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Hello & Welcome!

Kevin Liebholz❤Turbo
@ portagon

👋
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Turbo Stream 
Broadcasting -
Advanced
Let‘s NOT build a chat!

Introduction
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Content

1. Intro to WebSockets
2. Rails to the help!
3. Let’s create an app! (NOT a chat!)
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Turbo Stream Broadcasting - Advanced

ntro to
WebSocketsI
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The Problem WebSockets Solve

Intro to WebSockets
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Intro to WebSockets
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HTTP vs WS

Intro to WebSockets
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HTTP vs WebSocket - HTTP
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HTTP vs WebSocket - WebSocket
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HTTP vs WebSocket - WebSocket
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HTTP vs WebSocket - WebSocket
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HTTP vs WebSocket - WebSocket
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HTTP vs WebSocket - WebSocket
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Turbo Stream Broadcasting - Advanced

ails to the
help!R
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ActionCable

Rails to the help!
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ActionCable

ActionCable
“Action Cable seamlessly integrates WebSockets with 
the rest of your Rails application. It allows for real-time 
features to be written in Ruby in the same style and 
form as the rest of your Rails application…”
- guides.rubyonrails.org

https://en.wikipedia.org/wiki/WebSocket
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ActionCable

ActionCable
“…It's a full-stack offering that provides both a client-
side JavaScript framework and a server-side Ruby 
framework.”
- guides.rubyonrails.org
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Turbo Stream Broadcasting

Rails to the help!
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Turbo Stream Broadcasting

Broadcastable
“Using the Broadcastable concern mixed into Active 
Record, you can trigger WebSocket updates directly 
from your domain model.”
- turbo.hotwired.dev
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Rails to the help!

ActionCable Turbo Stream Broadcasting
Rendering Server-side Client-side (with Stimulus, faster)
Plug & play No Yes
- Broadcasting directly from model No Yes
- Update DOM automatically No Yes
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Rails to the help!

ActionCable Turbo Stream Broadcasting
Rendering Server-side Client-side (with Stimulus, faster)
Plug & play No Yes (show the 
- Broadcasting directly from model No Yes
- Update DOM automatically No Yes

# any_model.rb
broadcast_update_to(args)

# any_view.erb.html
<%= turbo_stream_from(args)%>
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Turbo Stream Broadcasting - Advanced

et’s create an 
app!

NOT A CHAT!

L



Tic Tac Toe



Let’s create an app!

• 2 people involved
• Both players need to

be there
• Effect of Actions
• UI Differences
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Constraint 1

Let’s create an app!

• Both players need to be present
• The other player needs to see my ticks



Let’s create an app! – Constraint 1



Let’s create an app – Constraint 1

Field

Tick



Let’s create an app – Constraint 1

Field

Tick

# _field.html.erb

<%= turbo_frame_tag "field#{field_nr}" do %>
# if already ticked

# show character
# else

<%= form_with model: game do |f| %>
# …



Let’s create an app – Constraint 1

Field

Tick GamesController#update



Let’s create an app – Constraint 1

Field

Tick GamesController#update

Game updates



Let’s create an app – Constraint 1

Field

Tick GamesController#update

Game updatesUI of opponent changes



Let’s create an app – Constraint 1

Field

Tick GamesController#update

Game updatesUI of opponent changes

Own UI changes



Let’s create an app! – Constraint 1

1. Connect to the Websocket

# games/show.html.erb

<%= turbo_stream_from @player, "board" %>



Let’s create an app – Constraint 1

2. Broadcast changes

# models/game.erb

after_update :broadcast_tick_to_opponent

def broadcast_tick_to_opponent
# do something to update the record’s field       

attribute
broadcast_replace_to [player.opponent, 'board’],

target: field_tag_id,
partial: 'games/opponent_tick’,
locals: # some locals

end



Let’s create an app – Constraint 1

2. Broadcast changes

# models/player.erb

after_create :notify_opponent

def notify_opponent
broadcast_update_to[opponent, 'board’],
target: 'board’,
partial: 'games/board’,…

broadcast_update_to [opponent, 'board’],
target: 'opponent_name’,
partial: 'games/opponent_name’,…

end
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Constraint 2

Let’s create an app!

• Only 2 players should be able to connect



Let’s create an app – Constraint 2
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Let’s create an app – Constraint 2

ActionCable::Connection



Let’s create an app – Constraint 2

Start Customizing

module ApplicationCable
class Connection < ActionCable::Connection::Base

def connect
player = Player.find_by(id: cookies['player_id’])
reject_unauthorized_connection unless allow?(player)

end
end

end



Let’s create an app – Constraint 2

Works



Let’s create an app – Constraint 2

Works

Doesn’t work
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Constraint 3

Let’s create an app!

• Player 2 cannot be in the process without Player 1



Let’s create an app – Constraint 3
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Let’s create an app – Constraint 3

ActionCable::Channel



Let’s create an app! – Constraint 3

1. Adapt view

# games/show.html.erb

<%= turbo_stream_from @player, "board", channel: GameChannel %>



Let’s create an app – Constraint 3

2. Use the correct player

module ApplicationCable
class Connection < ActionCable::Connection::Base

identified_by :current_player

def connect
self.current_player =

Player.find_by(id: cookies['player_id’])

reject_unauthorized_connection unless allow?(player)
end

end
end



Let’s create an app – Constraint 3

3. Add channel logic
# channel/games_channel.rb

class GameChannel < ApplicationCable::Channel
# include some turbo stuff

# channel/games_channel.rb
def subscribed

# some subscribe logic
end

def unsubscribed
current_player.broadcast_unsubsciption

end
end



Let’s create an app – Constraint 3

4. Broadcast it

# models/player.rb

def broadcast_unsubsciption
broadcast_update_to [opponent, 'board’],
target: 'board’,
html: 'Your opponent left the game. Please start a new one.'

end
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Further use cases

Let’s create an app!
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Thank you!

Thank you!
🙏 https://github.com/kevkev300/turbo-stream-advanced


