
Prelude

Role models are important. – Officer Alex J. Murphy / RoboCop

The goal of this guide is to present a set of best practices and style prescriptions
for Ruby on Rails 4 development. It’s a complementary guide to the already
existing community-driven Ruby coding style guide.

Some of the advice here is applicable only to Rails 4.0+.

You can generate a PDF or an HTML copy of this guide using Pandoc.

Translations of the guide are available in the following languages:

• Chinese Simplified
• Chinese Traditional
• Japanese
• Russian
• Turkish
• Korean
• Vietnamese
• Portuguese (pt-BR)

The Rails Style Guide

This Rails style guide recommends best practices so that real-world Rails pro-
grammers can write code that can be maintained by other real-world Rails
programmers. A style guide that reflects real-world usage gets used, and a style
guide that holds to an ideal that has been rejected by the people it is supposed
to help risks not getting used at all – no matter how good it is.

The guide is separated into several sections of related rules. I’ve tried to add
the rationale behind the rules (if it’s omitted I’ve assumed it’s pretty obvious).

I didn’t come up with all the rules out of nowhere - they are mostly based on
my extensive career as a professional software engineer, feedback and sugges-
tions from members of the Rails community and various highly regarded Rails
programming resources.

Table of Contents

• Configuration
• Routing
• Controllers

– Rendering
• Models

1

https://github.com/rubocop-hq/ruby-style-guide
http://pandoc.org/
https://github.com/JuanitoFatas/rails-style-guide/blob/master/README-zhCN.md
https://github.com/JuanitoFatas/rails-style-guide/blob/master/README-zhTW.md
https://github.com/satour/rails-style-guide/blob/master/README-jaJA.md
https://github.com/arbox/rails-style-guide/blob/master/README-ruRU.md
https://github.com/tolgaavci/rails-style-guide/blob/master/README-trTR.md
https://github.com/pureugong/rails-style-guide/blob/master/README-koKR.md
https://github.com/CQBinh/rails-style-guide/blob/master/README-viVN.md
https://github.com/abraaomiranda/rails-style-guide/blob/master/README-ptBR.md

– ActiveRecord
– ActiveRecord Queries

• Migrations
• Views
• Internationalization
• Assets
• Mailers
• Active Support Core Extensions
• Time
• Bundler
• Managing processes

Configuration

• Put custom initialization code in config/initializers. The code in
initializers executes on application startup. [link]

• Keep initialization code for each gem in a separate file with the same name
as the gem, for example carrierwave.rb, active_admin.rb, etc. [link]

• Adjust accordingly the settings for development, test and production envi-
ronment (in the corresponding files under config/environments/) [link]

– Mark additional assets for precompilation (if any):

config/environments/production.rb
Precompile additional assets (application.js, application.css,
#and all non-JS/CSS are already added)
config.assets.precompile += %w(rails_admin/rails_admin.css rails_admin/rails_admin.js)

• Keep configuration that’s applicable to all environments in the
config/application.rb file. [link]

• Create an additional staging environment that closely resembles the
production one. [link]

• Keep any additional configuration in YAML files under the config/ di-
rectory. [link]

Since Rails 4.2 YAML configuration files can be easily loaded with the
new config_for method:

Rails::Application.config_for(:yaml_file)

Routing

• When you need to add more actions to a RESTful resource (do you really
need them at all?) use member and collection routes. [link]

2

bad
get 'subscriptions/:id/unsubscribe'
resources :subscriptions

good
resources :subscriptions do
get 'unsubscribe', on: :member

end

bad
get 'photos/search'
resources :photos

good
resources :photos do
get 'search', on: :collection

end

• If you need to define multiple member/collection routes use the alterna-
tive block syntax. [link]

resources :subscriptions do
member do
get 'unsubscribe'
more routes

end
end

resources :photos do
collection do
get 'search'
more routes

end
end

• Use nested routes to express better the relationship between ActiveRecord
models. [link]

class Post < ActiveRecord::Base
has_many :comments

end

class Comment < ActiveRecord::Base
belongs_to :post

end

routes.rb
resources :posts do

3

resources :comments
end

• If you need to nest routes more than 1 level deep then use the shallow:
true option. This will save user from long urls posts/1/comments/5/versions/7/edit
and you from long url helpers edit_post_comment_version.

resources :posts, shallow: true do
resources :comments do
resources :versions

end
end

• Use namespaced routes to group related actions. [link]

namespace :admin do
Directs /admin/products/* to Admin::ProductsController
(app/controllers/admin/products_controller.rb)
resources :products

end

• Never use the legacy wild controller route. This route will make all actions
in every controller accessible via GET requests. [link]

very bad
match ':controller(/:action(/:id(.:format)))'

• Don’t use match to define any routes unless there is need to map multi-
ple request types among [:get, :post, :patch, :put, :delete] to a
single action using :via option. [link]

Controllers

• Keep the controllers skinny - they should only retrieve data for the view
layer and shouldn’t contain any business logic (all the business logic should
naturally reside in the model). [link]

• Each controller action should (ideally) invoke only one method other than
an initial find or new. [link]

• Share no more than two instance variables between a controller and a view.
[link]

• Controller actions specified in the option of Action Filter should be in
lexical scope. The ActionFilter specified for an inherited action makes it
difficult to understand the scope of its impact on that action. [link]

bad
class UsersController < ApplicationController
before_action :require_login, only: :export

4

end

good
class UsersController < ApplicationController
before_action :require_login, only: :export

def export
end

end

Rendering

• Prefer using a template over inline rendering. [link]

very bad
class ProductsController < ApplicationController

def index
render inline: "<% products.each do |p| %><p><%= p.name %></p><% end %>", type: :erb

end
end

good
app/views/products/index.html.erb
<%= render partial: 'product', collection: products %>

app/views/products/_product.html.erb
<p><%= product.name %></p>
<p><%= product.price %></p>

app/controllers/foo_controller.rb
class ProductsController < ApplicationController

def index
render :index

end
end

• Prefer render plain: over render text:. [link]

bad - sets MIME type to `text/html`
...
render text: 'Ruby!'
...

bad - requires explicit MIME type declaration
...
render text: 'Ruby!', content_type: 'text/plain'

5

...

good - short and precise
...
render plain: 'Ruby!'
...

• Prefer corresponding symbols to numeric HTTP status codes. They are
meaningful and do not look like “magic” numbers for less known HTTP
status codes. [link]

bad
...
render status: 403
...

good
...
render status: :forbidden
...

Models

• Introduce non-ActiveRecord model classes freely. [link]

• Name the models with meaningful (but short) names without abbrevia-
tions. [link]

• If you need model objects that support ActiveRecord behavior (like valida-
tion) without the ActiveRecord database functionality use the ActiveAttr
gem. [link]

class Message
include ActiveAttr::Model

attribute :name
attribute :email
attribute :content
attribute :priority

attr_accessible :name, :email, :content

validates :name, presence: true
validates :email, format: { with: /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/i }
validates :content, length: { maximum: 500 }

end

For a more complete example refer to the RailsCast on the subject.

6

https://gist.github.com/mlanett/a31c340b132ddefa9cca
https://github.com/cgriego/active_attr
http://railscasts.com/episodes/326-activeattr

• Unless they have some meaning in the business domain, don’t put methods
in your model that just format your data (like code generating HTML).
These methods are most likely going to be called from the view layer
only, so their place is in helpers. Keep your models for business logic and
data-persistence only. [link]

ActiveRecord

• Avoid altering ActiveRecord defaults (table names, primary key, etc) un-
less you have a very good reason (like a database that’s not under your
control). [link]

bad - don't do this if you can modify the schema
class Transaction < ActiveRecord::Base
self.table_name = 'order'
...

end

• Group macro-style methods (has_many, validates, etc) in the beginning
of the class definition. [link]

class User < ActiveRecord::Base
keep the default scope first (if any)
default_scope { where(active: true) }

constants come up next
COLORS = %w(red green blue)

afterwards we put attr related macros
attr_accessor :formatted_date_of_birth

attr_accessible :login, :first_name, :last_name, :email, :password

Rails4+ enums after attr macros, prefer the hash syntax
enum gender: { female: 0, male: 1 }

followed by association macros
belongs_to :country

has_many :authentications, dependent: :destroy

and validation macros
validates :email, presence: true
validates :username, presence: true
validates :username, uniqueness: { case_sensitive: false }
validates :username, format: { with: /\A[A-Za-z][A-Za-z0-9._-]{2,19}\z/ }

7

validates :password, format: { with: /\A\S{8,128}\z/, allow_nil: true }

next we have callbacks
before_save :cook
before_save :update_username_lower

other macros (like devise's) should be placed after the callbacks

...
end

• Prefer has_many :through to has_and_belongs_to_many. Using
has_many :through allows additional attributes and validations on the
join model. [link]

not so good - using has_and_belongs_to_many
class User < ActiveRecord::Base
has_and_belongs_to_many :groups

end

class Group < ActiveRecord::Base
has_and_belongs_to_many :users

end

preferred way - using has_many :through
class User < ActiveRecord::Base
has_many :memberships
has_many :groups, through: :memberships

end

class Membership < ActiveRecord::Base
belongs_to :user
belongs_to :group

end

class Group < ActiveRecord::Base
has_many :memberships
has_many :users, through: :memberships

end

• Prefer self[:attribute] over read_attribute(:attribute). [link]

bad
def amount
read_attribute(:amount) * 100

end

good

8

def amount
self[:amount] * 100

end

• Prefer self[:attribute] = value over write_attribute(:attribute,
value). [link]

bad
def amount
write_attribute(:amount, 100)

end

good
def amount
self[:amount] = 100

end

• Always use the new “sexy” validations. [link]

bad
validates_presence_of :email
validates_length_of :email, maximum: 100

good
validates :email, presence: true, length: { maximum: 100 }

• To make validations easy to read, don’t list multiple attributes per valida-
tion [link]

bad
validates :email, :password, presence: true
validates :email, length: { maximum: 100 }

good
validates :email, presence: true, length: { maximum: 100 }
validates :password, presence: true

• When a custom validation is used more than once or the validation is some
regular expression mapping, create a custom validator file. [link]

bad
class Person
validates :email, format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/i }

end

good
class EmailValidator < ActiveModel::EachValidator

def validate_each(record, attribute, value)
record.errors[attribute] << (options[:message] || 'is not a valid email') unless value =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/i

end

9

http://thelucid.com/2010/01/08/sexy-validation-in-edge-rails-rails-3/

end

class Person
validates :email, email: true

end

• Keep custom validators under app/validators. [link]

• Consider extracting custom validators to a shared gem if you’re maintain-
ing several related apps or the validators are generic enough. [link]

• Use named scopes freely. [link]

class User < ActiveRecord::Base
scope :active, -> { where(active: true) }
scope :inactive, -> { where(active: false) }

scope :with_orders, -> { joins(:orders).select('distinct(users.id)') }
end

• When a named scope defined with a lambda and parameters becomes
too complicated, it is preferable to make a class method instead
which serves the same purpose of the named scope and returns an
ActiveRecord::Relation object. Arguably you can define even simpler
scopes like this. [link]

class User < ActiveRecord::Base
def self.with_orders
joins(:orders).select('distinct(users.id)')

end
end

• Order callback declarations in the order, in which they will be executed.
For referenece, see Available Callbacks [link]

#bad
class Person
after_commit/after_rollback :after_commit_callback
after_save :after_save_callback
around_save :around_save_callback
after_update :after_update_callback
before_update :before_update_callback
after_validation :after_validation_callback
before_validation :before_validation_callback
before_save :before_save_callback
before_create :before_create_callback
after_create :after_create_callback
around_create :around_create_callback
around_update :around_update_callback

end

10

http://guides.rubyonrails.org/active_record_callbacks.html#available-callbacks

#good
class Person
before_validation :before_validation_callback
after_validation :after_validation_callback
before_save :before_save_callback
around_save :around_save_callback
before_create :before_create_callback
around_create :around_create_callback
after_create :after_create_callback
before_update :before_update_callback
around_update :around_update_callback
after_update :after_update_callback
after_save :after_save_callback
after_commit/after_rollback :after_commit_callback

end

• Beware of the behavior of the following methods. They do not run the
model validations and could easily corrupt the model state. [link]

bad
Article.first.decrement!(:view_count)
DiscussionBoard.decrement_counter(:post_count, 5)
Article.first.increment!(:view_count)
DiscussionBoard.increment_counter(:post_count, 5)
person.toggle :active
product.touch
Billing.update_all("category = 'authorized', author = 'David'")
user.update_attribute(:website, 'example.com')
user.update_columns(last_request_at: Time.current)
Post.update_counters 5, comment_count: -1, action_count: 1

good
user.update_attributes(website: 'example.com')

• Use user-friendly URLs. Show some descriptive attribute of the model in
the URL rather than its id. There is more than one way to achieve this:
[link]

– Override the to_param method of the model. This method is used by
Rails for constructing a URL to the object. The default implementa-
tion returns the id of the record as a String. It could be overridden
to include another human-readable attribute.

class Person
def to_param
"#{id} #{name}".parameterize

end

11

http://guides.rubyonrails.org/active_record_validations.html#skipping-validations

end

In order to convert this to a URL-friendly value, parameterize should be
called on the string. The id of the object needs to be at the beginning so
that it can be found by the find method of ActiveRecord.

– Use the friendly_id gem. It allows creation of human-readable
URLs by using some descriptive attribute of the model instead of its
id.

class Person
extend FriendlyId
friendly_id :name, use: :slugged

end

Check the gem documentation for more information about its usage.

• Use find_each to iterate over a collection of AR objects. Looping through
a collection of records from the database (using the all method, for ex-
ample) is very inefficient since it will try to instantiate all the objects at
once. In that case, batch processing methods allow you to work with the
records in batches, thereby greatly reducing memory consumption. [link]

bad
Person.all.each do |person|
person.do_awesome_stuff

end

Person.where('age > 21').each do |person|
person.party_all_night!

end

good
Person.find_each do |person|
person.do_awesome_stuff

end

Person.where('age > 21').find_each do |person|
person.party_all_night!

end

• Since Rails creates callbacks for dependent associations, always call
before_destroy callbacks that perform validation with prepend: true.
[link]

bad (roles will be deleted automatically even if super_admin? is true)
has_many :roles, dependent: :destroy

before_destroy :ensure_deletable

12

https://github.com/norman/friendly_id
https://github.com/rails/rails/issues/3458

def ensure_deletable
raise "Cannot delete super admin." if super_admin?

end

good
has_many :roles, dependent: :destroy

before_destroy :ensure_deletable, prepend: true

def ensure_deletable
raise "Cannot delete super admin." if super_admin?

end

• Define the dependent option to the has_many and has_one associations.
[link]

bad
class Post < ActiveRecord::Base
has_many :comments

end

good
class Post < ActiveRecord::Base
has_many :comments, dependent: :destroy

end

• When persisting AR objects always use the exception raising bang!
method or handle the method return value. This applies to create, save,
update, destroy, first_or_create and find_or_create_by. [link]

bad
user.create(name: 'Bruce')

bad
user.save

good
user.create!(name: 'Bruce')
or
bruce = user.create(name: 'Bruce')
if bruce.persisted?
...

else
...

end

good
user.save!

13

or
if user.save
...

else
...

end

ActiveRecord Queries

• Avoid string interpolation in queries, as it will make your code susceptible
to SQL injection attacks. [link]

bad - param will be interpolated unescaped
Client.where("orders_count = #{params[:orders]}")

good - param will be properly escaped
Client.where('orders_count = ?', params[:orders])

• Consider using named placeholders instead of positional placeholders when
you have more than 1 placeholder in your query. [link]

okish
Client.where(
'created_at >= ? AND created_at <= ?',
params[:start_date], params[:end_date]

)

good
Client.where(
'created_at >= :start_date AND created_at <= :end_date',
start_date: params[:start_date], end_date: params[:end_date]

)

• Favor the use of find over where.take!, find_by!, and find_by_id!
when you need to retrieve a single record by primary key id and raise
ActiveRecord::RecordNotFound when the record is not found. [link]

bad
User.where(id: id).take!

bad
User.find_by_id!(id)

bad
User.find_by!(id: id)

14

good
User.find(id)

• Favor the use of find_by over where.take and find_by_attribute when
you need to retrieve a single record by one or more attributes and return
nil when the record is not found. [link]

bad
User.where(id: id).take
User.where(first_name: 'Bruce', last_name: 'Wayne').take

bad
User.find_by_id(id)
bad, deprecated in ActiveRecord 4.0, removed in 4.1+
User.find_by_first_name_and_last_name('Bruce', 'Wayne')

good
User.find_by(id: id)
User.find_by(first_name: 'Bruce', last_name: 'Wayne')

• Favor the use of where.not over SQL. [link]

bad
User.where("id != ?", id)

good
User.where.not(id: id)

• Don’t use the id column for ordering. The sequence of ids is not guar-
anteed to be in any particular order, despite often (incidentally) being
chronological. Use a timestamp column to order chronologically. As a
bonus the intent is clearer. [link]

bad
scope :chronological, -> { order(id: :asc) }

good
scope :chronological, -> { order(created_at: :asc) }

• Favor the use of ids over pluck(:id). [link]

bad
User.pluck(:id)

good
User.ids

• When specifying an explicit query in a method such as find_by_sql, use
heredocs with squish. This allows you to legibly format the SQL with

15

line breaks and indentations, while supporting syntax highlighting in many
tools (including GitHub, Atom, and RubyMine). [link]

User.find_by_sql(<<-SQL.squish)
SELECT
users.id, accounts.plan

FROM
users

INNER JOIN
accounts

ON
accounts.user_id = users.id

further complexities...
SQL

String#squish removes the indentation and newline characters so that
your server log shows a fluid string of SQL rather than something like this:

SELECT\n users.id, accounts.plan\n FROM\n users\n INNER JOIN\n acounts\n ON\n accounts.user_id = users.id

• When querying ActiveRecord collections, prefer size (selects between
count/length behavior based on whether collection is already loaded) or
length (always loads the whole collection and counts the array elements)
over count (always does a database query for the count). [link]

bad
User.count

good
User.all.size

good - if you really need to load all users into memory
User.all.length

Migrations

• Keep the schema.rb (or structure.sql) under version control. [link]

• Use rake db:schema:load instead of rake db:migrate to initialize an
empty database. [link]

• Enforce default values in the migrations themselves instead of in the ap-
plication layer. [link]

bad - application enforced default value
class Product < ActiveRecord::Base

def amount
self[:amount] || 0

end

16

http://apidock.com/rails/String/squish

end

good - database enforced
class AddDefaultAmountToProducts < ActiveRecord::Migration

def change
change_column_default :products, :amount, 0

end
end

While enforcing table defaults only in Rails is suggested by many Rails
developers, it’s an extremely brittle approach that leaves your data vul-
nerable to many application bugs. And you’ll have to consider the fact
that most non-trivial apps share a database with other applications, so
imposing data integrity from the Rails app is impossible.

• Enforce foreign-key constraints. As of Rails 4.2, ActiveRecord supports
foreign key constraints natively. [link]

• When writing constructive migrations (adding tables or columns), use the
change method instead of up and down methods. [link]

the old way
class AddNameToPeople < ActiveRecord::Migration

def up
add_column :people, :name, :string

end

def down
remove_column :people, :name

end
end

the new preferred way
class AddNameToPeople < ActiveRecord::Migration

def change
add_column :people, :name, :string

end
end

• If you have to use models in migrations, make sure you define them so
that you don’t end up with broken migrations in the future [link]

db/migrate/<migration_file_name>.rb
frozen_string_literal: true

bad
class ModifyDefaultStatusForProducts < ActiveRecord::Migration

def change
old_status = 'pending_manual_approval'

17

new_status = 'pending_approval'

reversible do |dir|
dir.up do
Product.where(status: old_status).update_all(status: new_status)
change_column :products, :status, :string, default: new_status

end

dir.down do
Product.where(status: new_status).update_all(status: old_status)
change_column :products, :status, :string, default: old_status

end
end

end
end

good
Define `table_name` in a custom named class to make sure that
you run on the same table you had during the creation of the migration.
In future if you override the `Product` class
and change the `table_name`, it won't break
the migration or cause serious data corruption.
class MigrationProduct < ActiveRecord::Base
self.table_name = :products

end

class ModifyDefaultStatusForProducts < ActiveRecord::Migration
def change
old_status = 'pending_manual_approval'
new_status = 'pending_approval'

reversible do |dir|
dir.up do
MigrationProduct.where(status: old_status).update_all(status: new_status)
change_column :products, :status, :string, default: new_status

end

dir.down do
MigrationProduct.where(status: new_status).update_all(status: old_status)
change_column :products, :status, :string, default: old_status

end
end

end
end

• Name your foreign keys explicitly instead of relying on Rails auto-

18

generated FK names. (http://guides.rubyonrails.org/active_record_migrations.html#foreign-
keys) [link]

bad
class AddFkArticlesToAuthors < ActiveRecord::Migration

def change
add_foreign_key :articles, :authors

end
end

good
class AddFkArticlesToAuthors < ActiveRecord::Migration

def change
add_foreign_key :articles, :authors, name: :articles_author_id_fk

end
end

• Don’t use non-reversible migration commands in the change method. Re-
versible migration commands are listed below. ActiveRecord::Migration::CommandRecorder
[link]

bad
class DropUsers < ActiveRecord::Migration

def change
drop_table :users

end
end

good
class DropUsers < ActiveRecord::Migration

def up
drop_table :users

end

def down
create_table :users do |t|
t.string :name

end
end

end

good
In this case, block will be used by create_table in rollback
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters.html#method-i-drop_table
class DropUsers < ActiveRecord::Migration

def change
drop_table :users do |t|

19

http://api.rubyonrails.org/classes/ActiveRecord/Migration/CommandRecorder.html

t.string :name
end

end
end

Views

• Never call the model layer directly from a view. [link]

• Never make complex formatting in the views, export the formatting to a
method in the view helper or the model. [link]

• Mitigate code duplication by using partial templates and layouts. [link]

Internationalization

• No strings or other locale specific settings should be used in the views,
models and controllers. These texts should be moved to the locale files in
the config/locales directory. [link]

• When the labels of an ActiveRecord model need to be translated, use the
activerecord scope: [link]

en:
activerecord:
models:
user: Member

attributes:
user:
name: 'Full name'

Then User.model_name.human will return “Member” and User.human_attribute_name("name")
will return “Full name”. These translations of the attributes will be used
as labels in the views.

• Separate the texts used in the views from translations of ActiveRecord
attributes. Place the locale files for the models in a folder locales/models
and the texts used in the views in folder locales/views. [link]

– When organization of the locale files is done with additional directo-
ries, these directories must be described in the application.rb file
in order to be loaded.

config/application.rb
config.i18n.load_path += Dir[Rails.root.join('config', 'locales', '**', '*.{rb,yml}')]

• Place the shared localization options, such as date or currency formats, in
files under the root of the locales directory. [link]

20

• Use the short form of the I18n methods: I18n.t instead of I18n.translate
and I18n.l instead of I18n.localize. [link]

• Use “lazy” lookup for the texts used in views. Let’s say we have the
following structure: [link]

en:
users:
show:
title: 'User details page'

The value for users.show.title can be looked up in the template
app/views/users/show.html.haml like this:

= t '.title'

• Use the dot-separated keys in the controllers and models instead of speci-
fying the :scope option. The dot-separated call is easier to read and trace
the hierarchy. [link]

bad
I18n.t :record_invalid, scope: [:activerecord, :errors, :messages]

good
I18n.t 'activerecord.errors.messages.record_invalid'

• More detailed information about the Rails I18n can be found in the Rails
Guides [link]

Assets

Use the assets pipeline to leverage organization within your application.

• Reserve app/assets for custom stylesheets, javascripts, or images. [link]

• Use lib/assets for your own libraries that don’t really fit into the scope
of the application. [link]

• Third party code such as jQuery or bootstrap should be placed in
vendor/assets. [link]

• When possible, use gemified versions of assets (e.g. jquery-rails, jquery-ui-
rails, bootstrap-sass, zurb-foundation). [link]

Mailers

• Name the mailers SomethingMailer. Without the Mailer suffix it isn’t
immediately apparent what’s a mailer and which views are related to the
mailer. [link]

21

http://guides.rubyonrails.org/i18n.html
http://guides.rubyonrails.org/i18n.html
http://guides.rubyonrails.org/asset_pipeline.html
http://jquery.com/
http://twitter.github.com/bootstrap/
https://github.com/rails/jquery-rails
https://github.com/joliss/jquery-ui-rails
https://github.com/joliss/jquery-ui-rails
https://github.com/thomas-mcdonald/bootstrap-sass
https://github.com/zurb/foundation

• Provide both HTML and plain-text view templates. [link]

• Enable errors raised on failed mail delivery in your development environ-
ment. The errors are disabled by default. [link]

config/environments/development.rb

config.action_mailer.raise_delivery_errors = true

• Use a local SMTP server like Mailcatcher in the development environment.
[link]

config/environments/development.rb

config.action_mailer.smtp_settings = {
address: 'localhost',
port: 1025,
more settings

}

• Provide default settings for the host name. [link]

config/environments/development.rb
config.action_mailer.default_url_options = { host: "#{local_ip}:3000" }

config/environments/production.rb
config.action_mailer.default_url_options = { host: 'your_site.com' }

in your mailer class
default_url_options[:host] = 'your_site.com'

• If you need to use a link to your site in an email, always use the _url, not
_path methods. The _url methods include the host name and the _path
methods don’t. [link]

bad
You can always find more info about this course
<%= link_to 'here', course_path(@course) %>

good
You can always find more info about this course
<%= link_to 'here', course_url(@course) %>

• Format the from and to addresses properly. Use the following format:
[link]

in your mailer class
default from: 'Your Name <info@your_site.com>'

• Make sure that the e-mail delivery method for your test environment is
set to test: [link]

22

https://github.com/sj26/mailcatcher

config/environments/test.rb

config.action_mailer.delivery_method = :test

• The delivery method for development and production should be smtp:
[link]

config/environments/development.rb, config/environments/production.rb

config.action_mailer.delivery_method = :smtp

• When sending html emails all styles should be inline, as some mail clients
have problems with external styles. This however makes them harder
to maintain and leads to code duplication. There are two similar gems
that transform the styles and put them in the corresponding html tags:
premailer-rails and roadie. [link]

• Sending emails while generating page response should be avoided. It
causes delays in loading of the page and request can timeout if multi-
ple email are sent. To overcome this emails can be sent in background
process with the help of sidekiq gem. [link]

Active Support Core Extensions

• Prefer Ruby 2.3’s safe navigation operator &. over ActiveSupport#try!.
[link]

bad
obj.try! :fly

good
obj&.fly

• Prefer Ruby’s Standard Library methods over ActiveSupport aliases.
[link]

bad
'the day'.starts_with? 'th'
'the day'.ends_with? 'ay'

good
'the day'.start_with? 'th'
'the day'.end_with? 'ay'

• Prefer Ruby’s Standard Library over uncommon ActiveSupport extensions.
[link]

bad
(1..50).to_a.forty_two

23

https://github.com/fphilipe/premailer-rails
https://github.com/Mange/roadie
https://github.com/mperham/sidekiq

1.in? [1, 2]
'day'.in? 'the day'

good
(1..50).to_a[41]
[1, 2].include? 1
'the day'.include? 'day'

• Prefer Ruby’s comparison operators over ActiveSupport’s Array#inquiry,
and String#inquiry. [link]

bad - String#inquiry
ruby = 'two'.inquiry
ruby.two?

good
ruby = 'two'
ruby == 'two'

bad - Array#inquiry
pets = %w(cat dog).inquiry
pets.gopher?

good
pets = %w(cat dog)
pets.include? 'cat'

Time

• Config your timezone accordingly in application.rb. [link]

config.time_zone = 'Eastern European Time'
optional - note it can be only :utc or :local (default is :utc)
config.active_record.default_timezone = :local

• Don’t use Time.parse. [link]

bad
Time.parse('2015-03-02 19:05:37') # => Will assume time string given is in the system's time zone.

good
Time.zone.parse('2015-03-02 19:05:37') # => Mon, 02 Mar 2015 19:05:37 EET +02:00

• Don’t use String#to_time [link]

bad - assumes time string given is in the system's time zone.
'2015-03-02 19:05:37'.to_time

24

https://apidock.com/rails/String/to_time

good
Time.zone.parse('2015-03-02 19:05:37') # => Mon, 02 Mar 2015 19:05:37 EET +02:00

• Don’t use Time.now. [link]

bad
Time.now # => Returns system time and ignores your configured time zone.

good
Time.zone.now # => Fri, 12 Mar 2014 22:04:47 EET +02:00
Time.current # Same thing but shorter.

Bundler

• Put gems used only for development or testing in the appropriate group
in the Gemfile. [link]

• Use only established gems in your projects. If you’re contemplating on
including some little-known gem you should do a careful review of its
source code first. [link]

• OS-specific gems will by default result in a constantly changing
Gemfile.lock for projects with multiple developers using different
operating systems. Add all OS X specific gems to a darwin group in the
Gemfile, and all Linux specific gems to a linux group: [link]

Gemfile
group :darwin do
gem 'rb-fsevent'
gem 'growl'

end

group :linux do
gem 'rb-inotify'

end

To require the appropriate gems in the right environment, add the follow-
ing to config/application.rb:

platform = RUBY_PLATFORM.match(/(linux|darwin)/)[0].to_sym
Bundler.require(platform)

• Do not remove the Gemfile.lock from version control. This is not some
randomly generated file - it makes sure that all of your team members get
the same gem versions when they do a bundle install. [link]

25

Managing processes

• If your projects depends on various external processes use foreman to
manage them. [link]

Further Reading

There are a few excellent resources on Rails style, that you should consider if
you have time to spare:

• The Rails 4 Way
• Ruby on Rails Guides
• The RSpec Book
• The Cucumber Book
• Everyday Rails Testing with RSpec
• Rails 4 Test Prescriptions
• Better Specs for RSpec

Contributing

Nothing written in this guide is set in stone. It’s my desire to work together
with everyone interested in Rails coding style, so that we could ultimately create
a resource that will be beneficial to the entire Ruby community.

Feel free to open tickets or send pull requests with improvements. Thanks in
advance for your help!

You can also support the project (and RuboCop) with financial contributions
via Patreon.

How to Contribute?

It’s easy, just follow the contribution guidelines.

License

This work is licensed under a Creative Commons Attribu-
tion 3.0 Unported License

26

https://github.com/ddollar/foreman
http://www.amazon.com/The-Rails-Addison-Wesley-Professional-Ruby/dp/0321944275
http://guides.rubyonrails.org/
http://pragprog.com/book/achbd/the-rspec-book
http://pragprog.com/book/hwcuc/the-cucumber-book
https://leanpub.com/everydayrailsrspec
https://pragprog.com/book/nrtest2/rails-4-test-prescriptions
http://betterspecs.org
https://www.patreon.com/bbatsov
https://github.com/rubocop-hq/rails-style-guide/blob/master/CONTRIBUTING.md
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Spread the Word

A community-driven style guide is of little use to a community that doesn’t
know about its existence. Tweet about the guide, share it with your friends and
colleagues. Every comment, suggestion or opinion we get makes the guide just
a little bit better. And we want to have the best possible guide, don’t we?

Cheers, Bozhidar

27

https://twitter.com/bbatsov

	Prelude
	The Rails Style Guide
	Table of Contents
	Configuration
	Routing
	Controllers
	Rendering

	Models
	ActiveRecord
	ActiveRecord Queries

	Migrations
	Views
	Internationalization
	Assets
	Mailers
	Active Support Core Extensions
	Time
	Bundler
	Managing processes

	Further Reading
	Contributing
	How to Contribute?

	License
	Spread the Word

