
1

Hello & Welcome!

Kevin Liebholz❤Turbo
@ portagon

👋

2

Turbo Stream
Broadcasting -
Advanced
Let‘s NOT build a chat!

Introduction

3

Content

1. Intro to WebSockets
2. Rails to the help!
3. Let’s create an app! (NOT a chat!)

5

Turbo Stream Broadcasting - Advanced

ntro to
WebSocketsI

6

The Problem WebSockets Solve

Intro to WebSockets

7

Intro to WebSockets

8

HTTP vs WS

Intro to WebSockets

9

HTTP vs WebSocket - HTTP

👂

👋

📣

👂
🤖💻

10

HTTP vs WebSocket - HTTP

👂
👋

📣
👂

👂
👋

📣
👂

👂
👋

📣
👂

💻 🤖

11

HTTP vs WebSocket - WebSocket

🤝 🤖💻

12

HTTP vs WebSocket - WebSocket

👋 👂🤖💻
HTTP

13

HTTP vs WebSocket - WebSocket

👋 👂🤖💻
HTTP

HTTP

14

HTTP vs WebSocket - WebSocket

👋 👂
🤖💻

👂 📣

15

HTTP vs WebSocket - WebSocket

🤖💻
👂 📣

👂 📣

👂 📣

👂 📣

16

Turbo Stream Broadcasting - Advanced

ails to the
help!R

17

ActionCable

Rails to the help!

18

ActionCable

ActionCable
“Action Cable seamlessly integrates WebSockets with
the rest of your Rails application. It allows for real-time
features to be written in Ruby in the same style and
form as the rest of your Rails application…”
- guides.rubyonrails.org

https://en.wikipedia.org/wiki/WebSocket

19

ActionCable

ActionCable
“…It's a full-stack offering that provides both a client-
side JavaScript framework and a server-side Ruby
framework.”
- guides.rubyonrails.org

20

Turbo Stream Broadcasting

Rails to the help!

21

Turbo Stream Broadcasting

Broadcastable
“Using the Broadcastable concern mixed into Active
Record, you can trigger WebSocket updates directly
from your domain model.”
- turbo.hotwired.dev

23

Rails to the help!

ActionCable Turbo Stream Broadcasting
Rendering Server-side Client-side (with Stimulus, faster)
Plug & play No Yes
- Broadcasting directly from model No Yes
- Update DOM automatically No Yes

24

Rails to the help!

ActionCable Turbo Stream Broadcasting
Rendering Server-side Client-side (with Stimulus, faster)
Plug & play No Yes (show the
- Broadcasting directly from model No Yes
- Update DOM automatically No Yes

any_model.rb
broadcast_update_to(args)

any_view.erb.html
<%= turbo_stream_from(args)%>

25

Turbo Stream Broadcasting - Advanced

et’s create an
app!

NOT A CHAT!

L

Tic Tac Toe

Let’s create an app!

• 2 people involved
• Both players need to

be there
• Effect of Actions
• UI Differences

28

Constraint 1

Let’s create an app!

• Both players need to be present
• The other player needs to see my ticks

Let’s create an app! – Constraint 1

Let’s create an app – Constraint 1

Field

Tick

Let’s create an app – Constraint 1

Field

Tick

_field.html.erb

<%= turbo_frame_tag "field#{field_nr}" do %>
if already ticked

show character
else

<%= form_with model: game do |f| %>
…

Let’s create an app – Constraint 1

Field

Tick GamesController#update

Let’s create an app – Constraint 1

Field

Tick GamesController#update

Game updates

Let’s create an app – Constraint 1

Field

Tick GamesController#update

Game updatesUI of opponent changes

Let’s create an app – Constraint 1

Field

Tick GamesController#update

Game updatesUI of opponent changes

Own UI changes

Let’s create an app! – Constraint 1

1. Connect to the Websocket

games/show.html.erb

<%= turbo_stream_from @player, "board" %>

Let’s create an app – Constraint 1

2. Broadcast changes

models/game.erb

after_update :broadcast_tick_to_opponent

def broadcast_tick_to_opponent
do something to update the record’s field

attribute
broadcast_replace_to [player.opponent, 'board’],

target: field_tag_id,
partial: 'games/opponent_tick’,
locals: # some locals

end

Let’s create an app – Constraint 1

2. Broadcast changes

models/player.erb

after_create :notify_opponent

def notify_opponent
broadcast_update_to[opponent, 'board’],
target: 'board’,
partial: 'games/board’,…

broadcast_update_to [opponent, 'board’],
target: 'opponent_name’,
partial: 'games/opponent_name’,…

end

41

Constraint 2

Let’s create an app!

• Only 2 players should be able to connect

Let’s create an app – Constraint 2

44

Let’s create an app – Constraint 2

ActionCable::Connection

Let’s create an app – Constraint 2

Start Customizing

module ApplicationCable
class Connection < ActionCable::Connection::Base

def connect
player = Player.find_by(id: cookies['player_id’])
reject_unauthorized_connection unless allow?(player)

end
end

end

Let’s create an app – Constraint 2

Works

Let’s create an app – Constraint 2

Works

Doesn’t work

48

Constraint 3

Let’s create an app!

• Player 2 cannot be in the process without Player 1

Let’s create an app – Constraint 3

51

Let’s create an app – Constraint 3

ActionCable::Channel

Let’s create an app! – Constraint 3

1. Adapt view

games/show.html.erb

<%= turbo_stream_from @player, "board", channel: GameChannel %>

Let’s create an app – Constraint 3

2. Use the correct player

module ApplicationCable
class Connection < ActionCable::Connection::Base

identified_by :current_player

def connect
self.current_player =

Player.find_by(id: cookies['player_id’])

reject_unauthorized_connection unless allow?(player)
end

end
end

Let’s create an app – Constraint 3

3. Add channel logic
channel/games_channel.rb

class GameChannel < ApplicationCable::Channel
include some turbo stuff

channel/games_channel.rb
def subscribed

some subscribe logic
end

def unsubscribed
current_player.broadcast_unsubsciption

end
end

Let’s create an app – Constraint 3

4. Broadcast it

models/player.rb

def broadcast_unsubsciption
broadcast_update_to [opponent, 'board’],
target: 'board’,
html: 'Your opponent left the game. Please start a new one.'

end

56

Further use cases

Let’s create an app!

57

Thank you!

Thank you!
🙏 https://github.com/kevkev300/turbo-stream-advanced

