Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
4428 lines (4004 sloc) 113 KB
/**********************************************************************
object.c -
$Author$
created at: Thu Jul 15 12:01:24 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/encoding.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include "internal.h"
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <math.h>
#include <float.h>
#include "constant.h"
#include "id.h"
#include "probes.h"
/*!
* \defgroup object Core objects and their operations
* \{
*/
VALUE rb_cBasicObject; /*!< BasicObject class */
VALUE rb_mKernel; /*!< Kernel module */
VALUE rb_cObject; /*!< Object class */
VALUE rb_cModule; /*!< Module class */
VALUE rb_cClass; /*!< Class class */
VALUE rb_cData; /*!< Data class */
VALUE rb_cNilClass; /*!< NilClass class */
VALUE rb_cTrueClass; /*!< TrueClass class */
VALUE rb_cFalseClass; /*!< FalseClass class */
/*! \cond INTERNAL_MACRO */
#define id_eq idEq
#define id_eql idEqlP
#define id_match idEqTilde
#define id_inspect idInspect
#define id_init_copy idInitialize_copy
#define id_init_clone idInitialize_clone
#define id_init_dup idInitialize_dup
#define id_const_missing idConst_missing
#define id_to_f idTo_f
#define CLASS_OR_MODULE_P(obj) \
(!SPECIAL_CONST_P(obj) && \
(BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE))
/*! \endcond */
/*!
* Make the object invisible from Ruby code.
*
* It is useful to let Ruby's GC manage your internal data structure --
* The object keeps being managed by GC, but \c ObjectSpace.each_object
* never yields the object.
*
* Note that the object also lose a way to call a method on it.
*
* \param[in] obj a Ruby object
* \sa rb_obj_reveal
*/
VALUE
rb_obj_hide(VALUE obj)
{
if (!SPECIAL_CONST_P(obj)) {
RBASIC_CLEAR_CLASS(obj);
}
return obj;
}
/*!
* Make a hidden object visible again.
*
* It is the caller's responsibility to pass the right \a klass
* which \a obj originally used to belong to.
*
* \sa rb_obj_hide
*/
VALUE
rb_obj_reveal(VALUE obj, VALUE klass)
{
if (!SPECIAL_CONST_P(obj)) {
RBASIC_SET_CLASS(obj, klass);
}
return obj;
}
/*!
* Fills common (\c RBasic) fields in \a obj.
*
* \note Prefer rb_newobj_of() to this function.
* \param[in,out] obj a Ruby object to be set up.
* \param[in] klass \c obj will belong to this class.
* \param[in] type one of \c ruby_value_type
*/
VALUE
rb_obj_setup(VALUE obj, VALUE klass, VALUE type)
{
RBASIC(obj)->flags = type;
RBASIC_SET_CLASS(obj, klass);
return obj;
}
/**
* call-seq:
* obj === other -> true or false
*
* Case Equality -- For class Object, effectively the same as calling
* <code>#==</code>, but typically overridden by descendants to provide
* meaningful semantics in +case+ statements.
*--
* Same as \c Object#===, case equality.
*++
*/
VALUE
rb_equal(VALUE obj1, VALUE obj2)
{
VALUE result;
if (obj1 == obj2) return Qtrue;
result = rb_equal_opt(obj1, obj2);
if (result == Qundef) {
result = rb_funcall(obj1, id_eq, 1, obj2);
}
if (RTEST(result)) return Qtrue;
return Qfalse;
}
/**
* Determines if \a obj1 and \a obj2 are equal in terms of
* \c Object#eql?.
*
* \note It actually calls \c #eql? when necessary.
* So you cannot implement \c #eql? with this function.
* \retval non-zero if they are eql?
* \retval zero if they are not eql?.
*/
int
rb_eql(VALUE obj1, VALUE obj2)
{
VALUE result;
if (obj1 == obj2) return Qtrue;
result = rb_eql_opt(obj1, obj2);
if (result == Qundef) {
result = rb_funcall(obj1, id_eql, 1, obj2);
}
if (RTEST(result)) return Qtrue;
return Qfalse;
}
/**
* call-seq:
* obj == other -> true or false
* obj.equal?(other) -> true or false
* obj.eql?(other) -> true or false
*
* Equality --- At the Object level, #== returns <code>true</code>
* only if +obj+ and +other+ are the same object. Typically, this
* method is overridden in descendant classes to provide
* class-specific meaning.
*
* Unlike #==, the #equal? method should never be overridden by
* subclasses as it is used to determine object identity (that is,
* <code>a.equal?(b)</code> if and only if <code>a</code> is the same
* object as <code>b</code>):
*
* obj = "a"
* other = obj.dup
*
* obj == other #=> true
* obj.equal? other #=> false
* obj.equal? obj #=> true
*
* The #eql? method returns <code>true</code> if +obj+ and +other+
* refer to the same hash key. This is used by Hash to test members
* for equality. For objects of class Object, #eql? is synonymous
* with #==. Subclasses normally continue this tradition by aliasing
* #eql? to their overridden #== method, but there are exceptions.
* Numeric types, for example, perform type conversion across #==,
* but not across #eql?, so:
*
* 1 == 1.0 #=> true
* 1.eql? 1.0 #=> false
*--
* \private
*++
*/
MJIT_FUNC_EXPORTED VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
VALUE rb_obj_hash(VALUE obj);
/**
* call-seq:
* !obj -> true or false
*
* Boolean negate.
*--
* \private
*++
*/
MJIT_FUNC_EXPORTED VALUE
rb_obj_not(VALUE obj)
{
return RTEST(obj) ? Qfalse : Qtrue;
}
/**
* call-seq:
* obj != other -> true or false
*
* Returns true if two objects are not-equal, otherwise false.
*--
* \private
*++
*/
MJIT_FUNC_EXPORTED VALUE
rb_obj_not_equal(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_eq, 1, obj2);
return RTEST(result) ? Qfalse : Qtrue;
}
/*!
* Looks up the nearest ancestor of \a cl, skipping singleton classes or
* module inclusions.
* It returns the \a cl itself if it is neither a singleton class or a module.
*
* \param[in] cl a Class object.
* \return the ancestor class found, or a falsey value if nothing found.
*/
VALUE
rb_class_real(VALUE cl)
{
while (cl &&
((RBASIC(cl)->flags & FL_SINGLETON) || BUILTIN_TYPE(cl) == T_ICLASS)) {
cl = RCLASS_SUPER(cl);
}
return cl;
}
/**
* call-seq:
* obj.class -> class
*
* Returns the class of <i>obj</i>. This method must always be called
* with an explicit receiver, as #class is also a reserved word in
* Ruby.
*
* 1.class #=> Integer
* self.class #=> Object
*--
* Equivalent to \c Object\#class in Ruby.
*
* Returns the class of \c obj, skipping singleton classes or module inclusions.
*++
*/
VALUE
rb_obj_class(VALUE obj)
{
return rb_class_real(CLASS_OF(obj));
}
/*
* call-seq:
* obj.singleton_class -> class
*
* Returns the singleton class of <i>obj</i>. This method creates
* a new singleton class if <i>obj</i> does not have one.
*
* If <i>obj</i> is <code>nil</code>, <code>true</code>, or
* <code>false</code>, it returns NilClass, TrueClass, or FalseClass,
* respectively.
* If <i>obj</i> is an Integer, a Float or a Symbol, it raises a TypeError.
*
* Object.new.singleton_class #=> #<Class:#<Object:0xb7ce1e24>>
* String.singleton_class #=> #<Class:String>
* nil.singleton_class #=> NilClass
*/
static VALUE
rb_obj_singleton_class(VALUE obj)
{
return rb_singleton_class(obj);
}
/*! \private */
MJIT_FUNC_EXPORTED void
rb_obj_copy_ivar(VALUE dest, VALUE obj)
{
if (!(RBASIC(dest)->flags & ROBJECT_EMBED) && ROBJECT_IVPTR(dest)) {
xfree(ROBJECT_IVPTR(dest));
ROBJECT(dest)->as.heap.ivptr = 0;
ROBJECT(dest)->as.heap.numiv = 0;
ROBJECT(dest)->as.heap.iv_index_tbl = 0;
}
if (RBASIC(obj)->flags & ROBJECT_EMBED) {
MEMCPY(ROBJECT(dest)->as.ary, ROBJECT(obj)->as.ary, VALUE, ROBJECT_EMBED_LEN_MAX);
RBASIC(dest)->flags |= ROBJECT_EMBED;
}
else {
uint32_t len = ROBJECT(obj)->as.heap.numiv;
VALUE *ptr = 0;
if (len > 0) {
ptr = ALLOC_N(VALUE, len);
MEMCPY(ptr, ROBJECT(obj)->as.heap.ivptr, VALUE, len);
}
ROBJECT(dest)->as.heap.ivptr = ptr;
ROBJECT(dest)->as.heap.numiv = len;
ROBJECT(dest)->as.heap.iv_index_tbl = ROBJECT(obj)->as.heap.iv_index_tbl;
RBASIC(dest)->flags &= ~ROBJECT_EMBED;
}
}
static void
init_copy(VALUE dest, VALUE obj)
{
if (OBJ_FROZEN(dest)) {
rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest));
}
RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR);
RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT);
rb_copy_wb_protected_attribute(dest, obj);
rb_copy_generic_ivar(dest, obj);
rb_gc_copy_finalizer(dest, obj);
if (RB_TYPE_P(obj, T_OBJECT)) {
rb_obj_copy_ivar(dest, obj);
}
}
static int freeze_opt(int argc, VALUE *argv);
static VALUE immutable_obj_clone(VALUE obj, int kwfreeze);
static VALUE mutable_obj_clone(VALUE obj, int kwfreeze);
PUREFUNC(static inline int special_object_p(VALUE obj)); /*!< \private */
static inline int
special_object_p(VALUE obj)
{
if (SPECIAL_CONST_P(obj)) return TRUE;
switch (BUILTIN_TYPE(obj)) {
case T_BIGNUM:
case T_FLOAT:
case T_SYMBOL:
case T_RATIONAL:
case T_COMPLEX:
/* not a comprehensive list */
return TRUE;
default:
return FALSE;
}
}
/*
* call-seq:
* obj.clone(freeze: true) -> an_object
*
* Produces a shallow copy of <i>obj</i>---the instance variables of
* <i>obj</i> are copied, but not the objects they reference.
* #clone copies the frozen (unless +:freeze+ keyword argument is
* given with a false value) and tainted state of <i>obj</i>. See
* also the discussion under Object#dup.
*
* class Klass
* attr_accessor :str
* end
* s1 = Klass.new #=> #<Klass:0x401b3a38>
* s1.str = "Hello" #=> "Hello"
* s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
* s2.str[1,4] = "i" #=> "i"
* s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
* s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
*
* This method may have class-specific behavior. If so, that
* behavior will be documented under the #+initialize_copy+ method of
* the class.
*/
static VALUE
rb_obj_clone2(int argc, VALUE *argv, VALUE obj)
{
int kwfreeze = freeze_opt(argc, argv);
if (!special_object_p(obj))
return mutable_obj_clone(obj, kwfreeze);
return immutable_obj_clone(obj, kwfreeze);
}
/*! \private */
VALUE
rb_immutable_obj_clone(int argc, VALUE *argv, VALUE obj)
{
int kwfreeze = freeze_opt(argc, argv);
return immutable_obj_clone(obj, kwfreeze);
}
static int
freeze_opt(int argc, VALUE *argv)
{
static ID keyword_ids[1];
VALUE opt;
VALUE kwfreeze;
if (!keyword_ids[0]) {
CONST_ID(keyword_ids[0], "freeze");
}
rb_scan_args(argc, argv, "0:", &opt);
if (!NIL_P(opt)) {
rb_get_kwargs(opt, keyword_ids, 0, 1, &kwfreeze);
if (kwfreeze == Qfalse) return FALSE;
if (kwfreeze != Qundef && kwfreeze != Qtrue) {
rb_raise(rb_eArgError, "unexpected value for freeze: %"PRIsVALUE,
rb_obj_class(kwfreeze));
}
}
return TRUE;
}
static VALUE
immutable_obj_clone(VALUE obj, int kwfreeze)
{
if (!kwfreeze)
rb_raise(rb_eArgError, "can't unfreeze %"PRIsVALUE,
rb_obj_class(obj));
return obj;
}
static VALUE
mutable_obj_clone(VALUE obj, int kwfreeze)
{
VALUE clone, singleton;
clone = rb_obj_alloc(rb_obj_class(obj));
singleton = rb_singleton_class_clone_and_attach(obj, clone);
RBASIC_SET_CLASS(clone, singleton);
if (FL_TEST(singleton, FL_SINGLETON)) {
rb_singleton_class_attached(singleton, clone);
}
init_copy(clone, obj);
rb_funcall(clone, id_init_clone, 1, obj);
if (kwfreeze) {
RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;
}
return clone;
}
/**
* :nodoc
*--
* Almost same as \c Object#clone
*++
*/
VALUE
rb_obj_clone(VALUE obj)
{
if (special_object_p(obj)) return obj;
return mutable_obj_clone(obj, Qtrue);
}
/**
* call-seq:
* obj.dup -> an_object
*
* Produces a shallow copy of <i>obj</i>---the instance variables of
* <i>obj</i> are copied, but not the objects they reference.
* #dup copies the tainted state of <i>obj</i>.
*
* This method may have class-specific behavior. If so, that
* behavior will be documented under the #+initialize_copy+ method of
* the class.
*
* === on dup vs clone
*
* In general, #clone and #dup may have different semantics in
* descendant classes. While #clone is used to duplicate an object,
* including its internal state, #dup typically uses the class of the
* descendant object to create the new instance.
*
* When using #dup, any modules that the object has been extended with will not
* be copied.
*
* class Klass
* attr_accessor :str
* end
*
* module Foo
* def foo; 'foo'; end
* end
*
* s1 = Klass.new #=> #<Klass:0x401b3a38>
* s1.extend(Foo) #=> #<Klass:0x401b3a38>
* s1.foo #=> "foo"
*
* s2 = s1.clone #=> #<Klass:0x401b3a38>
* s2.foo #=> "foo"
*
* s3 = s1.dup #=> #<Klass:0x401b3a38>
* s3.foo #=> NoMethodError: undefined method `foo' for #<Klass:0x401b3a38>
*--
* Equivalent to \c Object\#dup in Ruby
*++
*/
VALUE
rb_obj_dup(VALUE obj)
{
VALUE dup;
if (special_object_p(obj)) {
return obj;
}
dup = rb_obj_alloc(rb_obj_class(obj));
init_copy(dup, obj);
rb_funcall(dup, id_init_dup, 1, obj);
return dup;
}
/*
* call-seq:
* obj.itself -> obj
*
* Returns the receiver.
*
* string = "my string"
* string.itself.object_id == string.object_id #=> true
*
*/
static VALUE
rb_obj_itself(VALUE obj)
{
return obj;
}
static VALUE
rb_obj_size(VALUE self, VALUE args, VALUE obj)
{
return LONG2FIX(1);
}
/*
* call-seq:
* obj.then {|x| block } -> an_object
* obj.yield_self {|x| block } -> an_object
*
* Yields self to the block and returns the result of the block.
*
* 3.next.then {|x| x**x }.to_s #=> "256"
* "my string".yield_self {|s| s.upcase } #=> "MY STRING"
*
* Good usage for +yield_self+ is value piping in method chains:
*
* require 'open-uri'
* require 'json'
*
* construct_url(arguments).
* yield_self {|url| open(url).read }.
* yield_self {|response| JSON.parse(response) }
*
* When called without block, the method returns +Enumerator+,
* which can be used, for example, for conditional
* circuit-breaking:
*
* # meets condition, no-op
* 1.yield_self.detect(&:odd?) # => 1
* # does not meet condition, drop value
* 2.yield_self.detect(&:odd?) # => nil
*
*/
static VALUE
rb_obj_yield_self(VALUE obj)
{
RETURN_SIZED_ENUMERATOR(obj, 0, 0, rb_obj_size);
return rb_yield_values2(1, &obj);
}
/**
* :nodoc:
*--
* Default implementation of \c #initialize_copy
* \param[in,out] obj the receiver being initialized
* \param[in] orig the object to be copied from.
*++
*/
VALUE
rb_obj_init_copy(VALUE obj, VALUE orig)
{
if (obj == orig) return obj;
rb_check_frozen(obj);
rb_check_trusted(obj);
if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
rb_raise(rb_eTypeError, "initialize_copy should take same class object");
}
return obj;
}
/*!
* :nodoc:
*--
* Default implementation of \c #initialize_dup and \c #initialize_clone
*
* \param[in,out] obj the receiver being initialized
* \param[in] orig the object to be dup or cloned from.
*++
**/
VALUE
rb_obj_init_dup_clone(VALUE obj, VALUE orig)
{
rb_funcall(obj, id_init_copy, 1, orig);
return obj;
}
/**
* call-seq:
* obj.to_s -> string
*
* Returns a string representing <i>obj</i>. The default #to_s prints
* the object's class and an encoding of the object id. As a special
* case, the top-level object that is the initial execution context
* of Ruby programs returns ``main''.
*
*--
* Default implementation of \c #to_s.
*++
*/
VALUE
rb_any_to_s(VALUE obj)
{
VALUE str;
VALUE cname = rb_class_name(CLASS_OF(obj));
str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj);
OBJ_INFECT(str, obj);
return str;
}
VALUE rb_str_escape(VALUE str);
/*!
* Convenient wrapper of \c Object#inspect.
* Returns a human-readable string representation of \a obj,
* similarly to \c Object#inspect.
*
* Unlike Ruby-level \c #inspect, it escapes characters to keep the
* result compatible to the default internal or external encoding.
* If the default internal or external encoding is ASCII compatible,
* the encoding of the inspected result must be compatible with it.
* If the default internal or external encoding is ASCII incompatible,
* the result must be ASCII only.
*/
VALUE
rb_inspect(VALUE obj)
{
VALUE str = rb_obj_as_string(rb_funcallv(obj, id_inspect, 0, 0));
rb_encoding *enc = rb_default_internal_encoding();
if (enc == NULL) enc = rb_default_external_encoding();
if (!rb_enc_asciicompat(enc)) {
if (!rb_enc_str_asciionly_p(str))
return rb_str_escape(str);
return str;
}
if (rb_enc_get(str) != enc && !rb_enc_str_asciionly_p(str))
return rb_str_escape(str);
return str;
}
static int
inspect_i(st_data_t k, st_data_t v, st_data_t a)
{
ID id = (ID)k;
VALUE value = (VALUE)v;
VALUE str = (VALUE)a;
/* need not to show internal data */
if (CLASS_OF(value) == 0) return ST_CONTINUE;
if (!rb_is_instance_id(id)) return ST_CONTINUE;
if (RSTRING_PTR(str)[0] == '-') { /* first element */
RSTRING_PTR(str)[0] = '#';
rb_str_cat2(str, " ");
}
else {
rb_str_cat2(str, ", ");
}
rb_str_catf(str, "%"PRIsVALUE"=%+"PRIsVALUE,
rb_id2str(id), value);
return ST_CONTINUE;
}
static VALUE
inspect_obj(VALUE obj, VALUE str, int recur)
{
if (recur) {
rb_str_cat2(str, " ...");
}
else {
rb_ivar_foreach(obj, inspect_i, str);
}
rb_str_cat2(str, ">");
RSTRING_PTR(str)[0] = '#';
OBJ_INFECT(str, obj);
return str;
}
/*
* call-seq:
* obj.inspect -> string
*
* Returns a string containing a human-readable representation of <i>obj</i>.
* The default #inspect shows the object's class name, an encoding of
* the object id, and a list of the instance variables and their
* values (by calling #inspect on each of them). User defined classes
* should override this method to provide a better representation of
* <i>obj</i>. When overriding this method, it should return a string
* whose encoding is compatible with the default external encoding.
*
* [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
* Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
*
* class Foo
* end
* Foo.new.inspect #=> "#<Foo:0x0300c868>"
*
* class Bar
* def initialize
* @bar = 1
* end
* end
* Bar.new.inspect #=> "#<Bar:0x0300c868 @bar=1>"
*/
static VALUE
rb_obj_inspect(VALUE obj)
{
if (rb_ivar_count(obj) > 0) {
VALUE str;
VALUE c = rb_class_name(CLASS_OF(obj));
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj);
return rb_exec_recursive(inspect_obj, obj, str);
}
else {
return rb_any_to_s(obj);
}
}
static VALUE
class_or_module_required(VALUE c)
{
if (SPECIAL_CONST_P(c)) goto not_class;
switch (BUILTIN_TYPE(c)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
break;
default:
not_class:
rb_raise(rb_eTypeError, "class or module required");
}
return c;
}
static VALUE class_search_ancestor(VALUE cl, VALUE c);
/**
* call-seq:
* obj.instance_of?(class) -> true or false
*
* Returns <code>true</code> if <i>obj</i> is an instance of the given
* class. See also Object#kind_of?.
*
* class A; end
* class B < A; end
* class C < B; end
*
* b = B.new
* b.instance_of? A #=> false
* b.instance_of? B #=> true
* b.instance_of? C #=> false
*--
* Determines if \a obj is an instance of \a c.
*
* Equivalent to \c Object\#is_instance_of in Ruby.
* \param[in] obj the object to be determined.
* \param[in] c a Class object
*++
*/
VALUE
rb_obj_is_instance_of(VALUE obj, VALUE c)
{
c = class_or_module_required(c);
if (rb_obj_class(obj) == c) return Qtrue;
return Qfalse;
}
/**
* call-seq:
* obj.is_a?(class) -> true or false
* obj.kind_of?(class) -> true or false
*
* Returns <code>true</code> if <i>class</i> is the class of
* <i>obj</i>, or if <i>class</i> is one of the superclasses of
* <i>obj</i> or modules included in <i>obj</i>.
*
* module M; end
* class A
* include M
* end
* class B < A; end
* class C < B; end
*
* b = B.new
* b.is_a? A #=> true
* b.is_a? B #=> true
* b.is_a? C #=> false
* b.is_a? M #=> true
*
* b.kind_of? A #=> true
* b.kind_of? B #=> true
* b.kind_of? C #=> false
* b.kind_of? M #=> true
*--
* Determines if \a obj is a kind of \a c.
*
* Equivalent to \c Object\#kind_of? in Ruby.
* \param[in] obj the object to be determined
* \param[in] c a Module object.
*++
*/
VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
VALUE cl = CLASS_OF(obj);
c = class_or_module_required(c);
return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse;
}
static VALUE
class_search_ancestor(VALUE cl, VALUE c)
{
while (cl) {
if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c))
return cl;
cl = RCLASS_SUPER(cl);
}
return 0;
}
/*! \private */
VALUE
rb_class_search_ancestor(VALUE cl, VALUE c)
{
cl = class_or_module_required(cl);
c = class_or_module_required(c);
return class_search_ancestor(cl, RCLASS_ORIGIN(c));
}
/**
* call-seq:
* obj.tap {|x| block } -> obj
*
* Yields self to the block, and then returns self.
* The primary purpose of this method is to "tap into" a method chain,
* in order to perform operations on intermediate results within the chain.
*
* (1..10) .tap {|x| puts "original: #{x}" }
* .to_a .tap {|x| puts "array: #{x}" }
* .select {|x| x.even? } .tap {|x| puts "evens: #{x}" }
* .map {|x| x*x } .tap {|x| puts "squares: #{x}" }
*
*--
* \private
*++
*/
VALUE
rb_obj_tap(VALUE obj)
{
rb_yield(obj);
return obj;
}
/*
* Document-method: inherited
*
* call-seq:
* inherited(subclass)
*
* Callback invoked whenever a subclass of the current class is created.
*
* Example:
*
* class Foo
* def self.inherited(subclass)
* puts "New subclass: #{subclass}"
* end
* end
*
* class Bar < Foo
* end
*
* class Baz < Bar
* end
*
* <em>produces:</em>
*
* New subclass: Bar
* New subclass: Baz
*/
/* Document-method: method_added
*
* call-seq:
* method_added(method_name)
*
* Invoked as a callback whenever an instance method is added to the
* receiver.
*
* module Chatty
* def self.method_added(method_name)
* puts "Adding #{method_name.inspect}"
* end
* def self.some_class_method() end
* def some_instance_method() end
* end
*
* <em>produces:</em>
*
* Adding :some_instance_method
*
*/
/* Document-method: method_removed
*
* call-seq:
* method_removed(method_name)
*
* Invoked as a callback whenever an instance method is removed from the
* receiver.
*
* module Chatty
* def self.method_removed(method_name)
* puts "Removing #{method_name.inspect}"
* end
* def self.some_class_method() end
* def some_instance_method() end
* class << self
* remove_method :some_class_method
* end
* remove_method :some_instance_method
* end
*
* <em>produces:</em>
*
* Removing :some_instance_method
*
*/
/*
* Document-method: singleton_method_added
*
* call-seq:
* singleton_method_added(symbol)
*
* Invoked as a callback whenever a singleton method is added to the
* receiver.
*
* module Chatty
* def Chatty.singleton_method_added(id)
* puts "Adding #{id.id2name}"
* end
* def self.one() end
* def two() end
* def Chatty.three() end
* end
*
* <em>produces:</em>
*
* Adding singleton_method_added
* Adding one
* Adding three
*
*/
/*
* Document-method: singleton_method_removed
*
* call-seq:
* singleton_method_removed(symbol)
*
* Invoked as a callback whenever a singleton method is removed from
* the receiver.
*
* module Chatty
* def Chatty.singleton_method_removed(id)
* puts "Removing #{id.id2name}"
* end
* def self.one() end
* def two() end
* def Chatty.three() end
* class << self
* remove_method :three
* remove_method :one
* end
* end
*
* <em>produces:</em>
*
* Removing three
* Removing one
*/
/*
* Document-method: singleton_method_undefined
*
* call-seq:
* singleton_method_undefined(symbol)
*
* Invoked as a callback whenever a singleton method is undefined in
* the receiver.
*
* module Chatty
* def Chatty.singleton_method_undefined(id)
* puts "Undefining #{id.id2name}"
* end
* def Chatty.one() end
* class << self
* undef_method(:one)
* end
* end
*
* <em>produces:</em>
*
* Undefining one
*/
/*
* Document-method: extended
*
* call-seq:
* extended(othermod)
*
* The equivalent of <tt>included</tt>, but for extended modules.
*
* module A
* def self.extended(mod)
* puts "#{self} extended in #{mod}"
* end
* end
* module Enumerable
* extend A
* end
* # => prints "A extended in Enumerable"
*/
/*
* Document-method: included
*
* call-seq:
* included(othermod)
*
* Callback invoked whenever the receiver is included in another
* module or class. This should be used in preference to
* <tt>Module.append_features</tt> if your code wants to perform some
* action when a module is included in another.
*
* module A
* def A.included(mod)
* puts "#{self} included in #{mod}"
* end
* end
* module Enumerable
* include A
* end
* # => prints "A included in Enumerable"
*/
/*
* Document-method: prepended
*
* call-seq:
* prepended(othermod)
*
* The equivalent of <tt>included</tt>, but for prepended modules.
*
* module A
* def self.prepended(mod)
* puts "#{self} prepended to #{mod}"
* end
* end
* module Enumerable
* prepend A
* end
* # => prints "A prepended to Enumerable"
*/
/*
* Document-method: initialize
*
* call-seq:
* BasicObject.new
*
* Returns a new BasicObject.
*/
/*
* Not documented
*/
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
/**
* call-seq:
* obj.tainted? -> true or false
*
* Returns true if the object is tainted.
*
* See #taint for more information.
*--
* Determines if \a obj is tainted. Equivalent to \c Object\#tainted? in Ruby.
* \param[in] obj the object to be determined
* \retval Qtrue if the object is tainted
* \retval Qfalse if the object is not tainted
* \sa rb_obj_taint
* \sa rb_obj_untaint
*++
*/
VALUE
rb_obj_tainted(VALUE obj)
{
if (OBJ_TAINTED(obj))
return Qtrue;
return Qfalse;
}
/**
* call-seq:
* obj.taint -> obj
*
* Mark the object as tainted.
*
* Objects that are marked as tainted will be restricted from various built-in
* methods. This is to prevent insecure data, such as command-line arguments
* or strings read from Kernel#gets, from inadvertently compromising the user's
* system.
*
* To check whether an object is tainted, use #tainted?.
*
* You should only untaint a tainted object if your code has inspected it and
* determined that it is safe. To do so use #untaint.
*--
* Marks the object as tainted. Equivalent to \c Object\#taint in Ruby
* \param[in] obj the object to be tainted
* \return the object itself
* \sa rb_obj_untaint
* \sa rb_obj_tainted
*++
*/
VALUE
rb_obj_taint(VALUE obj)
{
if (!OBJ_TAINTED(obj) && OBJ_TAINTABLE(obj)) {
rb_check_frozen(obj);
OBJ_TAINT(obj);
}
return obj;
}
/**
* call-seq:
* obj.untaint -> obj
*
* Removes the tainted mark from the object.
*
* See #taint for more information.
*--
* Removes the tainted mark from the object.
* Equivalent to \c Object\#untaint in Ruby.
*
* \param[in] obj the object to be tainted
* \return the object itself
* \sa rb_obj_taint
* \sa rb_obj_tainted
*++
*/
VALUE
rb_obj_untaint(VALUE obj)
{
if (OBJ_TAINTED(obj)) {
rb_check_frozen(obj);
FL_UNSET(obj, FL_TAINT);
}
return obj;
}
/**
* call-seq:
* obj.untrusted? -> true or false
*
* Deprecated method that is equivalent to #tainted?.
*--
* \deprecated Use rb_obj_tainted.
*
* Trustiness used to have independent semantics from taintedness.
* But now trustiness of objects is obsolete and this function behaves
* the same as rb_obj_tainted.
*
* \sa rb_obj_tainted
*++
*/
VALUE
rb_obj_untrusted(VALUE obj)
{
rb_warning("untrusted? is deprecated and its behavior is same as tainted?");
return rb_obj_tainted(obj);
}
/**
* call-seq:
* obj.untrust -> obj
*
* Deprecated method that is equivalent to #taint.
*--
* \deprecated Use rb_obj_taint(obj)
*
* Trustiness used to have independent semantics from taintedness.
* But now trustiness of objects is obsolete and this function behaves
* the same as rb_obj_taint.
*
* \sa rb_obj_taint
*++
*/
VALUE
rb_obj_untrust(VALUE obj)
{
rb_warning("untrust is deprecated and its behavior is same as taint");
return rb_obj_taint(obj);
}
/**
* call-seq:
* obj.trust -> obj
*
* Deprecated method that is equivalent to #untaint.
*--
* \deprecated Use rb_obj_untaint(obj)
*
* Trustiness used to have independent semantics from taintedness.
* But now trustiness of objects is obsolete and this function behaves
* the same as rb_obj_untaint.
*
* \sa rb_obj_untaint
*++
*/
VALUE
rb_obj_trust(VALUE obj)
{
rb_warning("trust is deprecated and its behavior is same as untaint");
return rb_obj_untaint(obj);
}
/**
* Convenient function to infect \a victim with the taintedness of \a carrier.
*
* It just keeps the taintedness of \a victim if \a carrier is not tainted.
* \param[in,out] victim the object being infected with the taintness of \a carrier
* \param[in] carrier a possibly tainted object
*/
void
rb_obj_infect(VALUE victim, VALUE carrier)
{
OBJ_INFECT(victim, carrier);
}
/**
* call-seq:
* obj.freeze -> obj
*
* Prevents further modifications to <i>obj</i>. A
* RuntimeError will be raised if modification is attempted.
* There is no way to unfreeze a frozen object. See also
* Object#frozen?.
*
* This method returns self.
*
* a = [ "a", "b", "c" ]
* a.freeze
* a << "z"
*
* <em>produces:</em>
*
* prog.rb:3:in `<<': can't modify frozen Array (FrozenError)
* from prog.rb:3
*
* Objects of the following classes are always frozen: Integer,
* Float, Symbol.
*--
* Make the object unmodifiable. Equivalent to \c Object\#freeze in Ruby.
* \param[in,out] obj the object to be frozen
* \return the frozen object
*++
*/
VALUE
rb_obj_freeze(VALUE obj)
{
if (!OBJ_FROZEN(obj)) {
OBJ_FREEZE(obj);
if (SPECIAL_CONST_P(obj)) {
rb_bug("special consts should be frozen.");
}
}
return obj;
}
/**
* call-seq:
* obj.frozen? -> true or false
*
* Returns the freeze status of <i>obj</i>.
*
* a = [ "a", "b", "c" ]
* a.freeze #=> ["a", "b", "c"]
* a.frozen? #=> true
*--
* Determines if the object is frozen. Equivalent to \c Object\#frozen? in Ruby.
* \param[in] obj the object to be determines
* \retval Qtrue if frozen
* \retval Qfalse if not frozen
*++
*/
VALUE
rb_obj_frozen_p(VALUE obj)
{
return OBJ_FROZEN(obj) ? Qtrue : Qfalse;
}
/*
* Document-class: NilClass
*
* The class of the singleton object <code>nil</code>.
*/
/*
* call-seq:
* nil.to_i -> 0
*
* Always returns zero.
*
* nil.to_i #=> 0
*/
static VALUE
nil_to_i(VALUE obj)
{
return INT2FIX(0);
}
/*
* call-seq:
* nil.to_f -> 0.0
*
* Always returns zero.
*
* nil.to_f #=> 0.0
*/
static VALUE
nil_to_f(VALUE obj)
{
return DBL2NUM(0.0);
}
/*
* call-seq:
* nil.to_s -> ""
*
* Always returns the empty string.
*/
static VALUE
nil_to_s(VALUE obj)
{
return rb_usascii_str_new(0, 0);
}
/*
* Document-method: to_a
*
* call-seq:
* nil.to_a -> []
*
* Always returns an empty array.
*
* nil.to_a #=> []
*/
static VALUE
nil_to_a(VALUE obj)
{
return rb_ary_new2(0);
}
/*
* Document-method: to_h
*
* call-seq:
* nil.to_h -> {}
*
* Always returns an empty hash.
*
* nil.to_h #=> {}
*/
static VALUE
nil_to_h(VALUE obj)
{
return rb_hash_new();
}
/*
* call-seq:
* nil.inspect -> "nil"
*
* Always returns the string "nil".
*/
static VALUE
nil_inspect(VALUE obj)
{
return rb_usascii_str_new2("nil");
}
/*
* call-seq:
* nil =~ other -> nil
*
* Dummy pattern matching -- always returns nil.
*/
static VALUE
nil_match(VALUE obj1, VALUE obj2)
{
return Qnil;
}
/***********************************************************************
* Document-class: TrueClass
*
* The global value <code>true</code> is the only instance of class
* TrueClass and represents a logically true value in
* boolean expressions. The class provides operators allowing
* <code>true</code> to be used in logical expressions.
*/
/*
* call-seq:
* true.to_s -> "true"
*
* The string representation of <code>true</code> is "true".
*/
static VALUE
true_to_s(VALUE obj)
{
return rb_usascii_str_new2("true");
}
/*
* call-seq:
* true & obj -> true or false
*
* And---Returns <code>false</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
*/
static VALUE
true_and(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* true | obj -> true
*
* Or---Returns <code>true</code>. As <i>obj</i> is an argument to
* a method call, it is always evaluated; there is no short-circuit
* evaluation in this case.
*
* true | puts("or")
* true || puts("logical or")
*
* <em>produces:</em>
*
* or
*/
static VALUE
true_or(VALUE obj, VALUE obj2)
{
return Qtrue;
}
/*
* call-seq:
* true ^ obj -> !obj
*
* Exclusive Or---Returns <code>true</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>, <code>false</code>
* otherwise.
*/
static VALUE
true_xor(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qfalse:Qtrue;
}
/*
* Document-class: FalseClass
*
* The global value <code>false</code> is the only instance of class
* FalseClass and represents a logically false value in
* boolean expressions. The class provides operators allowing
* <code>false</code> to participate correctly in logical expressions.
*
*/
/*
* call-seq:
* false.to_s -> "false"
*
* The string representation of <code>false</code> is "false".
*/
static VALUE
false_to_s(VALUE obj)
{
return rb_usascii_str_new2("false");
}
/*
* call-seq:
* false & obj -> false
* nil & obj -> false
*
* And---Returns <code>false</code>. <i>obj</i> is always
* evaluated as it is the argument to a method call---there is no
* short-circuit evaluation in this case.
*/
static VALUE
false_and(VALUE obj, VALUE obj2)
{
return Qfalse;
}
/*
* call-seq:
* false | obj -> true or false
* nil | obj -> true or false
*
* Or---Returns <code>false</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
*/
static VALUE
false_or(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* false ^ obj -> true or false
* nil ^ obj -> true or false
*
* Exclusive Or---If <i>obj</i> is <code>nil</code> or
* <code>false</code>, returns <code>false</code>; otherwise, returns
* <code>true</code>.
*
*/
static VALUE
false_xor(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* nil.nil? -> true
*
* Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
*/
static VALUE
rb_true(VALUE obj)
{
return Qtrue;
}
/*
* call-seq:
* obj.nil? -> true or false
*
* Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
*
* Object.new.nil? #=> false
* nil.nil? #=> true
*/
static VALUE
rb_false(VALUE obj)
{
return Qfalse;
}
/*
* call-seq:
* obj =~ other -> nil
*
* This method is deprecated.
*
* This is not only unuseful but also troublesome because it
* may hide a type error.
*/
static VALUE
rb_obj_match(VALUE obj1, VALUE obj2)
{
rb_warn("deprecated Object#=~ is called on %"PRIsVALUE
"; it always returns nil", rb_obj_class(obj1));
return Qnil;
}
/*
* call-seq:
* obj !~ other -> true or false
*
* Returns true if two objects do not match (using the <i>=~</i>
* method), otherwise false.
*/
static VALUE
rb_obj_not_match(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_match, 1, obj2);
return RTEST(result) ? Qfalse : Qtrue;
}
/*
* call-seq:
* obj <=> other -> 0 or nil
*
* Returns 0 if +obj+ and +other+ are the same object
* or <code>obj == other</code>, otherwise nil.
*
* The #<=> is used by various methods to compare objects, for example
* Enumerable#sort, Enumerable#max etc.
*
* Your implementation of #<=> should return one of the following values: -1, 0,
* 1 or nil. -1 means self is smaller than other. 0 means self is equal to other.
* 1 means self is bigger than other. Nil means the two values could not be
* compared.
*
* When you define #<=>, you can include Comparable to gain the
* methods #<=, #<, #==, #>=, #> and #between?.
*/
static VALUE
rb_obj_cmp(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2 || rb_equal(obj1, obj2))
return INT2FIX(0);
return Qnil;
}
/***********************************************************************
*
* Document-class: Module
*
* A Module is a collection of methods and constants. The
* methods in a module may be instance methods or module methods.
* Instance methods appear as methods in a class when the module is
* included, module methods do not. Conversely, module methods may be
* called without creating an encapsulating object, while instance
* methods may not. (See Module#module_function.)
*
* In the descriptions that follow, the parameter <i>sym</i> refers
* to a symbol, which is either a quoted string or a
* Symbol (such as <code>:name</code>).
*
* module Mod
* include Math
* CONST = 1
* def meth
* # ...
* end
* end
* Mod.class #=> Module
* Mod.constants #=> [:CONST, :PI, :E]
* Mod.instance_methods #=> [:meth]
*
*/
/*
* call-seq:
* mod.to_s -> string
*
* Returns a string representing this module or class. For basic
* classes and modules, this is the name. For singletons, we
* show information on the thing we're attached to as well.
*/
static VALUE
rb_mod_to_s(VALUE klass)
{
ID id_defined_at;
VALUE refined_class, defined_at;
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_usascii_str_new2("#<Class:");
VALUE v = rb_ivar_get(klass, id__attached__);
if (CLASS_OR_MODULE_P(v)) {
rb_str_append(s, rb_inspect(v));
}
else {
rb_str_append(s, rb_any_to_s(v));
}
rb_str_cat2(s, ">");
return s;
}
refined_class = rb_refinement_module_get_refined_class(klass);
if (!NIL_P(refined_class)) {
VALUE s = rb_usascii_str_new2("#<refinement:");
rb_str_concat(s, rb_inspect(refined_class));
rb_str_cat2(s, "@");
CONST_ID(id_defined_at, "__defined_at__");
defined_at = rb_attr_get(klass, id_defined_at);
rb_str_concat(s, rb_inspect(defined_at));
rb_str_cat2(s, ">");
return s;
}
return rb_class_name(klass);
}
/*
* call-seq:
* mod.freeze -> mod
*
* Prevents further modifications to <i>mod</i>.
*
* This method returns self.
*/
static VALUE
rb_mod_freeze(VALUE mod)
{
rb_class_name(mod);
return rb_obj_freeze(mod);
}
/*
* call-seq:
* mod === obj -> true or false
*
* Case Equality---Returns <code>true</code> if <i>obj</i> is an
* instance of <i>mod</i> or an instance of one of <i>mod</i>'s descendants.
* Of limited use for modules, but can be used in <code>case</code> statements
* to classify objects by class.
*/
static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
return rb_obj_is_kind_of(arg, mod);
}
/**
* call-seq:
* mod <= other -> true, false, or nil
*
* Returns true if <i>mod</i> is a subclass of <i>other</i> or
* is the same as <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A < B" implies "A < B".)
*--
* Determines if \a mod inherits \a arg. Equivalent to \c Module\#<= in Ruby
*
* \param[in] mod a Module object
* \param[in] arg another Module object or an iclass of a module
* \retval Qtrue if \a mod inherits \a arg, or \a mod equals \a arg
* \retval Qfalse if \a arg inherits \a mod
* \retval Qnil if otherwise
*++
*/
VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
if (mod == arg) return Qtrue;
if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) {
return Qtrue;
}
/* not mod < arg; check if mod > arg */
if (class_search_ancestor(arg, mod)) {
return Qfalse;
}
return Qnil;
}
/*
* call-seq:
* mod < other -> true, false, or nil
*
* Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A < B" implies "A < B".)
*
*/
static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_class_inherited_p(mod, arg);
}
/*
* call-seq:
* mod >= other -> true, false, or nil
*
* Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
* two modules are the same. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A < B" implies "B > A".)
*
*/
static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
if (!CLASS_OR_MODULE_P(arg)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
return rb_class_inherited_p(arg, mod);
}
/*
* call-seq:
* mod > other -> true, false, or nil
*
* Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A < B" implies "B > A".)
*
*/
static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
/*
* call-seq:
* module <=> other_module -> -1, 0, +1, or nil
*
* Comparison---Returns -1, 0, +1 or nil depending on whether +module+
* includes +other_module+, they are the same, or if +module+ is included by
* +other_module+.
*
* Returns +nil+ if +module+ has no relationship with +other_module+, if
* +other_module+ is not a module, or if the two values are incomparable.
*/
static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
if (!CLASS_OR_MODULE_P(arg)) {
return Qnil;
}
cmp = rb_class_inherited_p(mod, arg);
if (NIL_P(cmp)) return Qnil;
if (cmp) {
return INT2FIX(-1);
}
return INT2FIX(1);
}
static VALUE
rb_module_s_alloc(VALUE klass)
{
VALUE mod = rb_module_new();
RBASIC_SET_CLASS(mod, klass);
return mod;
}
static VALUE
rb_class_s_alloc(VALUE klass)
{
return rb_class_boot(0);
}
/*
* call-seq:
* Module.new -> mod
* Module.new {|mod| block } -> mod
*
* Creates a new anonymous module. If a block is given, it is passed
* the module object, and the block is evaluated in the context of this
* module like #module_eval.
*
* fred = Module.new do
* def meth1
* "hello"
* end
* def meth2
* "bye"
* end
* end
* a = "my string"
* a.extend(fred) #=> "my string"
* a.meth1 #=> "hello"
* a.meth2 #=> "bye"
*
* Assign the module to a constant (name starting uppercase) if you
* want to treat it like a regular module.
*/
static VALUE
rb_mod_initialize(VALUE module)
{
if (rb_block_given_p()) {
rb_mod_module_exec(1, &module, module);
}
return Qnil;
}
/* :nodoc: */
static VALUE
rb_mod_initialize_clone(VALUE clone, VALUE orig)
{
VALUE ret;
ret = rb_obj_init_dup_clone(clone, orig);
if (OBJ_FROZEN(orig))
rb_class_name(clone);
return ret;
}
/*
* call-seq:
* Class.new(super_class=Object) -> a_class
* Class.new(super_class=Object) { |mod| ... } -> a_class
*
* Creates a new anonymous (unnamed) class with the given superclass
* (or Object if no parameter is given). You can give a
* class a name by assigning the class object to a constant.
*
* If a block is given, it is passed the class object, and the block
* is evaluated in the context of this class like
* #class_eval.
*
* fred = Class.new do
* def meth1
* "hello"
* end
* def meth2
* "bye"
* end
* end
*
* a = fred.new #=> #<#<Class:0x100381890>:0x100376b98>
* a.meth1 #=> "hello"
* a.meth2 #=> "bye"
*
* Assign the class to a constant (name starting uppercase) if you
* want to treat it like a regular class.
*/
static VALUE
rb_class_initialize(int argc, VALUE *argv, VALUE klass)
{
VALUE super;
if (RCLASS_SUPER(klass) != 0 || klass == rb_cBasicObject) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (rb_check_arity(argc, 0, 1) == 0) {
super = rb_cObject;
}
else {
super = argv[0];
rb_check_inheritable(super);
if (super != rb_cBasicObject && !RCLASS_SUPER(super)) {
rb_raise(rb_eTypeError, "can't inherit uninitialized class");
}
}
RCLASS_SET_SUPER(klass, super);
rb_make_metaclass(klass, RBASIC(super)->klass);
rb_class_inherited(super, klass);
rb_mod_initialize(klass);
return klass;
}
/*! \private */
void
rb_undefined_alloc(VALUE klass)
{
rb_raise(rb_eTypeError, "allocator undefined for %"PRIsVALUE,
klass);
}
/*
* call-seq:
* class.allocate() -> obj
*
* Allocates space for a new object of <i>class</i>'s class and does not
* call initialize on the new instance. The returned object must be an
* instance of <i>class</i>.
*
* klass = Class.new do
* def initialize(*args)
* @initialized = true
* end
*
* def initialized?
* @initialized || false
* end
* end
*
* klass.allocate.initialized? #=> false
*
*/
static VALUE
rb_class_alloc(VALUE klass)
{
VALUE obj;
rb_alloc_func_t allocator;
if (RCLASS_SUPER(klass) == 0 && klass != rb_cBasicObject) {
rb_raise(rb_eTypeError, "can't instantiate uninitialized class");
}
if (FL_TEST(klass, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't create instance of singleton class");
}
allocator = rb_get_alloc_func(klass);
if (!allocator) {
rb_undefined_alloc(klass);
}
RUBY_DTRACE_CREATE_HOOK(OBJECT, rb_class2name(klass));
obj = (*allocator)(klass);
if (rb_obj_class(obj) != rb_class_real(klass)) {
rb_raise(rb_eTypeError, "wrong instance allocation");
}
return obj;
}
/**
* Allocates an instance of \a klass
*
* \note It calls the allocator defined by {rb_define_alloc_func}.
* So you cannot use this function to define an allocator.
* Use {rb_newobj_of}, {TypedData_Make_Struct} or others, instead.
* \note Usually prefer rb_class_new_instance to rb_obj_alloc and rb_obj_call_init
* \param[in] klass a Class object
* \sa rb_class_new_instance
* \sa rb_obj_call_init
* \sa rb_define_alloc_func
* \sa rb_newobj_of
* \sa TypedData_Make_Struct
*/
VALUE
rb_obj_alloc(VALUE klass)
{
Check_Type(klass, T_CLASS);
return rb_class_alloc(klass);
}
static VALUE
rb_class_allocate_instance(VALUE klass)
{
NEWOBJ_OF(obj, struct RObject, klass, T_OBJECT | (RGENGC_WB_PROTECTED_OBJECT ? FL_WB_PROTECTED : 0));
return (VALUE)obj;
}
/*
* call-seq:
* class.new(args, ...) -> obj
*
* Calls #allocate to create a new object of <i>class</i>'s class,
* then invokes that object's #initialize method, passing it
* <i>args</i>. This is the method that ends up getting called
* whenever an object is constructed using <code>.new</code>.
*
*/
static VALUE
rb_class_s_new(int argc, const VALUE *argv, VALUE klass)
{
VALUE obj;
obj = rb_class_alloc(klass);
rb_obj_call_init(obj, argc, argv);
return obj;
}
/**
* Allocates and initializes an instance of \a klass.
*
* Equivalent to \c Class\#new in Ruby
*
* \param[in] argc the number of arguments to \c #initialize
* \param[in] argv a pointer to an array of arguments to \c #initialize
* \param[in] klass a Class object
* \return the new instance of \a klass
* \sa rb_obj_call_init
* \sa rb_obj_alloc
*/
VALUE
rb_class_new_instance(int argc, const VALUE *argv, VALUE klass)
{
Check_Type(klass, T_CLASS);
return rb_class_s_new(argc, argv, klass);
}
/**
* call-seq:
* class.superclass -> a_super_class or nil
*
* Returns the superclass of <i>class</i>, or <code>nil</code>.
*
* File.superclass #=> IO
* IO.superclass #=> Object
* Object.superclass #=> BasicObject
* class Foo; end
* class Bar < Foo; end
* Bar.superclass #=> Foo
*
* Returns nil when the given class does not have a parent class:
*
* BasicObject.superclass #=> nil
*
*--
* Returns the superclass of \a klass. Equivalent to \c Class\#superclass in Ruby.
*
* It skips modules.
* \param[in] klass a Class object
* \return the superclass, or \c Qnil if \a klass does not have a parent class.
* \sa rb_class_get_superclass
*++
*/
VALUE
rb_class_superclass(VALUE klass)
{
VALUE super = RCLASS_SUPER(klass);
if (!super) {
if (klass == rb_cBasicObject) return Qnil;
rb_raise(rb_eTypeError, "uninitialized class");
}
while (RB_TYPE_P(super, T_ICLASS)) {
super = RCLASS_SUPER(super);
}
if (!super) {
return Qnil;
}
return super;
}
/**
* Returns the superclass of \a klass
* The return value might be an iclass of a module, unlike rb_class_superclass.
*
* Also it returns Qfalse when \a klass does not have a parent class.
* \sa rb_class_superclass
*/
VALUE
rb_class_get_superclass(VALUE klass)
{
return RCLASS(klass)->super;
}
/*! \private */
#define id_for_var(obj, name, part, type) \
id_for_setter(obj, name, type, "`%1$s' is not allowed as "#part" "#type" variable name")
/*! \private */
#define id_for_setter(obj, name, type, message) \
check_setter_id(obj, &(name), rb_is_##type##_id, rb_is_##type##_name, message, strlen(message))
static ID
check_setter_id(VALUE obj, VALUE *pname,
int (*valid_id_p)(ID), int (*valid_name_p)(VALUE),
const char *message, size_t message_len)
{
ID id = rb_check_id(pname);
VALUE name = *pname;
if (id ? !valid_id_p(id) : !valid_name_p(name)) {
rb_name_err_raise_str(rb_fstring_new(message, message_len),
obj, name);
}
return id;
}
static int
rb_is_attr_name(VALUE name)
{
return rb_is_local_name(name) || rb_is_const_name(name);
}
static int
rb_is_attr_id(ID id)
{
return rb_is_local_id(id) || rb_is_const_id(id);
}
static const char wrong_constant_name[] = "wrong constant name %1$s";
static const char invalid_attribute_name[] = "invalid attribute name `%1$s'";
static ID
id_for_attr(VALUE obj, VALUE name)
{
ID id = id_for_setter(obj, name, attr, invalid_attribute_name);
if (!id) id = rb_intern_str(name);
return id;
}
/*
* call-seq:
* attr_reader(symbol, ...) -> nil
* attr(symbol, ...) -> nil
* attr_reader(string, ...) -> nil
* attr(string, ...) -> nil
*
* Creates instance variables and corresponding methods that return the
* value of each instance variable. Equivalent to calling
* ``<code>attr</code><i>:name</i>'' on each name in turn.
* String arguments are converted to symbols.
*/
static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, FALSE, TRUE);
}
return Qnil;
}
/**
* call-seq:
* attr(name, ...) -> nil
* attr(name, true) -> nil
* attr(name, false) -> nil
*
* The first form is equivalent to #attr_reader.
* The second form is equivalent to <code>attr_accessor(name)</code> but deprecated.
* The last form is equivalent to <code>attr_reader(name)</code> but deprecated.
*--
* \private
* \todo can be static?
*++
*/
VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
rb_warning("optional boolean argument is obsoleted");
rb_attr(klass, id_for_attr(klass, argv[0]), 1, RTEST(argv[1]), TRUE);
return Qnil;
}
return rb_mod_attr_reader(argc, argv, klass);
}
/*
* call-seq:
* attr_writer(symbol, ...) -> nil
* attr_writer(string, ...) -> nil
*
* Creates an accessor method to allow assignment to the attribute
* <i>symbol</i><code>.id2name</code>.
* String arguments are converted to symbols.
*/
static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, id_for_attr(klass, argv[i]), FALSE, TRUE, TRUE);
}
return Qnil;
}
/*
* call-seq:
* attr_accessor(symbol, ...) -> nil
* attr_accessor(string, ...) -> nil
*
* Defines a named attribute for this module, where the name is
* <i>symbol.</i><code>id2name</code>, creating an instance variable
* (<code>@name</code>) and a corresponding access method to read it.
* Also creates a method called <code>name=</code> to set the attribute.
* String arguments are converted to symbols.
*
* module Mod
* attr_accessor(:one, :two)
* end
* Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
*/
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, TRUE, TRUE);
}
return Qnil;
}
/*
* call-seq:
* mod.const_get(sym, inherit=true) -> obj
* mod.const_get(str, inherit=true) -> obj
*
* Checks for a constant with the given name in <i>mod</i>.
* If +inherit+ is set, the lookup will also search
* the ancestors (and +Object+ if <i>mod</i> is a +Module+).
*
* The value of the constant is returned if a definition is found,
* otherwise a +NameError+ is raised.
*
* Math.const_get(:PI) #=> 3.14159265358979
*
* This method will recursively look up constant names if a namespaced
* class name is provided. For example:
*
* module Foo; class Bar; end end
* Object.const_get 'Foo::Bar'
*
* The +inherit+ flag is respected on each lookup. For example:
*
* module Foo
* class Bar
* VAL = 10
* end
*
* class Baz < Bar; end
* end
*
* Object.const_get 'Foo::Baz::VAL' # => 10
* Object.const_get 'Foo::Baz::VAL', false # => NameError
*
* If the argument is not a valid constant name a +NameError+ will be
* raised with a warning "wrong constant name".
*
* Object.const_get 'foobar' #=> NameError: wrong constant name foobar
*
*/
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
rb_check_arity(argc, 1, 2);
name = argv[0];
recur = (argc == 1) ? Qtrue : argv[1];
if (SYMBOL_P(name)) {
if (!rb_is_const_sym(name)) goto wrong_name;
id = rb_check_id(&name);
if (!id) return rb_const_missing(mod, name);
return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
wrong_name:
rb_name_err_raise(wrong_constant_name, mod, name);
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!rb_is_const_name(part)) {
name = part;
goto wrong_name;
}
else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
part = rb_str_intern(part);
mod = rb_const_missing(mod, part);
continue;
}
else {
rb_mod_const_missing(mod, part);
}
}
if (!rb_is_const_id(id)) {
name = ID2SYM(id);
goto wrong_name;
}
#if 0
mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
#else
if (!RTEST(recur)) {
mod = rb_const_get_at(mod, id);
}
else if (beglen == 0) {
mod = rb_const_get(mod, id);
}
else {
mod = rb_const_get_from(mod, id);
}
#endif
}
return mod;
}
/*
* call-seq:
* mod.const_set(sym, obj) -> obj
* mod.const_set(str, obj) -> obj
*
* Sets the named constant to the given object, returning that object.
* Creates a new constant if no constant with the given name previously
* existed.
*
* Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
* Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
*
* If +sym+ or +str+ is not a valid constant name a +NameError+ will be
* raised with a warning "wrong constant name".
*
* Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
*
*/
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
ID id = id_for_setter(mod, name, const, wrong_constant_name);
if (!id) id = rb_intern_str(name);
rb_const_set(mod, id, value);
return value;
}
/*
* call-seq:
* mod.const_defined?(sym, inherit=true) -> true or false
* mod.const_defined?(str, inherit=true) -> true or false
*
* Says whether _mod_ or its ancestors have a constant with the given name:
*
* Float.const_defined?(:EPSILON) #=> true, found in Float itself
* Float.const_defined?("String") #=> true, found in Object (ancestor)
* BasicObject.const_defined?(:Hash) #=> false
*
* If _mod_ is a +Module+, additionally +Object+ and its ancestors are checked:
*
* Math.const_defined?(:String) #=> true, found in Object
*
* In each of the checked classes or modules, if the constant is not present
* but there is an autoload for it, +true+ is returned directly without
* autoloading:
*
* module Admin
* autoload :User, 'admin/user'
* end
* Admin.const_defined?(:User) #=> true
*
* If the constant is not found the callback +const_missing+ is *not* called
* and the method returns +false+.
*
* If +inherit+ is false, the lookup only checks the constants in the receiver:
*
* IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor)
* IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
*
* In this case, the same logic for autoloading applies.
*
* If the argument is not a valid constant name a +NameError+ is raised with the
* message "wrong constant name _name_":
*
* Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
*
*/
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
rb_check_arity(argc, 1, 2);
name = argv[0];
recur = (argc == 1) ? Qtrue : argv[1];
if (SYMBOL_P(name)) {
if (!rb_is_const_sym(name)) goto wrong_name;
id = rb_check_id(&name);
if (!id) return Qfalse;
return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
wrong_name:
rb_name_err_raise(wrong_constant_name, mod, name);
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!rb_is_const_name(part)) {
name = part;
goto wrong_name;
}
else {
return Qfalse;
}
}
if (!rb_is_const_id(id)) {
name = ID2SYM(id);
goto wrong_name;
}
#if 0
mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
if (mod == Qundef) return Qfalse;
#else
if (!RTEST(recur)) {
if (!rb_const_defined_at(mod, id))
return Qfalse;
if (p == pend) return Qtrue;
mod = rb_const_get_at(mod, id);
}
else if (beglen == 0) {
if (!rb_const_defined(mod, id))
return Qfalse;
if (p == pend) return Qtrue;
mod = rb_const_get(mod, id);
}
else {
if (!rb_const_defined_from(mod, id))
return Qfalse;
if (p == pend) return Qtrue;
mod = rb_const_get_from(mod, id);
}
#endif
if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
}
return Qtrue;
}
static VALUE
rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur, loc = Qnil;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
rb_check_arity(argc, 1, 2);
name = argv[0];
recur = (argc == 1) ? Qtrue : argv[1];
if (SYMBOL_P(name)) {
if (!rb_is_const_sym(name)) goto wrong_name;
id = rb_check_id(&name);
if (!id) return Qnil;
return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
wrong_name:
rb_name_err_raise(wrong_constant_name, mod, name);
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!rb_is_const_name(part)) {
name = part;
goto wrong_name;
}
else {
return Qnil;
}
}
if (!rb_is_const_id(id)) {
name = ID2SYM(id);
goto wrong_name;
}
if (p < pend) {
if (RTEST(recur)) {
mod = rb_const_get(mod, id);
}
else {
mod = rb_const_get_at(mod, id);
}
if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
}
else {
if (RTEST(recur)) {
loc = rb_const_source_location(mod, id);
}
else {
loc = rb_const_source_location_at(mod, id);
}
break;
}
recur = Qfalse;
}
return loc;
}
/*
* call-seq:
* obj.instance_variable_get(symbol) -> obj
* obj.instance_variable_get(string) -> obj
*
* Returns the value of the given instance variable, or nil if the
* instance variable is not set. The <code>@</code> part of the
* variable name should be included for regular instance
* variables. Throws a NameError exception if the
* supplied symbol is not valid as an instance variable name.
* String arguments are converted to symbols.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_get(:@a) #=> "cat"
* fred.instance_variable_get("@b") #=> 99
*/
static VALUE
rb_obj_ivar_get(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, an, instance);
if (!id) {
return Qnil;
}
return rb_ivar_get(obj, id);
}
/*
* call-seq:
* obj.instance_variable_set(symbol, obj) -> obj
* obj.instance_variable_set(string, obj) -> obj
*
* Sets the instance variable named by <i>symbol</i> to the given
* object, thereby frustrating the efforts of the class's
* author to attempt to provide proper encapsulation. The variable
* does not have to exist prior to this call.
* If the instance variable name is passed as a string, that string
* is converted to a symbol.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_set(:@a, 'dog') #=> "dog"
* fred.instance_variable_set(:@c, 'cat') #=> "cat"
* fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
*/
static VALUE
rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = id_for_var(obj, iv, an, instance);
if (!id) id = rb_intern_str(iv);
return rb_ivar_set(obj, id, val);
}
/*
* call-seq:
* obj.instance_variable_defined?(symbol) -> true or false
* obj.instance_variable_defined?(string) -> true or false
*
* Returns <code>true</code> if the given instance variable is
* defined in <i>obj</i>.
* String arguments are converted to symbols.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_defined?(:@a) #=> true
* fred.instance_variable_defined?("@b") #=> true
* fred.instance_variable_defined?("@c") #=> false
*/
static VALUE
rb_obj_ivar_defined(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, an, instance);
if (!id) {
return Qfalse;
}
return rb_ivar_defined(obj, id);
}
/*
* call-seq:
* mod.class_variable_get(symbol) -> obj
* mod.class_variable_get(string) -> obj
*
* Returns the value of the given class variable (or throws a
* NameError exception). The <code>@@</code> part of the
* variable name should be included for regular class variables.
* String arguments are converted to symbols.
*
* class Fred
* @@foo = 99
* end
* Fred.class_variable_get(:@@foo) #=> 99
*/
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, a, class);
if (!id) {
rb_name_err_raise("uninitialized class variable %1$s in %2$s",
obj, iv);
}
return rb_cvar_get(obj, id);
}
/*
* call-seq:
* obj.class_variable_set(symbol, obj) -> obj
* obj.class_variable_set(string, obj) -> obj
*
* Sets the class variable named by <i>symbol</i> to the given
* object.
* If the class variable name is passed as a string, that string
* is converted to a symbol.
*
* class Fred
* @@foo = 99
* def foo
* @@foo
* end
* end
* Fred.class_variable_set(:@@foo, 101) #=> 101
* Fred.new.foo #=> 101
*/
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = id_for_var(obj, iv, a, class);
if (!id) id = rb_intern_str(iv);
rb_cvar_set(obj, id, val);
return val;
}
/*
* call-seq:
* obj.class_variable_defined?(symbol) -> true or false
* obj.class_variable_defined?(string) -> true or false
*
* Returns <code>true</code> if the given class variable is defined
* in <i>obj</i>.
* String arguments are converted to symbols.
*
* class Fred
* @@foo = 99
* end
* Fred.class_variable_defined?(:@@foo) #=> true
* Fred.class_variable_defined?(:@@bar) #=> false
*/
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, a, class);
if (!id) {
return Qfalse;
}
return rb_cvar_defined(obj, id);
}
/*
* call-seq:
* mod.singleton_class? -> true or false
*
* Returns <code>true</code> if <i>mod</i> is a singleton class or
* <code>false</code> if it is an ordinary class or module.
*
* class C
* end
* C.singleton_class? #=> false
* C.singleton_class.singleton_class? #=> true
*/
static VALUE
rb_mod_singleton_p(VALUE klass)
{
if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
return Qtrue;
return Qfalse;
}
/*! \private */
static const struct conv_method_tbl {
const char method[6];
unsigned short id;
} conv_method_names[] = {
#define M(n) {#n, (unsigned short)idTo_##n}
M(int),
M(ary),
M(str),
M(sym),
M(hash),
M(proc),
M(io),
M(a),
M(s),
M(i),
M(r),
#undef M
};
#define IMPLICIT_CONVERSIONS 7
static int
conv_method_index(const char *method)
{
static const char prefix[] = "to_";
if (strncmp(prefix, method, sizeof(prefix)-1) == 0) {
const char *const meth = &method[sizeof(prefix)-1];
int i;
for (i=0; i < numberof(conv_method_names); i++) {
if (conv_method_names[i].method[0] == meth[0] &&
strcmp(conv_method_names[i].method, meth) == 0) {
return i;
}
}
}
return numberof(conv_method_names);
}
static VALUE
convert_type_with_id(VALUE val, const char *tname, ID method, int raise, int index)
{
VALUE r = rb_check_funcall(val, method, 0, 0);
if (r == Qundef) {
if (raise) {
const char *msg =
((index < 0 ? conv_method_index(rb_id2name(method)) : index)
< IMPLICIT_CONVERSIONS) ?
"no implicit conversion of" : "can't convert";
const char *cname = NIL_P(val) ? "nil" :
val == Qtrue ? "true" :
val == Qfalse ? "false" :
NULL;
if (cname)
rb_raise(rb_eTypeError, "%s %s into %s", msg, cname, tname);
rb_raise(rb_eTypeError, "%s %"PRIsVALUE" into %s", msg,
rb_obj_class(val),
tname);
}
return Qnil;
}
return r;
}
static VALUE
convert_type(VALUE val, const char *tname, const char *method, int raise)
{
int i = conv_method_index(method);
ID m = i < numberof(conv_method_names) ?
conv_method_names[i].id : rb_intern(method);
return convert_type_with_id(val, tname, m, raise, i);
}
/*! \private */
NORETURN(static void conversion_mismatch(VALUE, const char *, const char *, VALUE));
static void
conversion_mismatch(VALUE val, const char *tname, const char *method, VALUE result)
{
VALUE cname = rb_obj_class(val);
rb_raise(rb_eTypeError,
"can't convert %"PRIsVALUE" to %s (%"PRIsVALUE"#%s gives %"PRIsVALUE")",
cname, tname, cname, method, rb_obj_class(result));
}
/*!
* Converts an object into another type.
* Calls the specified conversion method if necessary.
*
* \param[in] val the object to be converted
* \param[in] type a value of \c ruby_value_type
* \param[in] tname name of the target type.
* only used for error messages.
* \param[in] method name of the method
* \return an object of the specified type
* \throw TypeError on failure
* \sa rb_check_convert_type
*/
VALUE
rb_convert_type(VALUE val, int type, const char *tname, const char *method)
{
VALUE v;
if (TYPE(val) == type) return val;
v = convert_type(val, tname, method, TRUE);
if (TYPE(v) != type) {
conversion_mismatch(val, tname, method, v);
}
return v;
}
/*! \private */
VALUE
rb_convert_type_with_id(VALUE val, int type, const char *tname, ID method)
{
VALUE v;
if (TYPE(val) == type) return val;
v = convert_type_with_id(val, tname, method, TRUE, -1);
if (TYPE(v) != type) {
conversion_mismatch(val, tname, RSTRING_PTR(rb_id2str(method)), v);
}
return v;
}
/*!
* Tries to convert an object into another type.
* Calls the specified conversion method if necessary.
*
* \param[in] val the object to be converted
* \param[in] type a value of \c ruby_value_type
* \param[in] tname name of the target type.
* only used for error messages.
* \param[in] method name of the method
* \return an object of the specified type, or Qnil if no such conversion method defined.
* \throw TypeError if the conversion method returns an unexpected type of value.
* \sa rb_convert_type
* \sa rb_check_convert_type_with_id
*/
VALUE
rb_check_convert_type(VALUE val, int type, const char *tname, const char *method)
{
VALUE v;
/* always convert T_DATA */
if (TYPE(val) == type && type != T_DATA) return val;
v = convert_type(val, tname, method, FALSE);
if (NIL_P(v)) return Qnil;
if (TYPE(v) != type) {
conversion_mismatch(val, tname, method, v);
}
return v;
}
/*! \private */
MJIT_FUNC_EXPORTED VALUE
rb_check_convert_type_with_id(VALUE val, int type, const char *tname, ID method)
{
VALUE v;
/* always convert T_DATA */
if (TYPE(val) == type && type != T_DATA) return val;
v = convert_type_with_id(val, tname, method, FALSE, -1);
if (NIL_P(v)) return Qnil;
if (TYPE(v) != type) {
conversion_mismatch(val, tname, RSTRING_PTR(rb_id2str(method)), v);
}
return v;
}
#define try_to_int(val, mid, raise) \
convert_type_with_id(val, "Integer", mid, raise, -1)
ALWAYS_INLINE(static VALUE rb_to_integer(VALUE val, const char *method, ID mid));
static inline VALUE
rb_to_integer(VALUE val, const char *method, ID mid)
{
VALUE v;
if (RB_INTEGER_TYPE_P(val)) return val;
v = try_to_int(val, mid, TRUE);
if (!RB_INTEGER_TYPE_P(v)) {
conversion_mismatch(val, "Integer", method, v);
}
return v;
}
/**
* Tries to convert \a val into \c Integer.
* It calls the specified conversion method if necessary.
*
* \param[in] val a Ruby object
* \param[in] method a name of a method
* \return an \c Integer object on success,
* or \c Qnil if no such conversion method defined.
* \exception TypeError if the conversion method returns a non-Integer object.
*/
VALUE
rb_check_to_integer(VALUE val, const char *method)
{
VALUE v;
if (FIXNUM_P(val)) return val;
if (RB_TYPE_P(val, T_BIGNUM)) return val;
v = convert_type(val, "Integer", method, FALSE);
if (!RB_INTEGER_TYPE_P(v)) {
return Qnil;
}
return v;
}
/**
* Converts \a val into \c Integer.
* It calls \a #to_int method if necessary.
*
* \param[in] val a Ruby object
* \return an \c Integer object
* \exception TypeError on failure
*/
VALUE
rb_to_int(VALUE val)
{
return rb_to_integer(val, "to_int", idTo_int);
}
/**
* Tries to convert \a val into Integer.
* It calls \c #to_int method if necessary.
*
* \param[in] val a Ruby object
* \return an Integer object on success,
* or \c Qnil if \c #to_int is not defined.
* \exception TypeError if \c #to_int returns a non-Integer object.
*/
VALUE
rb_check_to_int(VALUE val)
{
if (RB_INTEGER_TYPE_P(val)) return val;
val = try_to_int(val, idTo_int, FALSE);
if (RB_INTEGER_TYPE_P(val)) return val;
return Qnil;
}
static VALUE
rb_check_to_i(VALUE val)
{
if (RB_INTEGER_TYPE_P(val)) return val;
val = try_to_int(val, idTo_i, FALSE);
if (RB_INTEGER_TYPE_P(val)) return val;
return Qnil;
}
static VALUE
rb_convert_to_integer(VALUE val, int base, int raise_exception)
{
VALUE tmp;
if (RB_FLOAT_TYPE_P(val)) {
double f;
if (base != 0) goto arg_error;
f = RFLOAT_VALUE(val);
if (!raise_exception && !isfinite(f)) return Qnil;
if (FIXABLE(f)) return LONG2FIX((long)f);
return rb_dbl2big(f);
}
else if (RB_INTEGER_TYPE_P(val)) {
if (base != 0) goto arg_error;
return val;
}
else if (RB_TYPE_P(val, T_STRING)) {
return rb_str_convert_to_inum(val, base, TRUE, raise_exception);
}
else if (NIL_P(val)) {
if (base != 0) goto arg_error;
if (!raise_exception) return Qnil;
rb_raise(rb_eTypeError, "can't convert nil into Integer");
}
if (base != 0) {
tmp = rb_check_string_type(val);
if (!NIL_P(tmp)) return rb_str_convert_to_inum(tmp, base, TRUE, raise_exception);
arg_error:
if (!raise_exception) return Qnil;
rb_raise(rb_eArgError, "base specified for non string value");
}
tmp = rb_protect(rb_check_to_int, val, NULL);
if (RB_INTEGER_TYPE_P(tmp)) return tmp;
rb_set_errinfo(Qnil);
if (!raise_exception) {
VALUE result = rb_protect(rb_check_to_i, val, NULL);
rb_set_errinfo(Qnil);
return result;
}
return rb_to_integer(val, "to_i", idTo_i);
}
/**
* Equivalent to \c Kernel\#Integer in Ruby.
*
* Converts \a val into \c Integer in a slightly more strict manner
* than \c #to_i.
*/
VALUE
rb_Integer(VALUE val)
{
return rb_convert_to_integer(val, 0, TRUE);
}
static int
opts_exception_p(VALUE opts)
{
static ID kwds[1];
VALUE exception;
if (!kwds[0]) {
kwds[0] = idException;
}
rb_get_kwargs(opts, kwds, 0, 1, &exception);
return exception != Qfalse;
}
/*
* call-seq:
* Integer(arg, base=0, exception: true) -> integer or nil
*
* Converts <i>arg</i> to an Integer.
* Numeric types are converted directly (with floating point numbers
* being truncated). <i>base</i> (0, or between 2 and 36) is a base for
* integer string representation. If <i>arg</i> is a String,
* when <i>base</i> is omitted or equals zero, radix indicators
* (<code>0</code>, <code>0b</code>, and <code>0x</code>) are honored.
* In any case, strings should be strictly conformed to numeric
* representation. This behavior is different from that of
* String#to_i. Non string values will be converted by first
* trying <code>to_int</code>, then <code>to_i</code>.
*
* Passing <code>nil</code> raises a TypeError, while passing a String that
* does not conform with numeric representation raises an ArgumentError.
* This behavior can be altered by passing <code>exception: false</code>,
* in this case a not convertible value will return <code>nil</code>.
*
* Integer(123.999) #=> 123
* Integer("0x1a") #=> 26
* Integer(Time.new) #=> 1204973019
* Integer("0930", 10) #=> 930
* Integer("111", 2) #=> 7
* Integer(nil) #=> TypeError: can't convert nil into Integer
* Integer("x") #=> ArgumentError: invalid value for Integer(): "x"
*
* Integer("x", exception: false) #=> nil
*
*/
static VALUE
rb_f_integer(int argc, VALUE *argv, VALUE obj)
{
VALUE arg = Qnil, opts = Qnil;
int base = 0;
if (argc > 1) {
int narg = 1;
VALUE vbase = rb_check_to_int(argv[1]);
if (!NIL_P(vbase)) {
base = NUM2INT(vbase);
narg = 2;
}
if (argc > narg) {
VALUE hash = rb_check_hash_type(argv[argc-1]);
if (!NIL_P(hash)) {
opts = rb_extract_keywords(&hash);
if (!hash) --argc;
}
}
}
rb_check_arity(argc, 1, 2);
arg = argv[0];
return rb_convert_to_integer(arg, base, opts_exception_p(opts));
}
static double
rb_cstr_to_dbl_raise(const char *p, int badcheck, int raise, int *error)
{
const char *q;
char *end;
double d;
const char *ellipsis = "";
int w;
enum {max_width = 20};
#define OutOfRange() ((end - p > max_width) ? \
(w = max_width, ellipsis = "...") : \
(w = (int)(end - p), ellipsis = ""))
if (!p) return 0.0;
q = p;
while (ISSPACE(*p)) p++;
if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
return 0.0;
}
d = strtod(p, &end);
if (errno == ERANGE) {
OutOfRange();
rb_warning("Float %.*s%s out of range", w, p, ellipsis);
errno = 0;
}
if (p == end) {
if (badcheck) {
bad:
if (raise)
rb_invalid_str(q, "Float()");
else {
if (error) *error = 1;
return 0.0;
}
}
return d;
}
if (*end) {
char buf[DBL_DIG * 4 + 10];
char *n = buf;
char *const init_e = buf + DBL_DIG * 4;
char *e = init_e;
char prev = 0;
int dot_seen = FALSE;
switch (*p) {case '+': case '-': prev = *n++ = *p++;}
if (*p == '0') {
prev = *n++ = '0';
while (*++p == '0');
}
while (p < end && n < e) prev = *n++ = *p++;
while (*p) {
if (*p == '_') {
/* remove an underscore between digits */
if (n == buf || !ISDIGIT(prev) || (++p, !ISDIGIT(*p))) {
if (badcheck) goto bad;
break;
}
}
prev = *p++;
if (e == init_e && (prev == 'e' || prev == 'E' || prev == 'p' || prev == 'P')) {
e = buf + sizeof(buf) - 1;
*n++ = prev;
switch (*p) {case '+': case '-': prev = *n++ = *p++;}
if (*p == '0') {
prev = *n++ = '0';
while (*++p == '0');
}
continue;
}
else if (ISSPACE(prev)) {
while (ISSPACE(*p)) ++p;
if (*p) {
if (badcheck) goto bad;
break;
}
}
else if (prev == '.' ? dot_seen++ : !ISDIGIT(prev)) {
if (badcheck) goto bad;
break;
}
if (n < e) *n++ = prev;
}
*n = '\0';
p = buf;
if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
return 0.0;
}
d = strtod(p, &end);
if (errno == ERANGE) {
OutOfRange();
rb_warning("Float %.*s%s out of range", w, p, ellipsis);
errno = 0;
}
if (badcheck) {
if (!end || p == end) goto bad;
while (*end && ISSPACE(*end)) end++;
if (*end) goto bad;
}
}
if (errno == ERANGE) {
errno = 0;
OutOfRange();
rb_raise(rb_eArgError, "Float %.*s%s out of range", w, q, ellipsis);
}
return d;
}
/*!
* Parses a string representation of a floating point number.
*
* \param[in] p a string representation of a floating number
* \param[in] badcheck raises an exception on parse error if \a badcheck is non-zero.
* \return the floating point number in the string on success,
* 0.0 on parse error and \a badcheck is zero.
* \note it always fails to parse a hexadecimal representation like "0xAB.CDp+1" when
* \a badcheck is zero, even though it would success if \a badcheck was non-zero.
* This inconsistency is coming from a historical compatibility reason. [ruby-dev:40822]
*/
double
rb_cstr_to_dbl(const char *p, int badcheck)
{
return rb_cstr_to_dbl_raise(p, badcheck, TRUE, NULL);
}
static double
rb_str_to_dbl_raise(VALUE str, int badcheck, int raise, int *error)
{
char *s;
long len;
double ret;
VALUE v = 0;
StringValue(str);
s = RSTRING_PTR(str);
len = RSTRING_LEN(str);
if (s) {
if (badcheck && memchr(s, '\0', len)) {
if (raise)
rb_raise(rb_eArgError, "string for Float contains null byte");
else {
if (error) *error = 1;
return 0.0;
}
}
if (s[len]) { /* no sentinel somehow */
char *p = ALLOCV(v, (size_t)len + 1);
MEMCPY(p, s, char, len);
p[len] = '\0';
s = p;
}
}
ret = rb_cstr_to_dbl_raise(s, badcheck, raise, error);
if (v)
ALLOCV_END(v);
return ret;
}
FUNC_MINIMIZED(double rb_str_to_dbl(VALUE str, int badcheck));
/*!
* Parses a string representation of a floating point number.
*
* \param[in] str a \c String object representation of a floating number
* \param[in] badcheck raises an exception on parse error if \a badcheck is non-zero.
* \return the floating point number in the string on success,
* 0.0 on parse error and \a badcheck is zero.
* \note it always fails to parse a hexadecimal representation like "0xAB.CDp+1" when
* \a badcheck is zero, even though it would success if \a badcheck was non-zero.
* This inconsistency is coming from a historical compatibility reason. [ruby-dev:40822]
*/
double
rb_str_to_dbl(VALUE str, int badcheck)
{
return rb_str_to_dbl_raise(str, badcheck, TRUE, NULL);
}
/*! \cond INTERNAL_MACRO */
#define fix2dbl_without_to_f(x) (double)FIX2LONG(x)
#define big2dbl_without_to_f(x) rb_big2dbl(x)
#define int2dbl_without_to_f(x) \
(FIXNUM_P(x) ? fix2dbl_without_to_f(x) : big2dbl_without_to_f(x))
#define num2dbl_without_to_f(x) \
(FIXNUM_P(x) ? fix2dbl_without_to_f(x) : \
RB_TYPE_P(x, T_BIGNUM) ? big2dbl_without_to_f(x) : \
(Check_Type(x, T_FLOAT), RFLOAT_VALUE(x)))
static inline double
rat2dbl_without_to_f(VALUE x)
{
VALUE num = rb_rational_num(x);
VALUE den = rb_rational_den(x);
return num2dbl_without_to_f(num) / num2dbl_without_to_f(den);
}
#define special_const_to_float(val, pre, post) \
switch (val) { \
case Qnil: \
rb_raise_static(rb_eTypeError, pre "nil" post); \
case Qtrue: \
rb_raise_static(rb_eTypeError, pre "true" post); \
case Qfalse: \
rb_raise_static(rb_eTypeError, pre "false" post); \
}
/*! \endcond */
static inline void
conversion_to_float(VALUE val)
{
special_const_to_float(val, "can't convert ", " into Float");
}
static inline void
implicit_conversion_to_float(VALUE val)
{
special_const_to_float(val, "no implicit conversion to float from ", "");
}
static int
to_float(VALUE *valp, int raise_exception)
{
VALUE val = *valp;
if (SPECIAL_CONST_P(val)) {
if (FIXNUM_P(val)) {
*valp = DBL2NUM(fix2dbl_without_to_f(val));
return T_FLOAT;
}
else if (FLONUM_P(val)) {
return T_FLOAT;
}
else if (raise_exception) {
conversion_to_float(val);
}
}
else {
int type = BUILTIN_TYPE(val);
switch (type) {
case T_FLOAT:
return T_FLOAT;
case T_BIGNUM:
*valp = DBL2NUM(big2dbl_without_to_f(val));
return T_FLOAT;
case T_RATIONAL:
*valp = DBL2NUM(rat2dbl_without_to_f(val));
return T_FLOAT;
case T_STRING:
return T_STRING;
}
}
return T_NONE;
}
static VALUE
convert_type_to_float_protected(VALUE val)
{
return rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f);
}
static VALUE
rb_convert_to_float(VALUE val, int raise_exception)
{
switch (to_float(&val, raise_exception)) {
case T_FLOAT:
return val;
case T_STRING:
if (!raise_exception) {
int e = 0;
double x = rb_str_to_dbl_raise(val, TRUE, raise_exception, &e);
return e ? Qnil : DBL2NUM(x);
}
return DBL2NUM(rb_str_to_dbl(val, TRUE));
case T_NONE:
if (SPECIAL_CONST_P(val) && !raise_exception)
return Qnil;
}
if (!raise_exception) {
int state;
VALUE result = rb_protect(convert_type_to_float_protected, val, &state);
if (state) rb_set_errinfo(Qnil);
return result;
}
return rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f);
}
FUNC_MINIMIZED(VALUE rb_Float(VALUE val));
/*!
* Equivalent to \c Kernel\#Float in Ruby.
*
* Converts \a val into \c Float in a slightly more strict manner
* than \c #to_f.
*/
VALUE
rb_Float(VALUE val)
{
return rb_convert_to_float(val, TRUE);
}
/*
* call-seq:
* Float(arg, exception: true) -> float or nil
*
* Returns <i>arg</i> converted to a float. Numeric types are
* converted directly, and with exception to String and
* <code>nil</code> the rest are converted using
* <i>arg</i><code>.to_f</code>. Converting a String with invalid
* characters will result in a ArgumentError. Converting
* <code>nil</code> generates a TypeError. Exceptions can be
* suppressed by passing <code>exception: false</code>.
*
* Float(1) #=> 1.0
* Float("123.456") #=> 123.456
* Float("123.0_badstring") #=> ArgumentError: invalid value for Float(): "123.0_badstring"
* Float(nil) #=> TypeError: can't convert nil into Float
* Float("123.0_badstring", exception: false) #=> nil
*/
static VALUE
rb_f_float(int argc, VALUE *argv, VALUE obj)
{
VALUE arg = Qnil, opts = Qnil;
rb_scan_args(argc, argv, "1:", &arg, &opts);
return rb_convert_to_float(arg, opts_exception_p(opts));
}
static VALUE
numeric_to_float(VALUE val)
{
if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into Float",
rb_obj_class(val));
}
return rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f);
}
/*!
* Converts a \c Numeric object into \c Float.
* \param[in] val a \c Numeric object
* \exception TypeError if \a val is not a \c Numeric or other conversion failures.
*/
VALUE
rb_to_float(VALUE val)
{
switch (to_float(&val, TRUE)) {
case T_FLOAT:
return val;
}
return numeric_to_float(val);
}
/*!
* Tries to convert an object into \c Float.
* It calls \c #to_f if necessary.
*
* It returns \c Qnil if the object is not a \c Numeric
* or \c #to_f is not defined on the object.
*/
VALUE
rb_check_to_float(VALUE val)
{
if (RB_TYPE_P(val, T_FLOAT)) return val;
if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
return Qnil;
}
return rb_check_convert_type_with_id(val, T_FLOAT, "Float", id_to_f);
}
static inline int
basic_to_f_p(VALUE klass)
{
return rb_method_basic_definition_p(klass, id_to_f);
}
/*! \private */
double
rb_num_to_dbl(VALUE val)
{
if (SPECIAL_CONST_P(val)) {
if (FIXNUM_P(val)) {
if (basic_to_f_p(rb_cInteger))
return fix2dbl_without_to_f(val);
}
else if (FLONUM_P(val)) {
return rb_float_flonum_value(val);
}
else {
conversion_to_float(val);
}
}
else {
switch (BUILTIN_TYPE(val)) {
case T_FLOAT:
return rb_float_noflonum_value(val);
case T_BIGNUM:
if (basic_to_f_p(rb_cInteger))
return big2dbl_without_to_f(val);
break;
case T_RATIONAL:
if (basic_to_f_p(rb_cRational))
return rat2dbl_without_to_f(val);
break;
}
}
val = numeric_to_float(val);
return RFLOAT_VALUE(val);
}
/*!
* Converts a \c Numeric object to \c double.
* \param[in] val a \c Numeric object
* \return the converted value
* \exception TypeError if \a val is not a \c Numeric or
* it does not support conversion to a floating point number.
*/
double
rb_num2dbl(VALUE val)
{
if (SPECIAL_CONST_P(val)) {
if (FIXNUM_P(val)) {
return fix2dbl_without_to_f(val);
}
else if (FLONUM_P(val)) {
return rb_float_flonum_value(val);
}
else {
implicit_conversion_to_float(val);
}
}
else {
switch (BUILTIN_TYPE(val)) {
case T_FLOAT:
return rb_float_noflonum_value(val);
case T_BIGNUM:
return big2dbl_without_to_f(val);
case T_RATIONAL:
return rat2dbl_without_to_f(val);
case T_STRING:
rb_raise(rb_eTypeError, "no implicit conversion to float from string");
}
}
val = rb_convert_type_with_id(val, T_FLOAT, "Float", id_to_f);
return RFLOAT_VALUE(val);
}
/*!
* Equivalent to \c Kernel\#String in Ruby.
*
* Converts \a val into \c String by trying \c #to_str at first and
* then trying \c #to_s.
*/
VALUE
rb_String(VALUE val)
{
VALUE tmp = rb_check_string_type(val);
if (NIL_P(tmp))
tmp = rb_convert_type_with_id(val, T_STRING, "String", idTo_s);
return tmp;
}
/*
* call-seq:
* String(arg) -> string
*
* Returns <i>arg</i> as a String.
*
* First tries to call its <code>to_str</code> method, then its <code>to_s</code> method.
*
* String(self) #=> "main"
* String(self.class) #=> "Object"
* String(123456) #=> "123456"
*/
static VALUE
rb_f_string(VALUE obj, VALUE arg)
{
return rb_String(arg);
}
/*!
* Equivalent to \c Kernel\#Array in Ruby.
*/
VALUE
rb_Array(VALUE val)
{
VALUE tmp = rb_check_array_type(val);
if (NIL_P(tmp)) {
tmp = rb_check_to_array(val);
if (NIL_P(tmp)) {
return rb_ary_new3(1, val);
}
}
return tmp;
}
/*
* call-seq:
* Array(arg) -> array
*
* Returns +arg+ as an Array.
*
* First tries to call <code>to_ary</code> on +arg+, then <code>to_a</code>.
* If +arg+ does not respond to <code>to_ary</code> or <code>to_a</code>,
* returns an Array of length 1 containing +arg+.
*
* If <code>to_ary</code> or <code>to_a</code> returns something other than
* an Array, raises a TypeError.
*
* Array(["a", "b"]) #=> ["a", "b"]
* Array(1..5) #=> [1, 2, 3, 4, 5]
* Array(key: :value) #=> [[:key, :value]]
* Array(nil) #=> []
* Array(1) #=> [1]
*/
static VALUE
rb_f_array(VALUE obj, VALUE arg)
{
return rb_Array(arg);
}
/**
* Equivalent to \c Kernel\#Hash in Ruby
*/
VALUE
rb_Hash(VALUE val)
{
VALUE tmp;
if (NIL_P(val)) return rb_hash_new();
tmp = rb_check_hash_type(val);
if (NIL_P(tmp)) {
if (RB_TYPE_P(val, T_ARRAY) && RARRAY_LEN(val) == 0)
return rb_hash_new();
rb_raise(rb_eTypeError, "can't convert %s into Hash", rb_obj_classname(val));
}
return tmp;
}
/*
* call-seq:
* Hash(arg) -> hash
*
* Converts <i>arg</i> to a Hash by calling
* <i>arg</i><code>.to_hash</code>. Returns an empty Hash when
* <i>arg</i> is <tt>nil</tt> or <tt>[]</tt>.
*
* Hash([]) #=> {}
* Hash(nil) #=> {}
* Hash(key: :value) #=> {:key => :value}
* Hash([1, 2, 3]) #=> TypeError
*/
static VALUE
rb_f_hash(VALUE obj, VALUE arg)
{
return rb_Hash(arg);
}
/*! \private */
struct dig_method {
VALUE klass;
int basic;
};
static ID id_dig;
static int
dig_basic_p(VALUE obj, struct dig_method *cache)
{
VALUE klass = RBASIC_CLASS(obj);
if (klass != cache->klass) {
cache->klass = klass;
cache->basic = rb_method_basic_definition_p(klass, id_dig);
}
return cache->basic;
}
static void
no_dig_method(int found, VALUE recv, ID mid, int argc, const VALUE *argv, VALUE data)
{
if (!found) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not have #dig method",
CLASS_OF(data));
}
}
/*! \private */
VALUE
rb_obj_dig(int argc, VALUE *argv, VALUE obj, VALUE notfound)
{
struct dig_method hash = {Qnil}, ary = {Qnil}, strt = {Qnil};
for (; argc > 0; ++argv, --argc) {
if (NIL_P(obj)) return notfound;
if (!SPECIAL_CONST_P(obj)) {
switch (BUILTIN_TYPE(obj)) {
case T_HASH:
if (dig_basic_p(obj, &hash)) {
obj = rb_hash_aref(obj, *argv);
continue;
}
break;
case T_ARRAY:
if (dig_basic_p(obj, &ary)) {
obj = rb_ary_at(obj, *argv);
continue;
}
break;
case T_STRUCT:
if (dig_basic_p(obj, &strt)) {
obj = rb_struct_lookup(obj, *argv);
continue;
}
break;
}
}
return rb_check_funcall_with_hook(obj, id_dig, argc, argv,
no_dig_method, obj);
}
return obj;
}
/*
* Document-class: Class
*
* Classes in Ruby are first-class objects---each is an instance of
* class Class.
*
* Typically, you create a new class by using:
*
* class Name
* # some code describing the class behavior
* end
*
* When a new class is created, an object of type Class is initialized and
* assigned to a global constant (Name in this case).
*
* When <code>Name.new</code> is called to create a new object, the
* #new method in Class is run by default.
* This can be demonstrated by overriding #new in Class:
*
* class Class
* alias old_new new
* def new(*args)
* print "Creating a new ", self.name, "\n"
* old_new(*args)
* end
* end
*
* class Name
* end
*
* n = Name.new
*
* <em>produces:</em>
*
* Creating a new Name
*
* Classes, modules, and objects are interrelated. In the diagram
* that follows, the vertical arrows represent inheritance, and the
* parentheses metaclasses. All metaclasses are instances
* of the class `Class'.
* +---------+ +-...
* | | |
* BasicObject-----|-->(BasicObject)-------|-...
* ^ | ^ |
* | | | |
* Object---------|----->(Object)---------|-...
* ^ | ^ |
* | | | |
* +-------+ | +--------+ |
* | | | | | |
* | Module-|---------|--->(Module)-|-...
* | ^ | | ^ |
* | | | | | |
* | Class-|---------|---->(Class)-|-...
* | ^ | | ^ |
* | +---+ | +----+
* | |
* obj--->OtherClass---------->(OtherClass)-----------...
*
*/
/* Document-class: BasicObject
*
* BasicObject is the parent class of all classes in Ruby. It's an explicit
* blank class.
*
* BasicObject can be used for creating object hierarchies independent of
* Ruby's object hierarchy, proxy objects like the Delegator class, or other
* uses where namespace pollution from Ruby's methods and classes must be
* avoided.
*
* To avoid polluting BasicObject for other users an appropriately named
* subclass of BasicObject should be created instead of directly modifying
* BasicObject:
*
* class MyObjectSystem < BasicObject
* end
*
* BasicObject does not include Kernel (for methods like +puts+) and
* BasicObject is outside of the namespace of the standard library so common
* classes will not be found without using a full class path.
*
* A variety of strategies can be used to provide useful portions of the
* standard library to subclasses of BasicObject. A subclass could
* <code>include Kernel</code> to obtain +puts+, +exit+, etc. A custom
* Kernel-like module could be created and included or delegation can be used
* via #method_missing:
*
* class MyObjectSystem < BasicObject
* DELEGATE = [:puts, :p]
*
* def method_missing(name, *args, &block)
* super unless DELEGATE.include? name
* ::Kernel.send(name, *args, &block)
* end
*
* def respond_to_missing?(name, include_private = false)
* DELEGATE.include?(name) or super
* end
* end
*
* Access to classes and modules from the Ruby standard library can be
* obtained in a BasicObject subclass by referencing the desired constant
* from the root like <code>::File</code> or <code>::Enumerator</code>.
* Like #method_missing, #const_missing can be used to delegate constant
* lookup to +Object+:
*
* class MyObjectSystem < BasicObject
* def self.const_missing(name)
* ::Object.const_get(name)
* end
* end
*/
/* Document-class: Object
*
* Object is the default root of all Ruby objects. Object inherits from
* BasicObject which allows creating alternate object hierarchies. Methods
* on Object are available to all classes unless explicitly overridden.
*
* Object mixes in the Kernel module, making the built-in kernel functions
* globally accessible. Although the instance methods of Object are defined