Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Apr 13, 2018
Sep 13, 2018
Jun 28, 2018

beta-TCVAE

This repository contains cleaned-up code for reproducing the quantitative experiments in Isolating Sources of Disentanglement in Variational Autoencoders [arxiv].

Usage

To train a model:

python vae_quant.py --dataset [shapes/faces] --beta 6 --tcvae

Specify --conv to use the convolutional VAE. We used a mlp for dSprites and conv for 3d faces. To see all options, use the -h flag.

The main computational difference between beta-VAE and beta-TCVAE is summarized in these lines.

To evaluate the MIG of a model:

python disentanglement_metrics.py --checkpt [checkpt]

To see all options, use the -h flag.

Datasets

dSprites

Download the npz file from here and place it into data/.

3D faces

We cannot publicly distribute this due to the license. Please contact me for the data.

Contact

Email rtqichen@cs.toronto.edu if you have questions about the code/data.

Bibtex

@inproceedings{chen2018isolating,
  title={Isolating Sources of Disentanglement in Variational Autoencoders},
  author={Chen, Ricky T. Q. and Li, Xuechen and Grosse, Roger and Duvenaud, David},
  booktitle = {Advances in Neural Information Processing Systems},
  year={2018}
}

About

code for "Isolating Sources of Disentanglement in Variational Autoencoders".

Resources

License

Releases

No releases published

Packages

No packages published

Languages