refer to its
help page to see all possible options, such as daemon and port. There are
pros and cons of using in_session = TRUE or FALSE:

For in_session = TRUE, you will have access to all objects created

in the book in the current R session: if you use a daemonized server

(via the argument daemon = TRUE), you can check the objects at any

time when the current R session is not busy; otherwise you will have

to stop the server before you can check the objects. This can be

useful when you need to interactively explore the R objects in the

book. The downside of in_session = TRUE is that the output may

be different with the book compiled from a fresh R session, because

the state of the current R session may not be clean.

For in_session = FALSE, you do not have access to objects in the

book from the current R session, but the output is more likely to be

reproducible since everything is created from new R sessions. Since

this function is only for previewing purposes, the cleanness of the R

session may not be a big concern.

You may choose in_session = TRUE or FALSE depending on your specific
use cases. Eventually, you should run render_book() from a fresh R
session to generate a reliable copy of the book output.



86 5 Editing

We recommend that you upgrade25 your RStudio IDE if your version is
lower than 1.0.0. As mentioned in Section 1.3, all R Markdown files must be
encoded in UTF-8. This is important especially when your files contain
multibyte characters. To save a file with the UTF-8 encoding, you can use
the menu File -> Save with Encoding, and choose UTF-8.

When you click the Knit button to compile an R Markdown document in
the RStudio IDE, the default function called by RStudio is
rmarkdown::render(), which is not what we want for books. To call the
function bookdown::render_book() instead, you can set the site field to
be bookdown::bookdown_site in the YAML metadata of the R Markdown
document index.Rmd, e.g.,

--- 
title: "A Nice Book" 
site: bookdown::bookdown_site 
output: 
  bookdown::gitbook: default 
---

When you have set site: bookdown::bookdown_site in index.Rmd,

RStudio will be able to discover the directory as a book source directory,26

and you will see a button Build Book in the Build pane. You can click the
button to build the whole book in different formats, and if you click the
Knit button on the toolbar, RStudio will automatically preview the current
chapter, and you do not need to use preview_chapter() explicitly.

The bookdown package comes with a few addins for RStudio. If you are
not familiar with RStudio addins, you may check out the documentation at
http://rstudio.github.io/rstudioaddins/. After you have installed

25https://www.rstudio.com/products/rstudio/download/
26This directory has to be an RStudio project.

5.4  RStudio IDE

http://rstudio.github.io/rstudioaddins/
https://www.rstudio.com/products/rstudio/download/


5.4 RStudio IDE 87

the bookdown package and use RStudio v0.99.878 or later, you will see a
dropdown menu on the toolbar named “Addins” and menu items like
“Preview Book” and “Input LaTeX Math” after you open the menu.

The addin “Preview Book” calls bookdown::serve_book() to compile and
serve the book. It will block your current R session, i.e., when
serve_book() is running, you will not be able to do anything in the R
console anymore. To avoid blocking the R session, you can daemonize the
server using bookdown::serve_book(daemon = TRUE). Note that this
addin must be used when the current document opened in RStudio is
under the root directory of your book, otherwise serve_book() may not be
able to find the book source.

The addin “Input LaTeX Math” is essentially a small Shiny application that
provides a text box to help you type LaTeX math expressions (Figure 5.1).

As you type, you will see the preview of the math expression and its LaTeX
source code. This will make it much less error-prone to type math
expressions — when you type a long LaTeX math expression without
preview, it is easy to make mistakes such as X_ij when you meant X_{ij},

or omitting a closing bracket. If you have selected a LaTeX math
expression in the RStudio editor before clicking the addin, the expression
will be automatically loaded and rendered in the text box. This addin was
built on top of the MathQuill library (http://mathquill.com). It is not
meant to provide full support to all LaTeX commands for math
expressions, but should help you type some common math expressions.

http://mathquill.com/


88 5 Editing

Figure 5.1: The RStudio addin to help input LaTeX math.

There are also other R packages that provide addins to help you author
books. The citr package (Aust 2018) provides an addin named “Insert
citations”, which makes it easy to insert citations into R Markdown
documents. It scans your bibliography databases, and shows all citation
items in a drop-down menu, so you can choose from the list without
remembering which citation key corresponds to which citation item
(Figure 5.2).



5.5 Collaboration 89

Figure 5.2: The RStudio addin to help insert citations.

Writing a book will almost surely involve more than a single person. You
may have co-authors, and readers who give you feedback from time to
time.

Since all book chapters are plain-text files, they are perfect for version
control tools, which means if all your co-authors and collaborators have
basic knowledge of a version control tool like GIT, you can collaborate with
them on the book content using these tools. In fact, collaboration with GIT

5.5  Collaboration



90 5 Editing

is possible even if they do not know how to use GIT, because GitHub has
made it possible to create and edit files online right in your web browser.
Only one person has to be familiar with GIT, and that person can set up the
book repository. The rest of the collaborators can contribute content
online, although they will have more freedom if they know the basic usage
of GIT to work locally.

Readers can contribute in two ways. One way is to contribute content
directly, and the easiest way, is through GitHub pull requests27 if your
book source is hosted on GitHub. Basically, any GitHub user can click the
edit button on the page of an Rmd source file, edit the content, and submit
the changes to you for your approval. If you are satisfied with the changes
proposed (you can clearly see what exactly was changed), you can click a
“Merge” button to merge the changes. If you are not satisfied, you can
provide your feedback in the pull request, so the reader can further revise
it according to your requirements. We mentioned the edit button in the
GitBook style in Section 3.1.1. That button is linked to the Rmd source of
each page, and can guide you to create the pull request. There is no need to
write emails back and forth to communicate simple changes, such as fixing
a typo.

Another way for readers to contribute to your book is to leave comments.

Comments can be left in multiple forms: emails, GitHub issues, or HTML
page comments. Here we use Disqus (see Section 4.1) as an example.

Disqus is a service to embed a discussion area on your web pages, and can
be loaded via JavaScript. You can find the JavaScript code after you register
and create a new forum on Disqus, which looks like this:

<div id="disqus_thread"></div> 
<script> 
(function() { // DON'T EDIT BELOW THIS LINE 
var d = document, s = d.createElement('script'); 
s.src = '//yihui.disqus.com/embed.js'; 
s.setAttribute('data-timestamp', +new Date()); 
(d.head || d.body).appendChild(s); 
})(); 
</script> 

27https://help.github.com/articles/about-pull-requests/

https://help.github.com/articles/about-pull-requests/


5.5 Collaboration 91

<noscript>Please enable JavaScript to view the 
<a href="https://disqus.com/?ref_noscript"> 
  comments powered by Disqus.</a></noscript>

Note that you will need to replace the name yihui with your own forum
name (this name has to be provided when you create a new Disqus forum).

You can save the code to an HTML file named, for example, disqus.html.

Then you can embed it at the end of every page via the after_body option
(Figure 5.3 shows what the discussion area looks like):

--- 
output: 
  bookdown::gitbook: 
    includes: 
      after_body: disqus.html 
---

Figure 5.3: A book page with a discussion area.





93

As you develop the book, you make the draft book available to the public to
get early feedback from readers, e.g., publish it to a website. After you
finish writing the book, you need to think about options to formally
publish it as either printed copies or e-books.

In theory, you can render the book by yourself and publish the output
anywhere you want. For example, you can host the HTML files on your own
web server. We have provided a function publish_book() in bookdown to
make it very simple to upload your book to https://bookdown.org, which
is a website provided by RStudio to host your books for free. This website is
built on top of “RStudio Connect”,28 an RStudio product that allows you to
deploy a variety of R-related applications to a server, including R
Markdown documents, Shiny applications, R plots, and so on.

You do not have to know much about RStudio Connect to publish your
book to bookdown.org. Basically you sign up at
https://bookdown.org/connect/, and the first time you try to run
bookdown::publish_book(), you will be asked to authorize bookdown to
publish to your bookdown.org account. In the future, you simply call
publish_book() again and bookdown will no longer ask for anything.

28https://www.rstudio.com/products/connect/

Publishing

6 

6.1  RStudio Connect

https://bookdown.org/
https://bookdown.org/connect/
https://www.rstudio.com/products/connect/


94 6 Publishing

publish_book(name = NULL, account = NULL, 
  server = NULL, render = c("none", "local", "server"))

The only argument of publish_book() that you may want to touch is
render. It determines whether you want to render the book before
publishing. If you have run render_book() before, you do not need to
change this argument, otherwise you may set it to 'local':

bookdown::publish_book(render = 'local')

If you have set up your own RStudio Connect server, you can certainly
publish the book to that server instead of bookdown.org.

You can host your book on GitHub for free via GitHub Pages
(https://pages.github.com). GitHub supports Jekyll
(http://jekyllrb.com), a static website builder, to build a website from
Markdown files. That may be the more common use case of GitHub Pages,

but GitHub also supports arbitrary static HTML files, so you can just host
the HTML output files of your book on GitHub. The key is to create a
hidden file .nojekyll that tells GitHub that your website is not to be built
via Jekyll, since the bookdown HTML output is already a standalone
website.

# assume you have initialized the git repository, 
# and are under the directory of the book repository now 
 
# create a hidden file .nojekyll 
touch .nojekyll 
# add to git here because will not show up in RStudio 
git add .nojekyll

6.2  GitHub

https://pages.github.com/
http://jekyllrb.com/


6.2 GitHub 95

If you are on Windows, you may not have the touch command, and you
can create the file in R using file.create('.nojekyll').

One approach is to publish your book as a GitHub Pages site from a /docs
folder on your master branch as described in GitHub Help.29 First, set the
output directory of your book to be /docs by adding the line output_dir:
"docs" to the configuration file _bookdown.yml. Then, after pushing your
changes to GitHub, go to your repository’s settings and under “GitHub
Pages” change the “Source” to be “master branch /docs folder”. In this case,

the .nojekyll file has to be in the /docs folder.

An alternative approach is to create a gh-pages branch in your repository,

build the book, put the HTML output (including all external resources like
images, CSS, and JavaScript files) in this branch, and push the branch to
the remote repository. If your book repository does not have the gh-pages
branch, you may use the following commands to create one:

# assume you have initialized the git repository, 
# and are under the directory of the book repository now 
 
# create a branch named gh-pages and clean up everything 
git checkout --orphan gh-pages 
git rm -rf . 
 
# create a hidden file .nojekyll 
touch .nojekyll 
git add .nojekyll 
 
git commit -m"Initial commit" 
git push origin gh-pages

After you have set up GIT, the rest of work can be automated via a script
(Shell, R, or Makefile, depending on your preference). Basically, you
compile the book to HTML, then run git commands to push the files to
GitHub, but you probably do not want to do this over and over again
manually and locally. It can be very handy to automate the publishing
process completely on the cloud, so once it is set up correctly, all you have

29http://bit.ly/2cvloKV

http://bit.ly/2cvloKV


96 6 Publishing

to do next is write the book and push the Rmd source files to GitHub, and
your book will always be automatically built and published from the server
side.

One service that you can utilize is Travis CI (https://travis-ci.org). It
is free for public repositories on GitHub, and was designed for continuous
integration (CI) of software packages. Travis CI can be connected to
GitHub in the sense that whenever you push to GitHub, Travis can be
triggered to run certain commands/scripts on the latest version of your
repository.30 These commands are specified in a YAML file named
.travis.yml in the root directory of your repository, and they are usually
for the purpose of testing software, but in fact they are quite open-ended,

meaning that you can run arbitrary commands on a Travis (virtual)
machine. That means you can certainly run your own scripts to build your
book on Travis. Note that Travis only supports Ubuntu and Mac OS X at
the moment, so you should have some basic knowledge about Linux/Unix
commands.

The next question is, how to publish the book built on Travis to GitHub?

Basically you have to grant Travis write access to your GitHub repository.

This authorization can be done in several ways, and the easiest one to
beginners may be a personal access token. Here are a few steps you may
follow:

1. Create a personal access token31 for your account on GitHub (make

sure to enable the “repo” scope so that using this token will enable

writing to your GitHub repos).

2. Encrypt it in the environment variable GITHUB_PAT via command

line travis encrypt and store it in .travis.yml, e.g travis

encrypt GITHUB_PAT=TOKEN. If you do not know how to install or

use the Travis command-line tool, simply save this environment

30You need to authorize the Travis CI service for your repository on GitHub first. See

https://docs.travis-ci.com/user/getting-started/ for how to get started with Travis

CI.
31http://bit.ly/2cEBYWB

https://travis-ci.org/
https://docs.travis-ci.com/user/getting-started/
http://bit.ly/2cEBYWB


6.2 GitHub 97

variable via https://travis-ci.org/user/repo/settings where

user is your GitHub ID, and repo is the name of the repository.

3. You can clone this gh-pages branch on Travis using your GitHub

token, add the HTML output files from R Markdown (do not forget

to add figures and CSS style files as well), and push to the remote

repository.

Assume you are in the master branch right now (where you put the Rmd
source files), and have compiled the book to the _book directory. What you
can do next on Travis is:

# configure your name and email if you have not done so 
git config --global user.email "you@example.com" 
git config --global user.name "Your Name" 
 
# clone the repository to the book-output directory 
git clone -b gh-pages \ 
  https://${GITHUB_PAT}@github.com/${TRAVIS_REPO_SLUG}.git \ 
  book-output 
cd book-output 
git rm -rf * 
cp -r ../_book/* ./ 
git add --all * 
git commit -m"Update the book" 
git push -q origin gh-pages

The variable name GITHUB_PAT and the directory name book-output are
arbitrary, and you can use any names you prefer, as long as the names do
not conflict with existing environment variable names or directory names.

This script, together with the build script we mentioned in Section 5.1, can
be put in the master branch as Shell scripts, e.g., you can name them as
_build.sh and _deploy.sh. Then your .travis.yml may look like this:

language: r 
pandoc_version: 1.19.2.1 
 
env: 
  global: 
    - secure: A_LONG_ENCRYPTED_STRING 
 

https://travis-ci.org/user/repo/settings


98 6 Publishing

before_script: 
  - chmod +x ./_build.sh 
  - chmod +x ./_deploy.sh 
 
script: 
  - ./_build.sh 
  - ./_deploy.sh

The language key tells Travis to use a virtual machine that has R installed.

The secure key is your encrypted personal access token. If you have
already saved the GITHUB_PAT variable using the web interface on Travis
instead of the command-line tool travis encrypt, you can leave out this
key.

Since this Travis service is primarily for checking R packages, you will also
need a (fake) DESCRIPTION file as if the book repository were an R package.

The only thing in this file that really matters is the specification of
dependencies. All dependencies will be installed via the devtools package.

If a dependency is on CRAN or BioConductor, you can simply list it in the
Imports field of the DESCRIPTION file. If it is on GitHub, you may use the
Remotes field to list its repository name. Below is an example:

Package: placeholder 
Type: Book 
Title: Does not matter. 
Version: 0.0.1 
Imports: bookdown, ggplot2 
Remotes: rstudio/bookdown

If you use the container-based infrastructure32 on Travis, you can enable
caching by using sudo: false in .travis.yml. Normally you should cache
at least two types of directories: the figure directory (e.g., _main_files)

and the cache directory (e.g., _main_cache). These directory names may
also be different if you have specified the knitr chunk options fig.path
and cache.path, but I’d strongly recommend you not to change these
options. The figure and cache directories are stored under the

32https://docs.travis-ci.com/user/workers/container-based-
infrastructure/

https://docs.travis-ci.com/user/workers/container-based-infrastructure/


6.3 Publishers 99

_bookdown_files directory of the book root directory. A .travis.yml file
that has enabled caching of knitr figure and cache directories may have
additional configurations sudo and cache like this:

sudo: false 
 
cache: 
  packages: yes 
  directories: 
    - $TRAVIS_BUILD_DIR/_bookdown_files

If your book is very time-consuming to build, you may use the above
configurations on Travis to save time. Note that packages: yes means the
R packages installed on Travis are also cached.

All above scripts and configurations can be found in the bookdown-demo
repository: https://github.com/rstudio/bookdown-demo/. If you copy
them to your own repository, please remember to change the secure key in
.travis.yml using your own encrypted variable GITHUB_PAT.

GitHub and Travis CI are certainly not the only choices to build and
publish your book. You are free to store and publish the book on your own
server.

Besides publishing your book online, you can certainly consider publishing
it with a publisher. For example, this book was published with Chapman &

Hall/CRC, and there is also a free online version at
https://bookdown.org/yihui/bookdown/ (with an agreement with the
publisher). Another option that you can consider is self-publishing
(https://en.wikipedia.org/wiki/Self-publishing) if you do not want
to work with an established publisher. Pablo Casas has written two blog
posts that you may find useful: “How to self-publish a book”33 and “How to
self-publish a book: customizing bookdown”34.

33https://blog.datascienceheroes.com/how-to-self-publish-a-book/
34https://blog.datascienceheroes.com/how-to-self-publish-a-book-
customizing-bookdown/

6.3  Publishers

https://github.com/rstudio/bookdown-demo/
https://bookdown.org/yihui/bookdown/
https://en.wikipedia.org/wiki/Self-publishing
https://blog.datascienceheroes.com/how-to-self-publish-a-book/
https://blog.datascienceheroes.com/how-to-self-publish-a-book-customizing-bookdown/


100 6 Publishing

It will be much easier to publish a book written with bookdown if the
publisher you choose supports LaTeX. For example, Chapman & Hall
provides a LaTeX class named krantz.cls, and Springer provides
svmono.cls. To apply these LaTeX classes to your PDF book, set
documentclass in the YAML metadata of index.Rmd to the class filename
(without the extension .cls).

The LaTeX class is the most important setting in the YAML metadata. It
controls the overall style of the PDF book. There are often other settings
you want to tweak, and we will show some details about this book below.

The YAML metadata of this book contains these settings:

documentclass: krantz 
lot: yes 
lof: yes 
fontsize: 12pt 
monofont: "Source Code Pro" 
monofontoptions: "Scale=0.7"

The field lot: yes means we want the List of Tables, and similarly, lof
means List of Figures. The base font size is 12pt, and we used Source Code
Pro35 as the monospaced (fixed-width) font, which is applied to all
program code in this book.

In the LaTeX preamble (Section 4.1), we have a few more settings. First, we
set the main font to be Alegreya36, and since this font does not have the
SMALL CAPITALS feature, we used the Alegreya SC font.

\setmainfont[ 
  UprightFeatures={SmallCapsFont=AlegreyaSC-Regular} 
]{Alegreya}

35https://www.fontsquirrel.com/fonts/source-code-pro
36https://www.fontsquirrel.com/fonts/alegreya

https://www.fontsquirrel.com/fonts/source-code-pro
https://www.fontsquirrel.com/fonts/alegreya


6.3 Publishers 101

The following commands make floating environments less likely to float by
allowing them to occupy larger fractions of pages without floating.

\renewcommand{\textfraction}{0.05} 
\renewcommand{\topfraction}{0.8} 
\renewcommand{\bottomfraction}{0.8} 
\renewcommand{\floatpagefraction}{0.75}

Since krantz.cls provided an environment VF for quotes, we redefine the
standard quote environment to VF. You can see its style in Section 2.1.

\renewenvironment{quote}{\begin{VF}}{\end{VF}}

Then we redefine hyperlinks to be footnotes, because when the book is
printed on paper, readers are not able to click on links in text. Footnotes
will tell them what the actual links are.

\let\oldhref\href 
\renewcommand{\href}[2]{#2\footnote{\url{#1}}}

We also have some settings for the bookdown::pdf_book format in
_output.yml:

bookdown::pdf_book: 
  includes: 
    in_header: latex/preamble.tex 
    before_body: latex/before_body.tex 
    after_body: latex/after_body.tex 
  keep_tex: yes 
  dev: "cairo_pdf" 
  latex_engine: xelatex 
  citation_package: natbib 
  template: null 
  pandoc_args: --top-level-division=chapter 
  toc_unnumbered: no 
  toc_appendix: yes 
  quote_footer: ["\\VA{", "}{}"] 
  highlight_bw: yes



102 6 Publishing

All preamble settings we mentioned above are in the file
latex/preamble.tex, where we also specified that the front matter starts:

\frontmatter

In latex/before_body.tex, we inserted a few blank pages required by the
publisher and wrote the dedication page. Before the first chapter of the
book, we inserted

\mainmatter

so that LaTeX knows to change the page numbering style from Roman
numerals (for the front matter) to Arabic numerals (for the book body).

We printed the index in latex/after_body.tex (Section 2.9).

The graphical device (dev) for saving plots was set to cairo_pdf so that the
fonts are embedded in plots, since the default device pdf does not embed
fonts. Your copyeditor is likely to require you to embed all fonts used in the
PDF, so that the book can be printed exactly as it looks, otherwise certain
fonts may be substituted and the typeface can be unpredictable.

The quote_footer field was to make sure the quote footers were right-
aligned: the LaTeX command \VA{} was provided by krantz.cls to
include the quote footer.

The highlight_bw option was set to true so that the colors in syntax
highlighted code blocks were converted to grayscale, since this book will be
printed in black-and-white.

The book was compiled to PDF through xelatex to make it easier for us to
use custom fonts.

All above settings except the VF environment and the \VA{} command can
be applied to any other LaTeX document classes.

In case you want to work with Chapman & Hall as well, you may start with
the copy of krantz.cls in our repository
(https://github.com/rstudio/bookdown/tree/master/inst/examples)

https://github.com/rstudio/bookdown/tree/master/inst/examples


6.3 Publishers 103

instead of the copy you get from your editor. We have worked with the
LaTeX help desk to fix quite a few issues with this LaTeX class, so hopefully
it will work well for your book if you use bookdown.





105

Appendix





107

For those who are not familiar with software packages required for using R
Markdown, we give a brief introduction to the installation and
maintenance of these packages.

R can be downloaded and installed from any CRAN (the Comprehensive R
Archive Network) mirrors, e.g., https://cran.rstudio.com. Please note
that there will be a few new releases of R every year, and you may want to
upgrade R occasionally.

To install the bookdown package, you can type this in R:

install.packages("bookdown")

This installs all required R packages. You can also choose to install all
optional packages as well, if you do not care too much about whether these
packages will actually be used to compile your book (such as htmlwidgets):

install.packages("bookdown", dependencies = TRUE)

If you want to test the development version of bookdown on GitHub, you
need to install devtools first:

Software Tools

A 

A.1  R and R packages

https://cran.rstudio.com/


108 A Software Tools

if (!requireNamespace('devtools')) install.packages('devtools') 
devtools::install_github('rstudio/bookdown')

R packages are also often constantly updated on CRAN or GitHub, so you
may want to update them once in a while:

update.packages(ask = FALSE)

Although it is not required, the RStudio IDE can make a lot of things much
easier when you work on R-related projects. The RStudio IDE can be
downloaded from https://www.rstudio.com.

An R Markdown document (*.Rmd) is first compiled to Markdown (*.md)

through the knitr package, and then Markdown is compiled to other
output formats (such as LaTeX or HTML) through Pandoc. This process is
automated by the rmarkdown package. You do not need to install knitr or
rmarkdown separately, because they are the required packages of
bookdown and will be automatically installed when you install bookdown.

However, Pandoc is not an R package, so it will not be automatically
installed when you install bookdown. You can follow the installation
instructions on the Pandoc homepage (http://pandoc.org) to install
Pandoc, but if you use the RStudio IDE, you do not really need to install
Pandoc separately, because RStudio includes a copy of Pandoc. The Pandoc
version number can be obtained via:

rmarkdown::pandoc_version() 
## [1] '2.3.1'

If you find this version too low and there are Pandoc features only in a
later version, you can install the later version of Pandoc, and rmarkdown
will call the newer version instead of its built-in version.

A.2  Pandoc

https://www.rstudio.com/
http://pandoc.org/


A.3 LaTeX 109

LaTeX is required only if you want to convert your book to PDF. You may
see https://www.latex-project.org/get/ for more information about
LaTeX and its installation, but we strongly recommend that you install the
lightweight and cross-platform LaTeX distribution named TinyTeX37 and
based on TeX Live. TinyTeX can be easily installed through the R package
tinytex (which should be automatically installed when you install
bookdown):

tinytex::install_tinytex()

With TinyTeX, you should never see error messages like this:

! LaTeX Error: File `titling.sty' not found. 
 
Type X to quit or <RETURN> to proceed, 
or enter new name. (Default extension: sty) 
 
Enter file name:  
! Emergency stop. 
<read *>  
          
l.107 ^^M 
 
pandoc: Error producing PDF 
Error: pandoc document conversion failed with error 43 
Execution halted

The above error means you used a package that contains titling.sty, but
it was not installed. LaTeX package names are often the same as the *.sty
filenames, so in this case, you can try to install the titling package. If you
use TinyTeX with R Markdown, missing LaTeX packages will be installed
automatically, so you never need to worry about such problems.

37https://yihui.name/tinytex/

A.3  LaTeX

https://www.latex-project.org/get/
https://yihui.name/tinytex/


110 A Software Tools

LaTeX distributions and packages are also updated from time to time, and
you may consider updating them especially when you run into LaTeX
problems. You can find out the version of your LaTeX distribution by:

system('pdflatex --version') 
## pdfTeX 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) 
## kpathsea version 6.2.1 
## Copyright 2015 Peter Breitenlohner (eTeX)/Han The Thanh (pdfTeX). 
## There is NO warranty.  Redistribution of this software is 
## covered by the terms of both the pdfTeX copyright and 
## the Lesser GNU General Public License. 
## For more information about these matters, see the file 
## named COPYING and the pdfTeX source. 
## Primary author of pdfTeX: Peter Breitenlohner (eTeX)/Han The Thanh 
## Compiled with libpng 1.6.17; using libpng 1.6.17 
## Compiled with zlib 1.2.8; using zlib 1.2.8 
## Compiled with poppler version 0.41.0

To update TinyTeX, you may run:

tinytex::tlmgr_update()

From year to year, you may need to upgrade TinyTeX, too (otherwise you
cannot install or update any LaTeX packages), in which case you may
reinstall TinyTeX:

tinytex::reinstall_tinytex()



111

As mentioned in Chapter 1, this book is not a comprehensive guide to knitr
or rmarkdown. In this chapter, we briefly explain some basic concepts and
syntax in knitr and rmarkdown. If you have any further questions, you
may post them on StackOverflow (https://stackoverflow.com) and tag
your questions with r, knitr, rmarkdown, and/or bookdown, whichever is
appropriate.

The knitr package was designed based on the idea of “Literate
Programming” (Knuth 1984), which allows you to intermingle program
code with text in a source document. When knitr compiles a document,
the program code (in code chunks) will be extracted and executed, and the
program output will be displayed together with the original text in the
output document. We have introduced the basic syntax in Section 2.3.

R Markdown is not the only source format that knitr supports. The basic
idea can be applied to other computing and authoring languages. For
example, knitr also supports the combination of R and LaTeX (*.Rnw
documents), and R + HTML (*.Rhtml), etc. You can use other computing
languages with knitr as well, such as C++, Python, SQL, and so on. Below is
a simple example and you can see
http://rmarkdown.rstudio.com/authoring_knitr_engines.html for
more.

Software Usage

B 

B.1  knitr

https://stackoverflow.com/
http://rmarkdown.rstudio.com/authoring_knitr_engines.html


112 B Software Usage

```{python} 
x = 'Hello, Python World!' 
print(x.split(' ')) 
```

Python users may be familiar with IPython or Jupyter Notebooks
(https://jupyter.org). In fact, R Markdown can also be used as
notebooks, and has some additional benefits; see this blog post for more
information: https://blog.rstudio.org/2016/10/05/r-notebooks/.

If you want to show a literal chunk in your document, you can add an
inline expression that generates an empty string (`r ''`) before the
chunk header, and indent the code chunk by four spaces,38 e.g.,

    `r ''````{r} 
    # a literal code chunk 
    ```

After the document is compiled, the inline expression will disappear and
you will see:

```{r} 
# a literal code chunk 
```

Normally you do not need to call knitr functions directly when compiling a
document, since rmarkdown will call knitr. If you do want to compile a
source document without further converting it to other formats, you may
use the knitr::knit() function.

Thanks to the power of R and Pandoc, you can easily do computing in R
Markdown documents, and convert them to a variety of output formats,

38Follow the four-space rule if the literal code chunk is to be displayed in other environments such as a

list: http://pandoc.org/MANUAL.html#the-four-space-rule

B.2  R Markdown

https://jupyter.org/
https://blog.rstudio.org/2016/10/05/r-notebooks/
http://pandoc.org/MANUAL.html#the-four-space-rule


B.2 R Markdown 113

including HTML/PDF/Word documents, HTML5/Beamer slides,

dashboards, and websites, etc. An R Markdown document usually consists
of the YAML metadata (optional) and the document body. We have
introduced the syntax for writing various components of the document
body in Chapter 2, and we explain more about the YAML metadata in this
section.

Metadata for R Markdown can be written in the very beginning of a
document, starting and ending with three dashes ---, respectively. YAML
metadata typically consists of tag-value pairs separated by colons, e.g.,

--- 
title: "An R Markdown Document" 
author: "Yihui Xie" 
---

For character values, you may omit the quotes when the values do not
contain special characters, but it is safer to quote them if they are expected
to be character values.

Besides characters, another common type of values are logical values. Both
yes and true mean true, and no/false mean false, e.g.,

link-citations: yes

Values can be vectors, and there are two ways of writing vectors. The
following two ways are equivalent:

output: ["html_document", "word_document"]

output: 
  - "html_document" 
  - "word_document"

Values can also be lists of values. You just need to indent the values by two
more spaces, e.g.,



114 B Software Usage

output: 
  bookdown::gitbook: 
    split_by: "section" 
    split_bib: no

It is a common mistake to forget to indent the values. For example, the
following data

output: 
html_document: 
toc: yes

actually means

output: null 
html_document: null 
toc: yes

instead of what you probably would have expected:

output: 
  html_document: 
    toc: yes

The R Markdown output format is specified in the output field of the
YAML metadata, and you need to consult the R help pages for the possible
options, e.g., ?rmarkdown::html_document, or ?bookdown::gitbook. The
meanings of most other fields in YAML can be found in the Pandoc
documentation.

The rmarkdown package has provided these R Markdown output formats:

beamer_presentation

github_document

html_document

ioslides_presentation



B.2 R Markdown 115

latex_document

md_document

odt_document

pdf_document

powerpoint_presentation

rtf_document

slidy_presentation

word_document

There are many more possible output formats in other R packages,

including bookdown, tufte, rticles, flexdashboard, revealjs, and
rmdformats, etc.





117

Below is the complete list of frequently asked questions (FAQ). Yes, there is
only one question here. Personally I do not like FAQs. They often mean
surprises, and surprises are not good for software users.

1. Q: Will bookdown have the features X, Y, and Z?

A: The short answer is no, but if you have asked yourself three times
“do I really need them” and the answer is still “yes”, please feel free
to file a feature request to
https://github.com/rstudio/bookdown/issues.

Users asking for more features often come from the LaTeX world. If
that is the case for you, the answer to this question is yes, because
Pandoc’s Markdown supports raw LaTeX code. Whenever you feel
Markdown cannot do the job for you, you always have the option to
apply some raw LaTeX code in your Markdown document. For
example, you can create glossaries using the glossaries package, or
embed a complicated LaTeX table, as long as you know the LaTeX
syntax. However, please keep in mind that the LaTeX content is not
portable. It will only work for LaTeX/PDF output, and will be
ignored in other types of output. Depending on the request, we may
port a few more LaTeX features into bookdown in the future, but
our general philosophy is that Markdown should be kept as simple
as possible.

The most challenging thing in the world is not to learn fancy technologies,

but control your own wild heart.

FAQ

C 

https://github.com/rstudio/bookdown/issues




119

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey,

Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard
Iannone. 2018. Rmarkdown: Dynamic Documents for R. https://CRAN.R-

project.org/package=rmarkdown.

Allaire, JJ, Yihui Xie, R Foundation, Hadley Wickham, Journal of Statistical
Software, Ramnath Vaidyanathan, Association for Computing Machinery,

et al. 2018. Rticles: Article Formats for R Markdown. https://CRAN.R-

project.org/package=rticles.

Aust, Frederik. 2018. Citr: RStudio Add-in to Insert Markdown Citations.
https://CRAN.R-project.org/package=citr.

Chang, Winston. 2018. Webshot: Take Screenshots of Web Pages.
https://CRAN.R-project.org/package=webshot.

Cheng, Joe. 2018. MiniUI: Shiny Ui Widgets for Small Screens.
https://CRAN.R-project.org/package=miniUI.

Knuth, Donald E. 1984. “Literate Programming.” The Computer Journal 27

(2). British Computer Society: 97–111.

R Core Team. 2018. R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing. https://www.R-

project.org/.

Vaidyanathan, Ramnath, Yihui Xie, JJ Allaire, Joe Cheng, and Kenton
Russell. 2018. Htmlwidgets: HTML Widgets for R. https://CRAN.R-

project.org/package=htmlwidgets.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton,

Florida: Chapman; Hall/CRC. http://yihui.name/knitr/.

References

https://cran.r-project.org/package=rmarkdown
https://cran.r-project.org/package=rticles
https://cran.r-project.org/package=citr
https://cran.r-project.org/package=webshot
https://cran.r-project.org/package=miniUI
https://www.r-project.org/
https://cran.r-project.org/package=htmlwidgets
http://yihui.name/knitr/


120 References

———. 2018a. Bookdown: Authoring Books and Technical Documents with R
Markdown. https://CRAN.R-project.org/package=bookdown.

———. 2018b. Knitr: A General-Purpose Package for Dynamic Report Generation
in R. https://CRAN.R-project.org/package=knitr.

———. 2018c. Servr: A Simple Http Server to Serve Static Files or Dynamic
Documents. https://CRAN.R-project.org/package=servr.

Xie, Yihui, and JJ Allaire. 2018. Tufte: Tufte’s Styles for R Markdown Documents.
https://CRAN.R-project.org/package=tufte.

Xie, Yihui, Joe Cheng, and Xianying Tan. 2018. DT: A Wrapper of the
Javascript Library ’Datatables’. https://CRAN.R-project.org/package=DT.

https://cran.r-project.org/package=bookdown
https://cran.r-project.org/package=knitr
https://cran.r-project.org/package=servr
https://cran.r-project.org/package=tufte
https://cran.r-project.org/package=DT



