Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: ruby_1_8
Fetching contributors…

Cannot retrieve contributors at this time

file 4701 lines (4092 sloc) 125.096 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
/* Extended regular expression matching and search library.
Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.

The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file LGPL. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Multi-byte extension added May, 1993 by t^2 (Takahiro Tanimoto)
Last change: May 21, 1993 by t^2 */
/* removed gapped buffer support, multiple syntax support by matz <matz@nts.co.jp> */
/* Perl5 extension added by matz <matz@caelum.co.jp> */
/* UTF-8 extension added Jan 16 1999 by Yoshida Masato <yoshidam@tau.bekkoame.ne.jp> */

#include "config.h"

#ifdef HAVE_STRING_H
# include <string.h>
#else
# include <strings.h>
#endif

/* We write fatal error messages on standard error. */
#include <stdio.h>

/* isalpha(3) etc. are used for the character classes. */
#include <ctype.h>
#include <sys/types.h>

#ifndef PARAMS
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
# define PARAMS(args) args
# else
# define PARAMS(args) ()
# endif /* GCC. */
#endif /* Not PARAMS. */

#if defined(STDC_HEADERS)
# include <stddef.h>
#else
/* We need this for `regex.h', and perhaps for the Emacs include files. */
# include <sys/types.h>
#endif
#ifdef HAVE_STDLIB_H
# include <stdlib.h>
#endif

#if !defined(__STDC__) && !defined(_MSC_VER)
# define volatile
#endif

#ifdef HAVE_PROTOTYPES
# define _(args) args
#else
# define _(args) ()
#endif

#ifdef RUBY_PLATFORM
#include "defines.h"
#undef xmalloc
#undef xrealloc
#undef xcalloc
#undef xfree

# define RUBY
extern int rb_prohibit_interrupt;
extern int rb_trap_pending;
void rb_trap_exec _((void));

# define CHECK_INTS do {\
if (!rb_prohibit_interrupt) {\
if (rb_trap_pending) rb_trap_exec();\
}\
} while (0)
#endif

/* Make alloca work the best possible way. */
#ifdef __GNUC__
# ifndef atarist
# ifndef alloca
# define alloca __builtin_alloca
# endif
# endif /* atarist */
#else
# ifdef HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
#pragma alloca
# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
void *alloca ();
# endif
# endif /* AIX */
# endif /* HAVE_ALLOCA_H */

#endif /* __GNUC__ */

#ifdef HAVE_STRING_H
# include <string.h>
#else
# include <strings.h>
#endif

#define xmalloc malloc
#define xrealloc realloc
#define xcalloc calloc
#define xfree free

#ifdef C_ALLOCA
#define FREE_VARIABLES() alloca(0)
#else
#define FREE_VARIABLES()
#endif

#define FREE_AND_RETURN_VOID(stackb) do { \
FREE_VARIABLES(); \
if (stackb != stacka) xfree(stackb); \
return; \
} while(0)

#define FREE_AND_RETURN(stackb,val) do { \
FREE_VARIABLES(); \
if (stackb != stacka) xfree(stackb); \
return(val); \
} while(0)

#define DOUBLE_STACK(type) do { \
type *stackx; \
unsigned int xlen = stacke - stackb; \
if (stackb == stacka) { \
stackx = (type*)xmalloc(2 * xlen * sizeof(type)); \
if (!stackx) goto memory_exhausted; \
memcpy(stackx, stackb, xlen * sizeof (type)); \
} \
else { \
stackx = (type*)xrealloc(stackb, 2 * xlen * sizeof(type)); \
if (!stackx) goto memory_exhausted; \
} \
/* Rearrange the pointers. */ \
stackp = stackx + (stackp - stackb); \
stackb = stackx; \
stacke = stackb + 2 * xlen; \
} while (0)

#define RE_TALLOC(n,t) ((t*)alloca((n)*sizeof(t)))
#define TMALLOC(n,t) ((t*)xmalloc((n)*sizeof(t)))
#define TREALLOC(s,n,t) (s=((t*)xrealloc(s,(n)*sizeof(t))))

#define EXPAND_FAIL_STACK() DOUBLE_STACK(unsigned char*)
#define ENSURE_FAIL_STACK(n) \
do { \
if (stacke - stackp <= (n)) { \
/* if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS) \
{ \
FREE_AND_RETURN(stackb,(-2)); \
}*/ \
\
/* Roughly double the size of the stack. */ \
EXPAND_FAIL_STACK(); \
} \
} while (0)

/* Get the interface, including the syntax bits. */
#include "regex.h"

/* Subroutines for re_compile_pattern. */
static void store_jump _((char*, int, char*));
static void insert_jump _((int, char*, char*, char*));
static void store_jump_n _((char*, int, char*, unsigned));
static void insert_jump_n _((int, char*, char*, char*, unsigned));
/*static void insert_op _((int, char*, char*));*/
static void insert_op_2 _((int, char*, char*, int, int));
static int memcmp_translate _((unsigned char*, unsigned char*, int));

/* Define the syntax stuff, so we can do the \<, \>, etc. */

/* This must be nonzero for the wordchar and notwordchar pattern
commands in re_match. */
#define Sword 1
#define Sword2 2

#define SYNTAX(c) re_syntax_table[c]

static char re_syntax_table[256];
static void init_syntax_once _((void));
static const unsigned char *translate = 0;
static void init_regs _((struct re_registers*, unsigned int));
static void bm_init_skip _((int *, unsigned char*, int, const unsigned char*));
static int current_mbctype = MBCTYPE_ASCII;

#undef P

#ifdef RUBY
#include "util.h"
void rb_warn _((const char*, ...));
# define re_warning(x) rb_warn(x)
#endif

#ifndef re_warning
# define re_warning(x)
#endif

static void
init_syntax_once()
{
   register int c;
   static int done = 0;

   if (done)
     return;

   memset(re_syntax_table, 0, sizeof re_syntax_table);

   for (c=0; c<=0x7f; c++)
     if (isalnum(c))
       re_syntax_table[c] = Sword;
   re_syntax_table['_'] = Sword;

   for (c=0x80; c<=0xff; c++)
     if (isalnum(c))
       re_syntax_table[c] = Sword2;
   done = 1;
}

void
re_set_casetable(table)
     const char *table;
{
  translate = (const unsigned char*)table;
}

/* Jim Meyering writes:

"... Some ctype macros are valid only for character codes that
isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
using /bin/cc or gcc but without giving an ansi option). So, all
ctype uses should be through macros like ISPRINT... If
STDC_HEADERS is defined, then autoconf has verified that the ctype
macros don't need to be guarded with references to isascii. ...
Defining isascii to 1 should let any compiler worth its salt
eliminate the && through constant folding."
Solaris defines some of these symbols so we must undefine them first. */

#undef ISASCII
#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
# define ISASCII(c) 1
#else
# define ISASCII(c) isascii(c)
#endif

#ifdef isblank
# define ISBLANK(c) (ISASCII(c) && isblank(c))
#else
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
#endif
#ifdef isgraph
# define ISGRAPH(c) (ISASCII(c) && isgraph(c))
#else
# define ISGRAPH(c) (ISASCII(c) && isprint(c) && !isspace(c))
#endif

#undef ISPRINT
#define ISPRINT(c) (ISASCII(c) && isprint(c))
#define ISDIGIT(c) (ISASCII(c) && isdigit(c))
#define ISALNUM(c) (ISASCII(c) && isalnum(c))
#define ISALPHA(c) (ISASCII(c) && isalpha(c))
#define ISCNTRL(c) (ISASCII(c) && iscntrl(c))
#define ISLOWER(c) (ISASCII(c) && islower(c))
#define ISPUNCT(c) (ISASCII(c) && ispunct(c))
#define ISSPACE(c) (ISASCII(c) && isspace(c))
#define ISUPPER(c) (ISASCII(c) && isupper(c))
#define ISXDIGIT(c) (ISASCII(c) && isxdigit(c))

#ifndef NULL
# define NULL (void *)0
#endif

/* We remove any previous definition of `SIGN_EXTEND_CHAR',
since ours (we hope) works properly with all combinations of
machines, compilers, `char' and `unsigned char' argument types.
(Per Bothner suggested the basic approach.) */
#undef SIGN_EXTEND_CHAR
#if __STDC__
# define SIGN_EXTEND_CHAR(c) ((signed char)(c))
#else /* not __STDC__ */
/* As in Harbison and Steele. */
# define SIGN_EXTEND_CHAR(c) ((((unsigned char)(c)) ^ 128) - 128)
#endif

/* These are the command codes that appear in compiled regular
expressions, one per byte. Some command codes are followed by
argument bytes. A command code can specify any interpretation
whatsoever for its arguments. Zero-bytes may appear in the compiled
regular expression.

The value of `exactn' is needed in search.c (search_buffer) in emacs.
So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
`exactn' we use here must also be 1. */

enum regexpcode
  {
    unused=0,
    exactn=1, /* Followed by one byte giving n, then by n literal bytes. */
    begline, /* Fail unless at beginning of line. */
    endline, /* Fail unless at end of line. */
    begbuf, /* Succeeds if at beginning of buffer (if emacs) or at beginning
of string to be matched (if not). */
    endbuf, /* Analogously, for end of buffer/string. */
    endbuf2, /* End of buffer/string, or newline just before it. */
    begpos, /* Matches where last scan//gsub left off. */
    jump, /* Followed by two bytes giving relative address to jump to. */
    jump_past_alt,/* Same as jump, but marks the end of an alternative. */
    on_failure_jump, /* Followed by two bytes giving relative address of
place to resume at in case of failure. */
    finalize_jump, /* Throw away latest failure point and then jump to
address. */
    maybe_finalize_jump, /* Like jump but finalize if safe to do so.
This is used to jump back to the beginning
of a repeat. If the command that follows
this jump is clearly incompatible with the
one at the beginning of the repeat, such that
we can be sure that there is no use backtracking
out of repetitions already completed,
then we finalize. */
    dummy_failure_jump, /* Jump, and push a dummy failure point. This
failure point will be thrown away if an attempt
is made to use it for a failure. A + construct
makes this before the first repeat. Also
use it as an intermediary kind of jump when
compiling an or construct. */
    push_dummy_failure, /* Push a dummy failure point and continue. Used at the end of
alternatives. */
    succeed_n, /* Used like on_failure_jump except has to succeed n times;
then gets turned into an on_failure_jump. The relative
address following it is useless until then. The
address is followed by two bytes containing n. */
    jump_n, /* Similar to jump, but jump n times only; also the relative
address following is in turn followed by yet two more bytes
containing n. */
    try_next, /* Jump to next pattern for the first time,
leaving this pattern on the failure stack. */
    finalize_push, /* Finalize stack and push the beginning of the pattern
on the stack to retry (used for non-greedy match) */
    finalize_push_n, /* Similar to finalize_push, buf finalize n time only */
    set_number_at, /* Set the following relative location to the
subsequent number. */
    anychar, /* Matches any (more or less) one character excluding newlines. */
    anychar_repeat, /* Matches sequence of characters excluding newlines. */
    charset, /* Matches any one char belonging to specified set.
First following byte is number of bitmap bytes.
Then come bytes for a bitmap saying which chars are in.
Bits in each byte are ordered low-bit-first.
A character is in the set if its bit is 1.
A character too large to have a bit in the map
is automatically not in the set. */
    charset_not, /* Same parameters as charset, but match any character
that is not one of those specified. */
    start_memory, /* Start remembering the text that is matched, for
storing in a memory register. Followed by one
byte containing the register number. Register numbers
must be in the range 0 through RE_NREGS. */
    stop_memory, /* Stop remembering the text that is matched
and store it in a memory register. Followed by
one byte containing the register number. Register
numbers must be in the range 0 through RE_NREGS. */
    start_paren, /* Place holder at the start of (?:..). */
    stop_paren, /* Place holder at the end of (?:..). */
    casefold_on, /* Turn on casefold flag. */
    casefold_off, /* Turn off casefold flag. */
    option_set, /* Turn on multi line match (match with newlines). */
    start_nowidth, /* Save string point to the stack. */
    stop_nowidth, /* Restore string place at the point start_nowidth. */
    pop_and_fail, /* Fail after popping nowidth entry from stack. */
    stop_backtrack, /* Restore backtrack stack at the point start_nowidth. */
    duplicate, /* Match a duplicate of something remembered.
Followed by one byte containing the index of the memory
register. */
    wordchar, /* Matches any word-constituent character. */
    notwordchar, /* Matches any char that is not a word-constituent. */
    wordbeg, /* Succeeds if at word beginning. */
    wordend, /* Succeeds if at word end. */
    wordbound, /* Succeeds if at a word boundary. */
    notwordbound /* Succeeds if not at a word boundary. */
  };


/* Number of failure points to allocate space for initially,
when matching. If this number is exceeded, more space is allocated,
so it is not a hard limit. */

#ifndef NFAILURES
#define NFAILURES 160
#endif

/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
#define STORE_NUMBER(destination, number) \
do { (destination)[0] = (number) & 0377; \
(destination)[1] = (number) >> 8; } while (0)

/* Same as STORE_NUMBER, except increment the destination pointer to
the byte after where the number is stored. Watch out that values for
DESTINATION such as p + 1 won't work, whereas p will. */
#define STORE_NUMBER_AND_INCR(destination, number) \
do { STORE_NUMBER(destination, number); \
(destination) += 2; } while (0)


/* Put into DESTINATION a number stored in two contingous bytes starting
at SOURCE. */
#define EXTRACT_NUMBER(destination, source) \
do { (destination) = *(source) & 0377; \
(destination) += SIGN_EXTEND_CHAR(*(char*)((source) + 1)) << 8; } while (0)

/* Same as EXTRACT_NUMBER, except increment the pointer for source to
point to second byte of SOURCE. Note that SOURCE has to be a value
such as p, not, e.g., p + 1. */
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
do { EXTRACT_NUMBER(destination, source); \
(source) += 2; } while (0)


/* Specify the precise syntax of regexps for compilation. This provides
for compatibility for various utilities which historically have
different, incompatible syntaxes.

The argument SYNTAX is a bit-mask comprised of the various bits
defined in regex.h. */

long
re_set_syntax(syntax)
  long syntax;
{
    /* obsolete */
    return 0;
}

/* Macros for re_compile_pattern, which is found below these definitions. */

#define TRANSLATE_P() ((options&RE_OPTION_IGNORECASE) && translate)
#define MAY_TRANSLATE() ((bufp->options&(RE_OPTION_IGNORECASE|RE_MAY_IGNORECASE)) && translate)
/* Fetch the next character in the uncompiled pattern---translating it
if necessary. Also cast from a signed character in the constant
string passed to us by the user to an unsigned char that we can use
as an array index (in, e.g., `translate'). */
#define PATFETCH(c) \
do {if (p == pend) goto end_of_pattern; \
c = (unsigned char) *p++; \
if (TRANSLATE_P()) c = (unsigned char)translate[c]; \
} while (0)

/* Fetch the next character in the uncompiled pattern, with no
translation. */
#define PATFETCH_RAW(c) \
do {if (p == pend) goto end_of_pattern; \
c = (unsigned char)*p++; \
} while (0)

/* Go backwards one character in the pattern. */
#define PATUNFETCH p--

#define MBC2WC(c, p) \
do { \
if (current_mbctype == MBCTYPE_UTF8) { \
int n = mbclen(c) - 1; \
c &= (1<<(BYTEWIDTH-2-n)) - 1; \
while (n--) { \
c = c << 6 | (*p++ & ((1<<6)-1)); \
} \
} \
else { \
c <<= 8; \
c |= (unsigned char)*(p)++; \
} \
} while (0)

#define PATFETCH_MBC(c) \
do { \
if (p + mbclen(c) - 1 >= pend) goto end_of_pattern; \
MBC2WC(c, p); \
} while(0)

#define WC2MBC1ST(c) \
((current_mbctype != MBCTYPE_UTF8) ? ((c<0x100) ? (c) : (((c)>>8)&0xff)) : utf8_firstbyte(c))

typedef unsigned int (*mbc_startpos_func_t) _((const char *string, unsigned int pos));

static unsigned int asc_startpos _((const char *string, unsigned int pos));
static unsigned int euc_startpos _((const char *string, unsigned int pos));
static unsigned int sjis_startpos _((const char *string, unsigned int pos));
static unsigned int utf8_startpos _((const char *string, unsigned int pos));

static const mbc_startpos_func_t mbc_startpos_func[4] = {
  asc_startpos, euc_startpos, sjis_startpos, utf8_startpos
};

#define mbc_startpos(start, pos) (*mbc_startpos_func[current_mbctype])((start), (pos))

static unsigned int
utf8_firstbyte(c)
     unsigned long c;
{
  if (c < 0x80) return c;
  if (c <= 0x7ff) return ((c>>6)&0xff)|0xc0;
  if (c <= 0xffff) return ((c>>12)&0xff)|0xe0;
  if (c <= 0x1fffff) return ((c>>18)&0xff)|0xf0;
  if (c <= 0x3ffffff) return ((c>>24)&0xff)|0xf8;
  if (c <= 0x7fffffff) return ((c>>30)&0xff)|0xfc;
#if SIZEOF_INT > 4
  if (c <= 0xfffffffff) return 0xfe;
#else
  return 0xfe;
#endif
}

#if 0
static void
print_mbc(c)
     unsigned int c;
{
  if (current_mbctype == MBCTYPE_UTF8) {
    if (c < 0x80)
      printf("%c", (int)c);
    else if (c <= 0x7ff)
      printf("%c%c", (int)utf8_firstbyte(c), (int)(c & 0x3f));
    else if (c <= 0xffff)
      printf("%c%c%c", (int)utf8_firstbyte(c), (int)((c >> 6) & 0x3f),
(int)(c & 0x3f));
    else if (c <= 0x1fffff)
      printf("%c%c%c%c", (int)utf8_firstbyte(c), (int)((c >> 12) & 0x3f),
(int)((c >> 6) & 0x3f), (int)(c & 0x3f));
    else if (c <= 0x3ffffff)
      printf("%c%c%c%c%c", (int)utf8_firstbyte(c), (int)((c >> 18) & 0x3f),
(int)((c >> 12) & 0x3f), (int)((c >> 6) & 0x3f), (int)(c & 0x3f));
    else if (c <= 0x7fffffff)
      printf("%c%c%c%c%c%c", (int)utf8_firstbyte(c), (int)((c >> 24) & 0x3f),
(int)((c >> 18) & 0x3f), (int)((c >> 12) & 0x3f),
(int)((c >> 6) & 0x3f), (int)(c & 0x3f));
  }
  else if (c < 0xff) {
    printf("\\%o", (int)c);
  }
  else {
    printf("%c%c", (int)(c >> BYTEWIDTH), (int)(c &0xff));
  }
}
#endif

/* If the buffer isn't allocated when it comes in, use this. */
#define INIT_BUF_SIZE 28

/* Make sure we have at least N more bytes of space in buffer. */
#define GET_BUFFER_SPACE(n) \
do { \
while (b - bufp->buffer + (n) >= bufp->allocated) \
EXTEND_BUFFER; \
} while (0)

/* Make sure we have one more byte of buffer space and then add CH to it. */
#define BUFPUSH(ch) \
do { \
GET_BUFFER_SPACE(1); \
*b++ = (char)(ch); \
} while (0)

/* Extend the buffer by twice its current size via reallociation and
reset the pointers that pointed into the old allocation to point to
the correct places in the new allocation. If extending the buffer
results in it being larger than 1 << 16, then flag memory exhausted. */
#define EXTEND_BUFFER \
do { char *old_buffer = bufp->buffer; \
if (bufp->allocated == (1L<<16)) goto too_big; \
bufp->allocated *= 2; \
if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16); \
bufp->buffer = (char*)xrealloc(bufp->buffer, bufp->allocated); \
if (bufp->buffer == 0) \
goto memory_exhausted; \
b = (b - old_buffer) + bufp->buffer; \
if (fixup_alt_jump) \
fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; \
if (laststart) \
laststart = (laststart - old_buffer) + bufp->buffer; \
begalt = (begalt - old_buffer) + bufp->buffer; \
if (pending_exact) \
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
} while (0)


/* Set the bit for character C in a character set list. */
#define SET_LIST_BIT(c) \
(b[(unsigned char)(c) / BYTEWIDTH] \
|= 1 << ((unsigned char)(c) % BYTEWIDTH))

/* Get the next unsigned number in the uncompiled pattern. */
#define GET_UNSIGNED_NUMBER(num) \
do { if (p != pend) { \
PATFETCH(c); \
while (ISDIGIT(c)) { \
if (num < 0) \
num = 0; \
num = num * 10 + c - '0'; \
if (p == pend) \
break; \
PATFETCH(c); \
} \
} \
} while (0)

#define STREQ(s1, s2) ((strcmp(s1, s2) == 0))

#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */

#define IS_CHAR_CLASS(string) \
(STREQ(string, "alpha") || STREQ(string, "upper") \
|| STREQ(string, "lower") || STREQ(string, "digit") \
|| STREQ(string, "alnum") || STREQ(string, "xdigit") \
|| STREQ(string, "space") || STREQ(string, "print") \
|| STREQ(string, "punct") || STREQ(string, "graph") \
|| STREQ(string, "cntrl") || STREQ(string, "blank"))
#define STORE_MBC(p, c) \
do { \
(p)[0] = (unsigned char)(((c) >>24) & 0xff); \
(p)[1] = (unsigned char)(((c) >>16) & 0xff); \
(p)[2] = (unsigned char)(((c) >> 8) & 0xff); \
(p)[3] = (unsigned char)(((c) >> 0) & 0xff); \
} while (0)

#define STORE_MBC_AND_INCR(p, c) \
do { \
*(p)++ = (unsigned char)(((c) >>24) & 0xff); \
*(p)++ = (unsigned char)(((c) >>16) & 0xff); \
*(p)++ = (unsigned char)(((c) >> 8) & 0xff); \
*(p)++ = (unsigned char)(((c) >> 0) & 0xff); \
} while (0)

#define EXTRACT_MBC(p) \
((unsigned int)((unsigned char)(p)[0] << 24 | \
(unsigned char)(p)[1] << 16 | \
(unsigned char)(p)[2] << 8 | \
(unsigned char)(p)[3]))

#define EXTRACT_MBC_AND_INCR(p) \
((unsigned int)((p) += 4, \
(unsigned char)(p)[-4] << 24 | \
(unsigned char)(p)[-3] << 16 | \
(unsigned char)(p)[-2] << 8 | \
(unsigned char)(p)[-1]))

#define EXTRACT_UNSIGNED(p) \
((unsigned char)(p)[0] | (unsigned char)(p)[1] << 8)
#define EXTRACT_UNSIGNED_AND_INCR(p) \
((p) += 2, (unsigned char)(p)[-2] | (unsigned char)(p)[-1] << 8)

/* Handle (mb)?charset(_not)?.

Structure of mbcharset(_not)? in compiled pattern.

struct {
unsinged char id; mbcharset(_not)?
unsigned char sbc_size;
unsigned char sbc_map[sbc_size]; same as charset(_not)? up to here.
unsigned short mbc_size; number of intervals.
struct {
unsigned long beg; beginning of interval.
unsigned long end; end of interval.
} intervals[mbc_size];
}; */

static void
set_list_bits(c1, c2, b)
    unsigned long c1, c2;
    unsigned char *b;
{
  unsigned char sbc_size = b[-1];
  unsigned short mbc_size = EXTRACT_UNSIGNED(&b[sbc_size]);
  unsigned short beg, end, upb;

  if (c1 > c2)
    return;
  b = &b[sbc_size + 2];

  for (beg = 0, upb = mbc_size; beg < upb; ) {
    unsigned short mid = (unsigned short)(beg + upb) >> 1;

    if ((int)c1 - 1 > (int)EXTRACT_MBC(&b[mid*8+4]))
      beg = mid + 1;
    else
      upb = mid;
  }

  for (end = beg, upb = mbc_size; end < upb; ) {
    unsigned short mid = (unsigned short)(end + upb) >> 1;

    if ((int)c2 >= (int)EXTRACT_MBC(&b[mid*8]) - 1)
      end = mid + 1;
    else
      upb = mid;
  }

  if (beg != end) {
    if (c1 > EXTRACT_MBC(&b[beg*8]))
      c1 = EXTRACT_MBC(&b[beg*8]);
    if (c2 < EXTRACT_MBC(&b[(end - 1)*8+4]))
      c2 = EXTRACT_MBC(&b[(end - 1)*8+4]);
  }
  if (end < mbc_size && end != beg + 1)
    /* NOTE: memcpy() would not work here. */
    memmove(&b[(beg + 1)*8], &b[end*8], (mbc_size - end)*8);
  STORE_MBC(&b[beg*8 + 0], c1);
  STORE_MBC(&b[beg*8 + 4], c2);
  mbc_size += beg - end + 1;
  STORE_NUMBER(&b[-2], mbc_size);
}

static int
is_in_list_sbc(c, b)
    unsigned long c;
    const unsigned char *b;
{
  unsigned short size;

  size = *b++;
  return ((int)c / BYTEWIDTH < (int)size && b[c / BYTEWIDTH] & 1 << c % BYTEWIDTH);
}

static int
is_in_list_mbc(c, b)
    unsigned long c;
    const unsigned char *b;
{
  unsigned short size;
  unsigned short i, j;

  size = *b++;
  b += size + 2;
  size = EXTRACT_UNSIGNED(&b[-2]);
  if (size == 0) return 0;

  for (i = 0, j = size; i < j; ) {
    unsigned short k = (unsigned short)(i + j) >> 1;

    if (c > EXTRACT_MBC(&b[k*8+4]))
      i = k + 1;
    else
      j = k;
  }
  if (i < size && EXTRACT_MBC(&b[i*8]) <= c)
    return 1;

  return 0;
}

static int
is_in_list(c, b)
    unsigned long c;
    const unsigned char *b;
{
  return is_in_list_sbc(c, b) || (current_mbctype ? is_in_list_mbc(c, b) : 0);
}

#if 0
static void
print_partial_compiled_pattern(start, end)
    unsigned char *start;
    unsigned char *end;
{
  int mcnt, mcnt2;
  unsigned char *p = start;
  unsigned char *pend = end;

  if (start == NULL) {
    printf("(null)\n");
    return;
  }

  /* Loop over pattern commands. */
  while (p < pend) {
    switch ((enum regexpcode)*p++) {
    case unused:
      printf("/unused");
      break;

    case exactn:
      mcnt = *p++;
      printf("/exactn/%d", mcnt);
      do {
putchar('/');
printf("%c", *p++);
      }
      while (--mcnt);
      break;

    case start_memory:
      mcnt = *p++;
      printf("/start_memory/%d/%d", mcnt, *p++);
      break;

    case stop_memory:
      mcnt = *p++;
      printf("/stop_memory/%d/%d", mcnt, *p++);
      break;

    case start_paren:
      printf("/start_paren");
      break;

    case stop_paren:
      printf("/stop_paren");
      break;

    case casefold_on:
      printf("/casefold_on");
      break;

    case casefold_off:
      printf("/casefold_off");
      break;

    case option_set:
      printf("/option_set/%d", *p++);
      break;

    case start_nowidth:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/start_nowidth//%d", mcnt);
      break;

    case stop_nowidth:
      printf("/stop_nowidth//");
      p += 2;
      break;

    case pop_and_fail:
      printf("/pop_and_fail");
      break;

    case stop_backtrack:
      printf("/stop_backtrack//");
      p += 2;
      break;

    case duplicate:
      printf("/duplicate/%d", *p++);
      break;

    case anychar:
      printf("/anychar");
      break;

    case anychar_repeat:
      printf("/anychar_repeat");
      break;

    case charset:
    case charset_not:
      {
register int c;

printf("/charset%s",
(enum regexpcode)*(p - 1) == charset_not ? "_not" : "");

mcnt = *p++;
printf("/%d", mcnt);
for (c = 0; c < mcnt; c++) {
unsigned bit;
unsigned char map_byte = p[c];

putchar('/');

for (bit = 0; bit < BYTEWIDTH; bit++)
if (map_byte & (1 << bit))
printf("%c", c * BYTEWIDTH + bit);
}
p += mcnt;
mcnt = EXTRACT_UNSIGNED_AND_INCR(p);
putchar('/');
while (mcnt--) {
print_mbc(EXTRACT_MBC_AND_INCR(p));
putchar('-');
print_mbc(EXTRACT_MBC_AND_INCR(p));
}
break;
      }

    case begline:
      printf("/begline");
      break;

    case endline:
      printf("/endline");
      break;

    case on_failure_jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/on_failure_jump//%d", mcnt);
      break;

    case dummy_failure_jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/dummy_failure_jump//%d", mcnt);
      break;

    case push_dummy_failure:
      printf("/push_dummy_failure");
      break;

    case finalize_jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/finalize_jump//%d", mcnt);
      break;

    case maybe_finalize_jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/maybe_finalize_jump//%d", mcnt);
      break;

    case jump_past_alt:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/jump_past_alt//%d", mcnt);
      break;

    case jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/jump//%d", mcnt);
      break;

    case succeed_n:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      EXTRACT_NUMBER_AND_INCR(mcnt2, p);
      printf("/succeed_n//%d//%d", mcnt, mcnt2);
      break;

    case jump_n:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      EXTRACT_NUMBER_AND_INCR(mcnt2, p);
      printf("/jump_n//%d//%d", mcnt, mcnt2);
      break;

    case set_number_at:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      EXTRACT_NUMBER_AND_INCR(mcnt2, p);
      printf("/set_number_at//%d//%d", mcnt, mcnt2);
      break;

    case try_next:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/try_next//%d", mcnt);
      break;

    case finalize_push:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      printf("/finalize_push//%d", mcnt);
      break;

    case finalize_push_n:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      EXTRACT_NUMBER_AND_INCR(mcnt2, p);
      printf("/finalize_push_n//%d//%d", mcnt, mcnt2);
      break;

    case wordbound:
      printf("/wordbound");
      break;

    case notwordbound:
      printf("/notwordbound");
      break;

    case wordbeg:
      printf("/wordbeg");
      break;

    case wordend:
      printf("/wordend");

    case wordchar:
      printf("/wordchar");
      break;

    case notwordchar:
      printf("/notwordchar");
      break;

    case begbuf:
      printf("/begbuf");
      break;

    case endbuf:
      printf("/endbuf");
      break;

    case endbuf2:
      printf("/endbuf2");
      break;

    case begpos:
      printf("/begpos");
      break;

    default:
      printf("?%d", *(p-1));
    }
  }
  printf("/\n");
}


static void
print_compiled_pattern(bufp)
     struct re_pattern_buffer *bufp;
{
  unsigned char *buffer = (unsigned char*)bufp->buffer;

  print_partial_compiled_pattern(buffer, buffer + bufp->used);
}
#endif

static char*
calculate_must_string(start, end)
     char *start;
     char *end;
{
  int mcnt;
  int max = 0;
  unsigned char *p = (unsigned char *)start;
  unsigned char *pend = (unsigned char *)end;
  char *must = 0;

  if (start == NULL) return 0;

  /* Loop over pattern commands. */
  while (p < pend) {
    switch ((enum regexpcode)*p++) {
    case unused:
      break;

    case exactn:
      mcnt = *p;
      if (mcnt > max) {
must = (char *)p;
max = mcnt;
      }
      p += mcnt+1;
      break;

    case start_memory:
    case stop_memory:
      p += 2;
      break;

    case duplicate:
    case option_set:
      p++;
      break;

    case casefold_on:
    case casefold_off:
      return 0; /* should not check must_string */

    case pop_and_fail:
    case anychar:
    case anychar_repeat:
    case begline:
    case endline:
    case wordbound:
    case notwordbound:
    case wordbeg:
    case wordend:
    case wordchar:
    case notwordchar:
    case begbuf:
    case endbuf:
    case endbuf2:
    case begpos:
    case push_dummy_failure:
    case start_paren:
    case stop_paren:
      break;

    case charset:
    case charset_not:
      mcnt = *p++;
      p += mcnt;
      mcnt = EXTRACT_UNSIGNED_AND_INCR(p);
      while (mcnt--) {
p += 8;
      }
      break;

    case on_failure_jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      if (mcnt > 0) p += mcnt;
      if ((enum regexpcode)p[-3] == jump) {
p -= 2;
EXTRACT_NUMBER_AND_INCR(mcnt, p);
if (mcnt > 0) p += mcnt;
      }
      break;

    case dummy_failure_jump:
    case succeed_n:
    case try_next:
    case jump:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      if (mcnt > 0) p += mcnt;
      break;

    case start_nowidth:
    case stop_nowidth:
    case stop_backtrack:
    case finalize_jump:
    case maybe_finalize_jump:
    case finalize_push:
      p += 2;
      break;

    case jump_n:
    case set_number_at:
    case finalize_push_n:
      p += 4;
      break;

    default:
      break;
    }
  }
  return must;
}

static unsigned int
read_backslash(c)
     int c;
{
  switch (c) {
  case 'n':
    return '\n';

  case 't':
    return '\t';

  case 'r':
    return '\r';

  case 'f':
    return '\f';

  case 'v':
    return '\v';

  case 'a':
    return '\007';

  case 'b':
    return '\010';

  case 'e':
    return '\033';
  }
  return c;
}

static unsigned int
read_special(p, pend, pp)
     const char *p, *pend, **pp;
{
  int c;

  PATFETCH_RAW(c);
  switch (c) {
  case 'M':
    PATFETCH_RAW(c);
    if (c != '-') return -1;
    PATFETCH_RAW(c);
    *pp = p;
    if (c == '\\') {
      return read_special(--p, pend, pp) | 0x80;
    }
    else if (c == -1) return ~0;
    else {
      return ((c & 0xff) | 0x80);
    }

  case 'C':
    PATFETCH_RAW(c);
    if (c != '-') return ~0;
  case 'c':
    PATFETCH_RAW(c);
    *pp = p;
    if (c == '\\') {
      c = read_special(--p, pend, pp);
    }
    else if (c == '?') return 0177;
    else if (c == -1) return ~0;
    return c & 0x9f;
  default:
    PATFETCH_RAW(c);
    *pp = p;
    return read_backslash(c);
  }

 end_of_pattern:
  return ~0;
}

/* re_compile_pattern takes a regular-expression string
and converts it into a buffer full of byte commands for matching.

PATTERN is the address of the pattern string
SIZE is the length of it.
BUFP is a struct re_pattern_buffer * which points to the info
on where to store the byte commands.
This structure contains a char * which points to the
actual space, which should have been obtained with malloc.
re_compile_pattern may use realloc to grow the buffer space.

The number of bytes of commands can be found out by looking in
the `struct re_pattern_buffer' that bufp pointed to, after
re_compile_pattern returns. */

const char *
re_compile_pattern(pattern, size, bufp)
     const char *pattern;
     int size;
     struct re_pattern_buffer *bufp;
{
  register char *b = bufp->buffer;
  register const char *p = pattern;
  const char *nextp;
  const char *pend = pattern + size;
  register unsigned int c, c1 = 0;
  const char *p0;
  int numlen;
#define ERROR_MSG_MAX_SIZE 200
  static char error_msg[ERROR_MSG_MAX_SIZE+1];

  /* Address of the count-byte of the most recently inserted `exactn'
command. This makes it possible to tell whether a new exact-match
character can be added to that command or requires a new `exactn'
command. */

  char *pending_exact = 0;

  /* Address of the place where a forward-jump should go to the end of
the containing expression. Each alternative of an `or', except the
last, ends with a forward-jump of this sort. */

  char *fixup_alt_jump = 0;

  /* Address of start of the most recently finished expression.
This tells postfix * where to find the start of its operand. */

  char *laststart = 0;

  /* In processing a repeat, 1 means zero matches is allowed. */

  char zero_times_ok;

  /* In processing a repeat, 1 means many matches is allowed. */

  char many_times_ok;

  /* In processing a repeat, 1 means non-greedy matches. */

  char greedy;

  /* Address of beginning of regexp, or inside of last (. */

  char *begalt = b;

  /* Place in the uncompiled pattern (i.e., the {) to
which to go back if the interval is invalid. */
  const char *beg_interval;

  /* In processing an interval, at least this many matches must be made. */
  int lower_bound;

  /* In processing an interval, at most this many matches can be made. */
  int upper_bound;

  /* Stack of information saved by ( and restored by ).
Five stack elements are pushed by each (:
First, the value of b.
Second, the value of fixup_alt_jump.
Third, the value of begalt.
Fourth, the value of regnum.
Fifth, the type of the paren. */

  int stacka[40];
  int *stackb = stacka;
  int *stackp = stackb;
  int *stacke = stackb + 40;

  /* Counts ('s as they are encountered. Remembered for the matching ),
where it becomes the register number to put in the stop_memory
command. */

  int regnum = 1;

  int range = 0;
  int had_mbchar = 0;
  int had_num_literal = 0;
  int had_char_class = 0;

  int options = bufp->options;

  bufp->fastmap_accurate = 0;
  bufp->must = 0;
  bufp->must_skip = 0;

  /* Initialize the syntax table. */
  init_syntax_once();

  if (bufp->allocated == 0) {
    bufp->allocated = INIT_BUF_SIZE;
    /* EXTEND_BUFFER loses when bufp->allocated is 0. */
    bufp->buffer = (char*)xrealloc(bufp->buffer, INIT_BUF_SIZE);
    if (!bufp->buffer) goto memory_exhausted; /* this not happen */
    begalt = b = bufp->buffer;
  }

  while (p != pend) {
    PATFETCH(c);

    switch (c) {
    case '$':
      if (bufp->options & RE_OPTION_SINGLELINE) {
BUFPUSH(endbuf);
      }
      else {
p0 = p;
/* When testing what follows the $,
look past the \-constructs that don't consume anything. */

while (p0 != pend) {
if (*p0 == '\\' && p0 + 1 != pend
&& (p0[1] == 'b' || p0[1] == 'B'))
p0 += 2;
else
break;
}
BUFPUSH(endline);
      }
      break;

    case '^':
      if (bufp->options & RE_OPTION_SINGLELINE)
BUFPUSH(begbuf);
      else
BUFPUSH(begline);
      break;

    case '+':
    case '?':
    case '*':
      /* If there is no previous pattern, char not special. */
      if (!laststart) {
snprintf(error_msg, ERROR_MSG_MAX_SIZE,
"invalid regular expression; there's no previous pattern, to which '%c' would define cardinality at %ld",
c, (long)(p-pattern));
FREE_AND_RETURN(stackb, error_msg);
      }
      /* If there is a sequence of repetition chars,
collapse it down to just one. */
      zero_times_ok = c != '+';
      many_times_ok = c != '?';
      greedy = 1;
      if (p != pend) {
PATFETCH(c);
switch (c) {
case '?':
greedy = 0;
break;
case '*':
case '+':
goto nested_meta;
default:
PATUNFETCH;
break;
}
      }

    repeat:
      /* Star, etc. applied to an empty pattern is equivalent
to an empty pattern. */
      if (!laststart)
break;

      if (greedy && many_times_ok && *laststart == anychar && b - laststart <= 2) {
if (b[-1] == stop_paren)
b--;
if (zero_times_ok)
*laststart = anychar_repeat;
else {
BUFPUSH(anychar_repeat);
}
break;
      }
      /* Now we know whether or not zero matches is allowed
and also whether or not two or more matches is allowed. */
      if (many_times_ok) {
/* If more than one repetition is allowed, put in at the
end a backward relative jump from b to before the next
jump we're going to put in below (which jumps from
laststart to after this jump). */
GET_BUFFER_SPACE(3);
store_jump(b,greedy?maybe_finalize_jump:finalize_push,laststart-3);
b += 3; /* Because store_jump put stuff here. */
      }

      /* On failure, jump from laststart to next pattern, which will be the
end of the buffer after this jump is inserted. */
      GET_BUFFER_SPACE(3);
      insert_jump(on_failure_jump, laststart, b + 3, b);
      b += 3;

      if (zero_times_ok) {
if (greedy == 0) {
GET_BUFFER_SPACE(3);
insert_jump(try_next, laststart, b + 3, b);
b += 3;
}
      }
      else {
/* At least one repetition is required, so insert a
`dummy_failure_jump' before the initial
`on_failure_jump' instruction of the loop. This
effects a skip over that instruction the first time
we hit that loop. */
GET_BUFFER_SPACE(3);
insert_jump(dummy_failure_jump, laststart, laststart + 6, b);
b += 3;
      }
      break;

    case '.':
      laststart = b;
      BUFPUSH(anychar);
      break;

    case '[':
      if (p == pend)
FREE_AND_RETURN(stackb, "invalid regular expression; '[' can't be the last character ie. can't start range at the end of pattern");
      while ((b - bufp->buffer + 9 + (1 << BYTEWIDTH) / BYTEWIDTH)
> bufp->allocated)
EXTEND_BUFFER;

      laststart = b;
      if (*p == '^') {
BUFPUSH(charset_not);
p++;
      }
      else
BUFPUSH(charset);
      p0 = p;

      BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
      /* Clear the whole map */
      memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);

      had_mbchar = 0;
      had_num_literal = 0;
      had_char_class = 0;

      /* Read in characters and ranges, setting map bits. */
      for (;;) {
int size;
unsigned last = (unsigned)-1;

if ((size = EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])) || current_mbctype) {
/* Ensure the space is enough to hold another interval
of multi-byte chars in charset(_not)?. */
size = (1 << BYTEWIDTH) / BYTEWIDTH + 2 + size*8 + 8;
while (b + size + 1 > bufp->buffer + bufp->allocated)
EXTEND_BUFFER;
}
      range_retry:
if (range && had_char_class) {
FREE_AND_RETURN(stackb, "invalid regular expression; can't use character class as an end value of range");
}
PATFETCH_RAW(c);

if (c == ']') {
if (p == p0 + 1) {
if (p == pend)
FREE_AND_RETURN(stackb, "invalid regular expression; empty character class");
            re_warning("character class has `]' without escape");
}
else
/* Stop if this isn't merely a ] inside a bracket
expression, but rather the end of a bracket
expression. */
break;
}
/* Look ahead to see if it's a range when the last thing
was a character class. */
if (had_char_class && c == '-' && *p != ']')
FREE_AND_RETURN(stackb, "invalid regular expression; can't use character class as a start value of range");
if (ismbchar(c)) {
PATFETCH_MBC(c);
had_mbchar++;
}
had_char_class = 0;

if (c == '-' && ((p != p0 + 1 && *p != ']') ||
                         (p[0] == '-' && p[1] != ']') ||
                         range))
          re_warning("character class has `-' without escape");
        if (c == '[' && *p != ':')
          re_warning("character class has `[' without escape");

/* \ escapes characters when inside [...]. */
if (c == '\\') {
PATFETCH_RAW(c);
switch (c) {
case 'w':
for (c = 0; c < (1 << BYTEWIDTH); c++) {
if (SYNTAX(c) == Sword ||
(!current_mbctype && SYNTAX(c) == Sword2))
SET_LIST_BIT(c);
}
if (current_mbctype) {
set_list_bits(0x80, 0xffffffff, b);
}
had_char_class = 1;
last = -1;
continue;

case 'W':
for (c = 0; c < (1 << BYTEWIDTH); c++) {
if (SYNTAX(c) != Sword &&
((current_mbctype && !re_mbctab[c]) ||
(!current_mbctype && SYNTAX(c) != Sword2)))
SET_LIST_BIT(c);
}
had_char_class = 1;
last = -1;
continue;

case 's':
for (c = 0; c < 256; c++)
if (ISSPACE(c))
SET_LIST_BIT(c);
had_char_class = 1;
last = -1;
continue;

case 'S':
for (c = 0; c < 256; c++)
if (!ISSPACE(c))
SET_LIST_BIT(c);
if (current_mbctype)
set_list_bits(0x80, 0xffffffff, b);
had_char_class = 1;
last = -1;
continue;

case 'd':
for (c = '0'; c <= '9'; c++)
SET_LIST_BIT(c);
had_char_class = 1;
last = -1;
continue;

case 'D':
for (c = 0; c < 256; c++)
if (!ISDIGIT(c))
SET_LIST_BIT(c);
if (current_mbctype)
set_list_bits(0x80, 0xffffffff, b);
had_char_class = 1;
last = -1;
continue;

case 'x':
c = scan_hex(p, 2, &numlen);
if (numlen == 0) goto invalid_escape;
p += numlen;
had_num_literal = 1;
break;

case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
PATUNFETCH;
c = scan_oct(p, 3, &numlen);
p += numlen;
had_num_literal = 1;
break;

case 'M':
case 'C':
case 'c':
{
const char *pp;

--p;
c = read_special(p, pend, &pp);
if (c > 255) goto invalid_escape;
p = pp;
had_num_literal = 1;
}
break;

default:
c = read_backslash(c);
if (ismbchar(c)) {
PATFETCH_MBC(c);
had_mbchar++;
}
break;
}
}
        else if (c == '[' && *p == ':') { /* [:...:] */
/* Leave room for the null. */
char str[CHAR_CLASS_MAX_LENGTH + 1];

PATFETCH_RAW(c);
c1 = 0;

/* If pattern is `[[:'. */
if (p == pend)
FREE_AND_RETURN(stackb, "invalid regular expression; re can't end '[[:'");

for (;;) {
PATFETCH_RAW(c);
if (c == ':' || c == ']' || p == pend
|| c1 == CHAR_CLASS_MAX_LENGTH)
break;
str[c1++] = c;
}
str[c1] = '\0';

/* If isn't a word bracketed by `[:' and `:]':
undo the ending character, the letters, and
the leading `:' and `['. */
if (c == ':' && *p == ']') {
int ch;
char is_alnum = STREQ(str, "alnum");
char is_alpha = STREQ(str, "alpha");
char is_blank = STREQ(str, "blank");
char is_cntrl = STREQ(str, "cntrl");
char is_digit = STREQ(str, "digit");
char is_graph = STREQ(str, "graph");
char is_lower = STREQ(str, "lower");
char is_print = STREQ(str, "print");
char is_punct = STREQ(str, "punct");
char is_space = STREQ(str, "space");
char is_upper = STREQ(str, "upper");
char is_xdigit = STREQ(str, "xdigit");

if (!IS_CHAR_CLASS(str)){
snprintf(error_msg, ERROR_MSG_MAX_SIZE,
"invalid regular expression; [:%s:] is not a character class", str);
FREE_AND_RETURN(stackb, error_msg);
}

/* Throw away the ] at the end of the character class. */
PATFETCH(c);

if (p == pend)
FREE_AND_RETURN(stackb, "invalid regular expression; range doesn't have ending ']' after a character class");

for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
if ( (is_alnum && ISALNUM(ch))
|| (is_alpha && ISALPHA(ch))
|| (is_blank && ISBLANK(ch))
|| (is_cntrl && ISCNTRL(ch))
|| (is_digit && ISDIGIT(ch))
|| (is_graph && ISGRAPH(ch))
|| (is_lower && ISLOWER(ch))
|| (is_print && ISPRINT(ch))
|| (is_punct && ISPUNCT(ch))
|| (is_space && ISSPACE(ch))
|| (is_upper && ISUPPER(ch))
|| (is_xdigit && ISXDIGIT(ch)))
SET_LIST_BIT(ch);
}
had_char_class = 1;
            continue;
}
else {
c1 += 2;
while (c1--)
PATUNFETCH;
            re_warning("character class has `[' without escape");
            c = '[';
}
}

/* Get a range. */
if (range) {
if (last > c)
goto invalid_pattern;

range = 0;
if (had_mbchar == 0) {
if (TRANSLATE_P()) {
for (;last<=c;last++)
SET_LIST_BIT(translate[last]);
}
else {
for (;last<=c;last++)
SET_LIST_BIT(last);
}
}
else if (had_mbchar == 2) {
set_list_bits(last, c, b);
}
else {
/* restriction: range between sbc and mbc */
goto invalid_pattern;
}
}
else if (p[0] == '-' && p[1] != ']') {
last = c;
PATFETCH_RAW(c1);
range = 1;
goto range_retry;
}
else {
if (TRANSLATE_P() && c < 0x100) c = (unsigned char)translate[c];
if (had_mbchar == 0 && (!current_mbctype || !had_num_literal)) {
SET_LIST_BIT(c);
had_num_literal = 0;
}
else {
set_list_bits(c, c, b);
}
}
had_mbchar = 0;
      }

      /* Discard any character set/class bitmap bytes that are all
0 at the end of the map. Decrement the map-length byte too. */
      while ((int)b[-1] > 0 && b[b[-1] - 1] == 0)
b[-1]--;
      if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
memmove(&b[(unsigned char)b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*8);
      b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[(unsigned char)b[-1]])*8;
      had_num_literal = 0;
      break;

    case '(':
      {
int old_options = options;
int push_option = 0;
int casefold = 0;

PATFETCH(c);
if (c == '?') {
int negative = 0;

PATFETCH_RAW(c);
switch (c) {
case 'x': case 'm': case 'i': case '-':
for (;;) {
switch (c) {
case '-':
negative = 1;
break;

case ':':
case ')':
break;

case 'x':
if (negative)
options &= ~RE_OPTION_EXTENDED;
else
options |= RE_OPTION_EXTENDED;
break;

case 'm':
if (negative) {
if (options&RE_OPTION_MULTILINE) {
options &= ~RE_OPTION_MULTILINE;
}
}
else if (!(options&RE_OPTION_MULTILINE)) {
options |= RE_OPTION_MULTILINE;
}
push_option = 1;
break;

case 'i':
if (negative) {
if (options&RE_OPTION_IGNORECASE) {
options &= ~RE_OPTION_IGNORECASE;
}
}
else if (!(options&RE_OPTION_IGNORECASE)) {
options |= RE_OPTION_IGNORECASE;
}
casefold = 1;
break;

default:
FREE_AND_RETURN(stackb, "undefined (?...) inline option");
}
if (c == ')') {
c = '#'; /* read whole in-line options */
break;
}
if (c == ':') break;
PATFETCH_RAW(c);
}
break;

case '#':
for (;;) {
PATFETCH(c);
if (c == ')') break;
}
c = '#';
break;

case ':':
case '=':
case '!':
case '>':
break;

default:
FREE_AND_RETURN(stackb, "undefined (?...) sequence");
}
}
else {
PATUNFETCH;
c = '(';
}
if (c == '#') {
if (push_option) {
BUFPUSH(option_set);
BUFPUSH(options);
}
if (casefold) {
if (options & RE_OPTION_IGNORECASE)
BUFPUSH(casefold_on);
else
BUFPUSH(casefold_off);
}
break;
}
if (stackp+8 >= stacke) {
DOUBLE_STACK(int);
}

/* Laststart should point to the start_memory that we are about
to push (unless the pattern has RE_NREGS or more ('s). */
/* obsolete: now RE_NREGS is just a default register size. */
*stackp++ = b - bufp->buffer;
*stackp++ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
*stackp++ = begalt - bufp->buffer;
switch (c) {
case '(':
BUFPUSH(start_memory);
BUFPUSH(regnum);
*stackp++ = regnum++;
*stackp++ = b - bufp->buffer;
BUFPUSH(0);
/* too many ()'s to fit in a byte. (max 254) */
if (regnum >= RE_REG_MAX) goto too_big;
break;

case '=':
case '!':
case '>':
BUFPUSH(start_nowidth);
*stackp++ = b - bufp->buffer;
BUFPUSH(0); /* temporary value */
BUFPUSH(0);
if (c != '!') break;

BUFPUSH(on_failure_jump);
*stackp++ = b - bufp->buffer;
BUFPUSH(0); /* temporary value */
BUFPUSH(0);
break;

case ':':
BUFPUSH(start_paren);
pending_exact = 0;
default:
break;
}
if (push_option) {
BUFPUSH(option_set);
BUFPUSH(options);
}
if (casefold) {
if (options & RE_OPTION_IGNORECASE)
BUFPUSH(casefold_on);
else
BUFPUSH(casefold_off);
}
*stackp++ = c;
*stackp++ = old_options;
fixup_alt_jump = 0;
laststart = 0;
begalt = b;
      }
      break;

    case ')':
      if (stackp == stackb)
FREE_AND_RETURN(stackb, "unmatched )");

      pending_exact = 0;
      if (fixup_alt_jump) {
/* Push a dummy failure point at the end of the
alternative for a possible future
`finalize_jump' to pop. See comments at
`push_dummy_failure' in `re_match'. */
BUFPUSH(push_dummy_failure);

/* We allocated space for this jump when we assigned
to `fixup_alt_jump', in the `handle_alt' case below. */
store_jump(fixup_alt_jump, jump, b);
      }
      if (options != stackp[-1]) {
if ((options ^ stackp[-1]) & RE_OPTION_IGNORECASE) {
BUFPUSH((options&RE_OPTION_IGNORECASE)?casefold_off:casefold_on);
}
if ((options ^ stackp[-1]) != RE_OPTION_IGNORECASE) {
BUFPUSH(option_set);
BUFPUSH(stackp[-1]);
}
      }
      p0 = b;
      options = *--stackp;
      switch (c = *--stackp) {
      case '(':
{
char *loc = bufp->buffer + *--stackp;
*loc = regnum - stackp[-1];
BUFPUSH(stop_memory);
BUFPUSH(stackp[-1]);
BUFPUSH(regnum - stackp[-1]);
stackp--;
}
break;

      case '!':
BUFPUSH(pop_and_fail);
/* back patch */
STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
stackp--;
/* fall through */
      case '=':
BUFPUSH(stop_nowidth);
/* tell stack-pos place to start_nowidth */
STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
BUFPUSH(0); /* space to hold stack pos */
BUFPUSH(0);
stackp--;
break;

      case '>':
BUFPUSH(stop_backtrack);
/* tell stack-pos place to start_nowidth */
STORE_NUMBER(bufp->buffer+stackp[-1], b - bufp->buffer - stackp[-1] - 2);
BUFPUSH(0); /* space to hold stack pos */
BUFPUSH(0);
stackp--;
break;

      case ':':
BUFPUSH(stop_paren);
break;

      default:
break;
      }
      begalt = *--stackp + bufp->buffer;
      stackp--;
      fixup_alt_jump = *stackp ? *stackp + bufp->buffer - 1 : 0;
      laststart = *--stackp + bufp->buffer;
      if (c == '!' || c == '=') laststart = b;
      break;

    case '|':
      /* Insert before the previous alternative a jump which
jumps to this alternative if the former fails. */
      GET_BUFFER_SPACE(3);
      insert_jump(on_failure_jump, begalt, b + 6, b);
      pending_exact = 0;
      b += 3;
      /* The alternative before this one has a jump after it
which gets executed if it gets matched. Adjust that
jump so it will jump to this alternative's analogous
jump (put in below, which in turn will jump to the next
(if any) alternative's such jump, etc.). The last such
jump jumps to the correct final destination. A picture:
_____ _____
| | | |
| v | v
a | b | c

If we are at `b', then fixup_alt_jump right now points to a
three-byte space after `a'. We'll put in the jump, set
fixup_alt_jump to right after `b', and leave behind three
bytes which we'll fill in when we get to after `c'. */

      if (fixup_alt_jump)
store_jump(fixup_alt_jump, jump_past_alt, b);

      /* Mark and leave space for a jump after this alternative,
to be filled in later either by next alternative or
when know we're at the end of a series of alternatives. */
      fixup_alt_jump = b;
      GET_BUFFER_SPACE(3);
      b += 3;

      laststart = 0;
      begalt = b;
      break;

    case '{':
      /* If there is no previous pattern, this is an invalid pattern. */
      if (!laststart) {
snprintf(error_msg, ERROR_MSG_MAX_SIZE,
"invalid regular expression; there's no previous pattern, to which '{' would define cardinality at %ld",
(long)(p-pattern));
FREE_AND_RETURN(stackb, error_msg);
      }
      if( p == pend)
FREE_AND_RETURN(stackb, "invalid regular expression; '{' can't be last character" );

      beg_interval = p - 1;

      lower_bound = -1; /* So can see if are set. */
      upper_bound = -1;
      GET_UNSIGNED_NUMBER(lower_bound);
      if (c == ',') {
GET_UNSIGNED_NUMBER(upper_bound);
      }
      else
/* Interval such as `{1}' => match exactly once. */
upper_bound = lower_bound;

      if (lower_bound < 0 || c != '}')
goto unfetch_interval;

      if (lower_bound >= RE_DUP_MAX || upper_bound >= RE_DUP_MAX)
FREE_AND_RETURN(stackb, "too big quantifier in {,}");
      if (upper_bound < 0) upper_bound = RE_DUP_MAX;
      if (lower_bound > upper_bound)
FREE_AND_RETURN(stackb, "can't do {n,m} with n > m");

      beg_interval = 0;
      pending_exact = 0;

      greedy = 1;
      if (p != pend) {
PATFETCH(c);
if (c == '?') greedy = 0;
else PATUNFETCH;
      }

      if (lower_bound == 0) {
zero_times_ok = 1;
if (upper_bound == RE_DUP_MAX) {
many_times_ok = 1;
goto repeat;
}
if (upper_bound == 1) {
many_times_ok = 0;
goto repeat;
}
      }
      if (lower_bound == 1) {
if (upper_bound == 1) {
/* No need to repeat */
break;
}
if (upper_bound == RE_DUP_MAX) {
many_times_ok = 1;
zero_times_ok = 0;
goto repeat;
}
      }

      /* If upper_bound is zero, don't want to succeed at all;
jump from laststart to b + 3, which will be the end of
the buffer after this jump is inserted. */

      if (upper_bound == 0) {
GET_BUFFER_SPACE(3);
insert_jump(jump, laststart, b + 3, b);
b += 3;
break;
      }

      /* If lower_bound == upper_bound, repeat count can be removed */
      if (lower_bound == upper_bound) {
int mcnt;
int skip_stop_paren = 0;

if (b[-1] == stop_paren) {
skip_stop_paren = 1;
b--;
}

if (*laststart == exactn && laststart[1]+2 == b - laststart
&& laststart[1]*lower_bound < 256) {
mcnt = laststart[1];
GET_BUFFER_SPACE((lower_bound-1)*mcnt);
laststart[1] = lower_bound*mcnt;
while (--lower_bound) {
memcpy(b, laststart+2, mcnt);
b += mcnt;
}
if (skip_stop_paren) BUFPUSH(stop_paren);
break;
}

if (lower_bound < 5 && b - laststart < 10) {
/* 5 and 10 are the magic numbers */

mcnt = b - laststart;
GET_BUFFER_SPACE((lower_bound-1)*mcnt);
while (--lower_bound) {
memcpy(b, laststart, mcnt);
b += mcnt;
}
if (skip_stop_paren) BUFPUSH(stop_paren);
break;
}
if (skip_stop_paren) b++; /* push back stop_paren */
      }

      /* Otherwise, we have a nontrivial interval. When
we're all done, the pattern will look like:
set_number_at <jump count> <upper bound>
set_number_at <succeed_n count> <lower bound>
succeed_n <after jump addr> <succed_n count>
<body of loop>
jump_n <succeed_n addr> <jump count>
(The upper bound and `jump_n' are omitted if
`upper_bound' is 1, though.) */
      { /* If the upper bound is > 1, we need to insert
more at the end of the loop. */
unsigned nbytes = upper_bound == 1 ? 10 : 20;

if (lower_bound == 0 && greedy == 0) {
GET_BUFFER_SPACE(3);
insert_jump(try_next, laststart, b + 3, b);
b += 3;
}

GET_BUFFER_SPACE(nbytes);
/* Initialize lower bound of the `succeed_n', even
though it will be set during matching by its
attendant `set_number_at' (inserted next),
because `re_compile_fastmap' needs to know.
Jump to the `jump_n' we might insert below. */
insert_jump_n(succeed_n, laststart, b + (nbytes/2),
b, lower_bound);
b += 5; /* Just increment for the succeed_n here. */

/* Code to initialize the lower bound. Insert
before the `succeed_n'. The `5' is the last two
bytes of this `set_number_at', plus 3 bytes of
the following `succeed_n'. */
insert_op_2(set_number_at, laststart, b, 5, lower_bound);
b += 5;

if (upper_bound > 1) {
/* More than one repetition is allowed, so
append a backward jump to the `succeed_n'
that starts this interval.

When we've reached this during matching,
we'll have matched the interval once, so
jump back only `upper_bound - 1' times. */
GET_BUFFER_SPACE(5);
store_jump_n(b, greedy?jump_n:finalize_push_n, laststart + 5,
upper_bound - 1);
b += 5;

/* The location we want to set is the second
parameter of the `jump_n'; that is `b-2' as
an absolute address. `laststart' will be
the `set_number_at' we're about to insert;
`laststart+3' the number to set, the source
for the relative address. But we are
inserting into the middle of the pattern --
so everything is getting moved up by 5.
Conclusion: (b - 2) - (laststart + 3) + 5,
i.e., b - laststart.

We insert this at the beginning of the loop
so that if we fail during matching, we'll
reinitialize the bounds. */
insert_op_2(set_number_at, laststart, b, b - laststart,
upper_bound - 1);
b += 5;
}
      }
      break;

    unfetch_interval:
      /* If an invalid interval, match the characters as literals. */
      re_warning("regexp has invalid interval");
      p = beg_interval;
      beg_interval = 0;

      /* normal_char and normal_backslash need `c'. */
      PATFETCH(c);
      goto normal_char;

    case '\\':
      if (p == pend)
FREE_AND_RETURN(stackb, "invalid regular expression; '\\' can't be last character");
      /* Do not translate the character after the \, so that we can
distinguish, e.g., \B from \b, even if we normally would
translate, e.g., B to b. */
      PATFETCH_RAW(c);
      switch (c) {
      case 's':
      case 'S':
      case 'd':
      case 'D':
while (b - bufp->buffer + 9 + (1 << BYTEWIDTH) / BYTEWIDTH
> bufp->allocated)
EXTEND_BUFFER;

laststart = b;
if (c == 's' || c == 'd') {
BUFPUSH(charset);
}
else {
BUFPUSH(charset_not);
}

BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);
if (c == 's' || c == 'S') {
SET_LIST_BIT(' ');
SET_LIST_BIT('\t');
SET_LIST_BIT('\n');
SET_LIST_BIT('\r');
SET_LIST_BIT('\f');
SET_LIST_BIT('\v');
}
else {
char cc;

for (cc = '0'; cc <= '9'; cc++) {
SET_LIST_BIT(cc);
}
}

while ((int)b[-1] > 0 && b[b[-1] - 1] == 0)
b[-1]--;
if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
memmove(&b[(unsigned char)b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*8);
b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[(unsigned char)b[-1]])*8;
break;

      case 'w':
laststart = b;
BUFPUSH(wordchar);
break;

      case 'W':
laststart = b;
BUFPUSH(notwordchar);
break;

#ifndef RUBY
      case '<':
BUFPUSH(wordbeg);
break;

      case '>':
BUFPUSH(wordend);
break;
#endif

      case 'b':
BUFPUSH(wordbound);
break;

      case 'B':
BUFPUSH(notwordbound);
break;

      case 'A':
BUFPUSH(begbuf);
break;

      case 'Z':
if ((bufp->options & RE_OPTION_SINGLELINE) == 0) {
BUFPUSH(endbuf2);
break;
}
/* fall through */
      case 'z':
BUFPUSH(endbuf);
break;

      case 'G':
BUFPUSH(begpos);
break;

/* hex */
      case 'x':
had_mbchar = 0;
c = scan_hex(p, 2, &numlen);
if (numlen == 0) goto invalid_escape;
p += numlen;
had_num_literal = 1;
goto numeric_char;

/* octal */
      case '0':
had_mbchar = 0;
c = scan_oct(p, 2, &numlen);
p += numlen;
had_num_literal = 1;
goto numeric_char;

/* back-ref or octal */
      case '1': case '2': case '3':
      case '4': case '5': case '6':
      case '7': case '8': case '9':
PATUNFETCH;
p0 = p;

had_mbchar = 0;
c1 = 0;
GET_UNSIGNED_NUMBER(c1);
if (!ISDIGIT(c)) PATUNFETCH;

if (9 < c1 && c1 >= regnum) {
/* need to get octal */
c = scan_oct(p0, 3, &numlen) & 0xff;
p = p0 + numlen;
c1 = 0;
had_num_literal = 1;
goto numeric_char;
}

laststart = b;
BUFPUSH(duplicate);
BUFPUSH(c1);
break;

      case 'M':
      case 'C':
      case 'c':
p0 = --p;
c = read_special(p, pend, &p0);
if (c > 255) goto invalid_escape;
p = p0;
had_num_literal = 1;
goto numeric_char;

      default:
c = read_backslash(c);
goto normal_char;
      }
      break;

    case '#':
      if (options & RE_OPTION_EXTENDED) {
while (p != pend) {
PATFETCH(c);
if (c == '\n') break;
}
break;
      }
      goto normal_char;

    case ' ':
    case '\t':
    case '\f':
    case '\r':
    case '\n':
      if (options & RE_OPTION_EXTENDED)
break;

    default:
      if (c == ']')
        re_warning("regexp has `]' without escape");
      else if (c == '}')
        re_warning("regexp has `}' without escape");
    normal_char: /* Expects the character in `c'. */
      had_mbchar = 0;
      if (ismbchar(c)) {
had_mbchar = 1;
c1 = p - pattern;
      }
    numeric_char:
      nextp = p + mbclen(c) - 1;
      if (!pending_exact || pending_exact + *pending_exact + 1 != b
|| *pending_exact >= (c1 ? 0176 : 0177)
|| (nextp < pend &&
( *nextp == '+' || *nextp == '?'
|| *nextp == '*' || *nextp == '^'
|| *nextp == '{'))) {
laststart = b;
BUFPUSH(exactn);
pending_exact = b;
BUFPUSH(0);
      }
      if (had_num_literal || c == 0xff) {
BUFPUSH(0xff);
(*pending_exact)++;
had_num_literal = 0;
      }
      BUFPUSH(c);
      (*pending_exact)++;
      if (had_mbchar) {
int len = mbclen(c) - 1;
while (len--) {
PATFETCH_RAW(c);
BUFPUSH(c);
(*pending_exact)++;
}
      }
    }
  }

  if (fixup_alt_jump)
    store_jump(fixup_alt_jump, jump, b);

  if (stackp != stackb)
    FREE_AND_RETURN(stackb, "unmatched (");

  /* set optimize flags */
  laststart = bufp->buffer;
  if (laststart != b) {
    if (*laststart == dummy_failure_jump) laststart += 3;
    else if (*laststart == try_next) laststart += 3;
    if (*laststart == anychar_repeat) {
      bufp->options |= RE_OPTIMIZE_ANCHOR;
    }
  }

  bufp->used = b - bufp->buffer;
  bufp->re_nsub = regnum;
  laststart = bufp->buffer;
  if (laststart != b) {
    if (*laststart == start_memory) laststart += 3;
    if (*laststart == exactn) {
      bufp->options |= RE_OPTIMIZE_EXACTN;
      bufp->must = laststart+1;
    }
  }
  if (!bufp->must) {
    bufp->must = calculate_must_string(bufp->buffer, b);
  }
  if (current_mbctype == MBCTYPE_SJIS) bufp->options |= RE_OPTIMIZE_NO_BM;
  else if (bufp->must) {
    int i;
    int len = (unsigned char)bufp->must[0];

    for (i=1; i<len; i++) {
      if ((unsigned char)bufp->must[i] == 0xff ||
(current_mbctype && ismbchar(bufp->must[i]))) {
bufp->options |= RE_OPTIMIZE_NO_BM;
break;
      }
    }
    if (!(bufp->options & RE_OPTIMIZE_NO_BM)) {
      bufp->must_skip = (int *) xmalloc((1 << BYTEWIDTH)*sizeof(int));
      bm_init_skip(bufp->must_skip, (unsigned char*)bufp->must+1,
(unsigned char)bufp->must[0],
(unsigned char*)(MAY_TRANSLATE()?translate:0));
    }
  }

  bufp->regstart = TMALLOC(regnum, unsigned char*);
  bufp->regend = TMALLOC(regnum, unsigned char*);
  bufp->old_regstart = TMALLOC(regnum, unsigned char*);
  bufp->old_regend = TMALLOC(regnum, unsigned char*);
  bufp->reg_info = TMALLOC(regnum, register_info_type);
  bufp->best_regstart = TMALLOC(regnum, unsigned char*);
  bufp->best_regend = TMALLOC(regnum, unsigned char*);
  FREE_AND_RETURN(stackb, 0);

 invalid_pattern:
  FREE_AND_RETURN(stackb, "invalid regular expression");

 end_of_pattern:
  FREE_AND_RETURN(stackb, "premature end of regular expression");

 too_big:
  FREE_AND_RETURN(stackb, "regular expression too big");

 memory_exhausted:
  FREE_AND_RETURN(stackb, "memory exhausted");

 nested_meta:
  FREE_AND_RETURN(stackb, "nested *?+ in regexp");

 invalid_escape:
  FREE_AND_RETURN(stackb, "Invalid escape character syntax");
}

void
re_free_pattern(bufp)
     struct re_pattern_buffer *bufp;
{
  xfree(bufp->buffer);
  xfree(bufp->fastmap);
  if (bufp->must_skip) xfree(bufp->must_skip);

  xfree(bufp->regstart);
  xfree(bufp->regend);
  xfree(bufp->old_regstart);
  xfree(bufp->old_regend);
  xfree(bufp->best_regstart);
  xfree(bufp->best_regend);
  xfree(bufp->reg_info);
  xfree(bufp);
}

/* Store a jump of the form <OPCODE> <relative address>.
Store in the location FROM a jump operation to jump to relative
address FROM - TO. OPCODE is the opcode to store. */

static void
store_jump(from, opcode, to)
     char *from, *to;
     int opcode;
{
  from[0] = (char)opcode;
  STORE_NUMBER(from + 1, to - (from + 3));
}


/* Open up space before char FROM, and insert there a jump to TO.
CURRENT_END gives the end of the storage not in use, so we know
how much data to copy up. OP is the opcode of the jump to insert.

If you call this function, you must zero out pending_exact. */

static void
insert_jump(op, from, to, current_end)
     int op;
     char *from, *to, *current_end;
{
  register char *pfrom = current_end; /* Copy from here... */
  register char *pto = current_end + 3; /* ...to here. */

  while (pfrom != from)
    *--pto = *--pfrom;
  store_jump(from, op, to);
}


/* Store a jump of the form <opcode> <relative address> <n> .

Store in the location FROM a jump operation to jump to relative
address FROM - TO. OPCODE is the opcode to store, N is a number the
jump uses, say, to decide how many times to jump.

If you call this function, you must zero out pending_exact. */

static void
store_jump_n(from, opcode, to, n)
     char *from, *to;
     int opcode;
     unsigned n;
{
  from[0] = (char)opcode;
  STORE_NUMBER(from + 1, to - (from + 3));
  STORE_NUMBER(from + 3, n);
}


/* Similar to insert_jump, but handles a jump which needs an extra
number to handle minimum and maximum cases. Open up space at
location FROM, and insert there a jump to TO. CURRENT_END gives the
end of the storage in use, so we know how much data to copy up. OP is
the opcode of the jump to insert.

If you call this function, you must zero out pending_exact. */

static void
insert_jump_n(op, from, to, current_end, n)
     int op;
     char *from, *to, *current_end;
     unsigned n;
{
  register char *pfrom = current_end; /* Copy from here... */
  register char *pto = current_end + 5; /* ...to here. */

  while (pfrom != from)
    *--pto = *--pfrom;
  store_jump_n(from, op, to, n);
}


#if 0
/* Open up space at location THERE, and insert operation OP.
CURRENT_END gives the end of the storage in use, so
we know how much data to copy up.

If you call this function, you must zero out pending_exact. */

static void
insert_op(op, there, current_end)
     int op;
     char *there, *current_end;
{
  register char *pfrom = current_end; /* Copy from here... */
  register char *pto = current_end + 1; /* ...to here. */

  while (pfrom != there)
    *--pto = *--pfrom;

  there[0] = (char)op;
}
#endif


/* Open up space at location THERE, and insert operation OP followed by
NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
we know how much data to copy up.

If you call this function, you must zero out pending_exact. */

static void
insert_op_2(op, there, current_end, num_1, num_2)
     int op;
     char *there, *current_end;
     int num_1, num_2;
{
  register char *pfrom = current_end; /* Copy from here... */
  register char *pto = current_end + 5; /* ...to here. */

  while (pfrom != there)
    *--pto = *--pfrom;

  there[0] = (char)op;
  STORE_NUMBER(there + 1, num_1);
  STORE_NUMBER(there + 3, num_2);
}

#define trans_eq(c1, c2, translate) (translate?(translate[c1]==translate[c2]):((c1)==(c2)))
static int
slow_match(little, lend, big, bend, translate)
     const unsigned char *little, *lend;
     const unsigned char *big, *bend;
     const unsigned char *translate;
{
  int c;

  while (little < lend && big < bend) {
    c = *little++;
    if (c == 0xff)
      c = *little++;
    if (!trans_eq(*big++, c, translate)) break;
  }
  if (little == lend) return 1;
  return 0;
}

static int
slow_search(little, llen, big, blen, translate)
     const unsigned char *little;
     int llen;
     const unsigned char *big;
     int blen;
     const char *translate;
{
  const unsigned char *bsave = big;
  const unsigned char *bend = big + blen;
  register int c;
  int fescape = 0;

  c = *little;
  if (c == 0xff) {
    c = little[1];
    fescape = 1;
  }
  else if (translate && !ismbchar(c)) {
    c = translate[c];
  }

  while (big < bend) {
    /* look for first character */
    if (fescape) {
      while (big < bend) {
if (*big == c) break;
big++;
      }
    }
    else if (translate && !ismbchar(c)) {
      while (big < bend) {
if (ismbchar(*big)) big+=mbclen(*big)-1;
else if (translate[*big] == c) break;
big++;
      }
    }
    else {
      while (big < bend) {
if (*big == c) break;
if (ismbchar(*big)) big+=mbclen(*big)-1;
big++;
      }
    }

    if (slow_match(little, little+llen, big, bend, (unsigned char *)translate))
      return big - bsave;

    big+=mbclen(*big);
  }
  return -1;
}

static void
bm_init_skip(skip, pat, m, translate)
     int *skip;
     unsigned char *pat;
     int m;
     const unsigned char *translate;
{
  int j, c;

  for (c=0; c<256; c++) {
    skip[c] = m;
  }
  if (translate) {
    for (j=0; j<m-1; j++) {
      skip[translate[pat[j]]] = m-1-j;
    }
  }
  else {
    for (j=0; j<m-1; j++) {
      skip[pat[j]] = m-1-j;
    }
  }
}

static int
bm_search(little, llen, big, blen, skip, translate)
     const unsigned char *little;
     int llen;
     const unsigned char *big;
     int blen;
     int *skip;
     const unsigned char *translate;
{
  int i, j, k;

  i = llen-1;
  if (translate) {
    while (i < blen) {
      k = i;
      j = llen-1;
      while (j >= 0 && translate[big[k]] == translate[little[j]]) {
k--;
j--;
      }
      if (j < 0) return k+1;

      i += skip[translate[big[i]]];
    }
    return -1;
  }
  while (i < blen) {
    k = i;
    j = llen-1;
    while (j >= 0 && big[k] == little[j]) {
      k--;
      j--;
    }
    if (j < 0) return k+1;

    i += skip[big[i]];
  }
  return -1;
}

/* Given a pattern, compute a fastmap from it. The fastmap records
which of the (1 << BYTEWIDTH) possible characters can start a string
that matches the pattern. This fastmap is used by re_search to skip
quickly over totally implausible text.

The caller must supply the address of a (1 << BYTEWIDTH)-byte data
area as bufp->fastmap.
The other components of bufp describe the pattern to be used. */
static int
re_compile_fastmap0(bufp)
     struct re_pattern_buffer *bufp;
{
  unsigned char *pattern = (unsigned char*)bufp->buffer;
  int size = bufp->used;
  register char *fastmap = bufp->fastmap;
  register unsigned char *p = pattern;
  register unsigned char *pend = pattern + size;
  register int j, k;
  unsigned is_a_succeed_n;


  unsigned char *stacka[NFAILURES];
  unsigned char **stackb = stacka;
  unsigned char **stackp = stackb;
  unsigned char **stacke = stackb + NFAILURES;
  int options = bufp->options;

  memset(fastmap, 0, (1 << BYTEWIDTH));
  bufp->fastmap_accurate = 1;
  bufp->can_be_null = 0;

  while (p) {
    is_a_succeed_n = 0;
    if (p == pend) {
      bufp->can_be_null = 1;
      break;
    }
#ifdef SWITCH_ENUM_BUG
    switch ((int)((enum regexpcode)*p++))
#else
    switch ((enum regexpcode)*p++)
#endif
      {
      case exactn:
if (p[1] == 0xff) {
if (TRANSLATE_P())
fastmap[translate[p[2]]] = 2;
else
fastmap[p[2]] = 2;
bufp->options |= RE_OPTIMIZE_BMATCH;
}
else if (TRANSLATE_P())
fastmap[translate[p[1]]] = 1;
else
fastmap[p[1]] = 1;
break;

      case begline:
      case begbuf:
      case begpos:
      case endbuf:
      case endbuf2:
      case wordbound:
      case notwordbound:
      case wordbeg:
      case wordend:
      case pop_and_fail:
      case push_dummy_failure:
      case start_paren:
      case stop_paren:
continue;

      case casefold_on:
bufp->options |= RE_MAY_IGNORECASE;
options |= RE_OPTION_IGNORECASE;
continue;

      case casefold_off:
options &= ~RE_OPTION_IGNORECASE;
continue;

      case option_set:
options = *p++;
continue;

      case endline:
if (TRANSLATE_P())
fastmap[translate['\n']] = 1;
else
fastmap['\n'] = 1;
if ((options & RE_OPTION_SINGLELINE) == 0 && bufp->can_be_null == 0)
bufp->can_be_null = 2;
break;

      case jump_n:
      case finalize_jump:
      case maybe_finalize_jump:
      case jump:
      case jump_past_alt:
      case dummy_failure_jump:
      case finalize_push:
      case finalize_push_n:
EXTRACT_NUMBER_AND_INCR(j, p);
p += j;
if (j > 0)
continue;
/* Jump backward reached implies we just went through
the body of a loop and matched nothing.
Opcode jumped to should be an on_failure_jump.
Just treat it like an ordinary jump.
For a * loop, it has pushed its failure point already;
If so, discard that as redundant. */

if ((enum regexpcode)*p != on_failure_jump
&& (enum regexpcode)*p != try_next
&& (enum regexpcode)*p != succeed_n)
continue;
p++;
EXTRACT_NUMBER_AND_INCR(j, p);
p += j;
if (stackp != stackb && *stackp == p)
stackp--; /* pop */
continue;

      case try_next:
      case start_nowidth:
      case stop_nowidth:
      case stop_backtrack:
p += 2;
continue;

      case succeed_n:
is_a_succeed_n = 1;
/* Get to the number of times to succeed. */
EXTRACT_NUMBER(k, p + 2);
/* Increment p past the n for when k != 0. */
if (k != 0) {
p += 4;
continue;
}
/* fall through */

      case on_failure_jump:
      EXTRACT_NUMBER_AND_INCR(j, p);
      if (p + j < pend) {
if (stackp == stacke) {
EXPAND_FAIL_STACK();
}
*++stackp = p + j; /* push */
      }
      else {
bufp->can_be_null = 1;
      }
      if (is_a_succeed_n)
EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
      continue;

      case set_number_at:
p += 4;
continue;

      case start_memory:
      case stop_memory:
p += 2;
continue;

      case duplicate:
bufp->can_be_null = 1;
if (*p >= bufp->re_nsub) break;
fastmap['\n'] = 1;
      case anychar_repeat:
      case anychar:
for (j = 0; j < (1 << BYTEWIDTH); j++) {
if (j != '\n' || (options & RE_OPTION_MULTILINE))
fastmap[j] = 1;
}
if (bufp->can_be_null) {
FREE_AND_RETURN(stackb, 0);
}
/* Don't return; check the alternative paths
so we can set can_be_null if appropriate. */
if ((enum regexpcode)p[-1] == anychar_repeat) {
continue;
}
break;

      case wordchar:
for (j = 0; j < 0x80; j++) {
if (SYNTAX(j) == Sword)
fastmap[j] = 1;
}
switch (current_mbctype) {
case MBCTYPE_ASCII:
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
if (SYNTAX(j) == Sword2)
fastmap[j] = 1;
}
break;
case MBCTYPE_EUC:
case MBCTYPE_SJIS:
case MBCTYPE_UTF8:
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
if (re_mbctab[j])
fastmap[j] = 1;
}
break;
}
break;

      case notwordchar:
for (j = 0; j < 0x80; j++)
if (SYNTAX(j) != Sword)
fastmap[j] = 1;
switch (current_mbctype) {
case MBCTYPE_ASCII:
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
if (SYNTAX(j) != Sword2)
fastmap[j] = 1;
}
break;
case MBCTYPE_EUC:
case MBCTYPE_SJIS:
case MBCTYPE_UTF8:
for (j = 0x80; j < (1 << BYTEWIDTH); j++) {
if (!re_mbctab[j])
fastmap[j] = 1;
}
break;
}
break;

      case charset:
/* NOTE: Charset for single-byte chars never contain
multi-byte char. See set_list_bits(). */
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) {
int tmp = TRANSLATE_P()?translate[j]:j;
fastmap[tmp] = 1;
}
{
unsigned short size;
unsigned long c, beg, end;

p += p[-1] + 2;
size = EXTRACT_UNSIGNED(&p[-2]);
for (j = 0; j < (int)size; j++) {
c = EXTRACT_MBC(&p[j*8]);
beg = WC2MBC1ST(c);
c = EXTRACT_MBC(&p[j*8+4]);
end = WC2MBC1ST(c);
/* set bits for 1st bytes of multi-byte chars. */
while (beg <= end) {
/* NOTE: Charset for multi-byte chars might contain
single-byte chars. We must reject them. */
if (c < 0x100) {
fastmap[beg] = 2;
bufp->options |= RE_OPTIMIZE_BMATCH;
}
else if (ismbchar(beg))
fastmap[beg] = 1;
beg++;
}
}
}
break;

      case charset_not:
/* S: set of all single-byte chars.
M: set of all first bytes that can start multi-byte chars.
s: any set of single-byte chars.
m: any set of first bytes that can start multi-byte chars.

We assume S+M = U.
___ _ _
s+m = (S*s+M*m). */
/* Chars beyond end of map must be allowed */
/* NOTE: Charset_not for single-byte chars might contain
multi-byte chars. See set_list_bits(). */
for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
if (!ismbchar(j))
fastmap[j] = 1;

for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) {
if (!ismbchar(j))
fastmap[j] = 1;
}
{
unsigned short size;
unsigned long c, beg;
int num_literal = 0;

p += p[-1] + 2;
size = EXTRACT_UNSIGNED(&p[-2]);
if (size == 0) {
for (j = 0x80; j < (1 << BYTEWIDTH); j++)
if (ismbchar(j))
fastmap[j] = 1;
break;
}
for (j = 0,c = 0;j < (int)size; j++) {
unsigned int cc = EXTRACT_MBC(&p[j*8]);
beg = WC2MBC1ST(cc);
while (c <= beg) {
if (ismbchar(c))
fastmap[c] = 1;
c++;
}

cc = EXTRACT_MBC(&p[j*8+4]);
if (cc < 0xff) {
num_literal = 1;
while (c <= cc) {
if (ismbchar(c))
fastmap[c] = 1;
c++;
}
}
c = WC2MBC1ST(cc);
}

for (j = c; j < (1 << BYTEWIDTH); j++) {
if (num_literal)
fastmap[j] = 1;
if (ismbchar(j))
fastmap[j] = 1;
}
}
break;

      case unused: /* pacify gcc -Wall */
break;
      }

    /* Get here means we have successfully found the possible starting
characters of one path of the pattern. We need not follow this
path any farther. Instead, look at the next alternative
remembered in the stack. */
    if (stackp != stackb)
      p = *stackp--; /* pop */
    else
      break;
  }
  FREE_AND_RETURN(stackb, 0);
 memory_exhausted:
  FREE_AND_RETURN(stackb, -2);
}

void
re_compile_fastmap(bufp)
     struct re_pattern_buffer *bufp;
{
  (void)re_compile_fastmap0(bufp);
}

/* adjust startpos value to the position between characters. */
int
re_mbc_startpos(string, size, startpos, range)
     const char *string;
     int size, startpos, range;
{
  int i = mbc_startpos(string, startpos);

  if (i < startpos) {
    if (range > 0) {
      startpos = i + mbclen(string[i]);
    }
    else {
      int len = mbclen(string[i]);
      if (i + len <= startpos)
startpos = i + len;
      else
startpos = i;
    }
  }
  return startpos;
}

int
re_adjust_startpos(bufp, string, size, startpos, range)
     struct re_pattern_buffer *bufp;
     const char *string;
     int size, startpos, range;
{
  /* Update the fastmap now if not correct already. */
  if (!bufp->fastmap_accurate) {
    int ret = re_compile_fastmap0(bufp);
    if (ret) return ret;
  }

  /* Adjust startpos for mbc string */
  if (current_mbctype && startpos>0 && !(bufp->options&RE_OPTIMIZE_BMATCH)) {
    startpos = re_mbc_startpos(string, size, startpos, range);
  }
  return startpos;
}


static int re_match_exec _((struct re_pattern_buffer *, const char *, int, int, int,
struct re_registers *));

/* Using the compiled pattern in BUFP->buffer, first tries to match
STRING, starting first at index STARTPOS, then at STARTPOS + 1, and
so on. RANGE is the number of places to try before giving up. If
RANGE is negative, it searches backwards, i.e., the starting
positions tried are STARTPOS, STARTPOS - 1, etc. STRING is of SIZE.
In REGS, return the indices of STRING that matched the entire
BUFP->buffer and its contained subexpressions.

The value returned is the position in the strings at which the match
was found, or -1 if no match was found, or -2 if error (such as
failure stack overflow). */

int
re_search(bufp, string, size, startpos, range, regs)
     struct re_pattern_buffer *bufp;
     const char *string;
     int size, startpos, range;
     struct re_registers *regs;
{
  register char *fastmap = bufp->fastmap;
  int val, anchor = 0, initpos = startpos;

  /* Check for out-of-range starting position. */
  if (startpos < 0 || startpos > size)
    return -1;
  if (!string) {
    if (size == 0) string = "";
    else return -1;
  }

  /* Update the fastmap now if not correct already. */
  if (fastmap && !bufp->fastmap_accurate) {
    int ret = re_compile_fastmap0(bufp);
    if (ret) return ret;
  }


  /* If the search isn't to be a backwards one, don't waste time in a
search for a pattern that must be anchored. */
  if (bufp->used > 0) {
    switch ((enum regexpcode)bufp->buffer[0]) {
    case begbuf:
    begbuf_match:
      if (range > 0) {
if (startpos > 0) return -1;
else {
val = re_match(bufp, string, size, 0, regs);
if (val >= 0) return 0;
return val;
}
      }
      break;

    case begline:
      anchor = 1;
      break;

    case begpos:
      val = re_match(bufp, string, size, startpos, regs);
      if (val >= 0) return startpos;
      return val;

    default:
      break;
    }
  }
  if (bufp->options & RE_OPTIMIZE_ANCHOR) {
    if (bufp->options&RE_OPTION_MULTILINE && range > 0) {
      goto begbuf_match;
    }
    anchor = 1;
  }

  if (bufp->must) {
    int len = ((unsigned char*)bufp->must)[0];
    int pos, pbeg, pend;

    pbeg = startpos;
    pend = startpos + range;
    if (pbeg > pend) { /* swap pbeg,pend */
      pos = pend; pend = pbeg; pbeg = pos;
    }
    pend = size;
    if (bufp->options & RE_OPTIMIZE_NO_BM) {
      pos = slow_search((unsigned char *)(bufp->must+1), len,
(unsigned char*)(string+pbeg), pend-pbeg,
(char *)(MAY_TRANSLATE()?translate:0));
    }
    else {
      pos = bm_search((unsigned char *)(bufp->must+1), len,
(unsigned char *)(string+pbeg), pend-pbeg,
bufp->must_skip,
MAY_TRANSLATE()?translate:0);
    }
    if (pos == -1) return -1;
    if (range > 0 && (bufp->options & RE_OPTIMIZE_EXACTN)) {
      startpos += pos;
      range -= pos;
      if (range < 0) return -1;
    }
  }

  for (;;) {
    /* If a fastmap is supplied, skip quickly over characters that
cannot possibly be the start of a match. Note, however, that
if the pattern can possibly match the null string, we must
test it at each starting point so that we take the first null
string we get. */

    if (fastmap && startpos < size
&& bufp->can_be_null != 1 && !(anchor && startpos == 0)) {
      if (range > 0) { /* Searching forwards. */
register unsigned char *p, c;
int irange = range;

p = (unsigned char*)string+startpos;

while (range > 0) {
c = *p++;
if (ismbchar(c)) {
int len;

if (fastmap[c])
break;
len = mbclen(c) - 1;
while (len--) {
c = *p++;
range--;
if (fastmap[c] == 2)
goto startpos_adjust;
}
}
else {
if (fastmap[MAY_TRANSLATE() ? translate[c] : c])
break;
}
range--;
}
      startpos_adjust:
startpos += irange - range;
      }
      else { /* Searching backwards. */
register unsigned char c;

c = string[startpos];
c &= 0xff;
if (MAY_TRANSLATE() ? !fastmap[translate[c]] : !fastmap[c])
goto advance;
      }
    }

    if (startpos > size) return -1;
    if ((anchor || !bufp->can_be_null) && range > 0 && size > 0 && startpos == size)
      return -1;
    val = re_match_exec(bufp, string, size, startpos, initpos, regs);
    if (val >= 0) return startpos;
    if (val == -2) return -2;

#ifndef NO_ALLOCA
#ifdef C_ALLOCA
    alloca(0);
#endif /* C_ALLOCA */
#endif /* NO_ALLOCA */

    if (range > 0) {
      if (anchor && startpos < size &&
(startpos < 1 || string[startpos-1] != '\n')) {
while (range > 0 && string[startpos] != '\n') {
range--;
startpos++;
}
      }
    }

  advance:
    if (!range)
      break;
    else if (range > 0) {
      const char *d = string + startpos;

      if (ismbchar(*d)) {
int len = mbclen(*d) - 1;
range-=len, startpos+=len;
if (!range)
break;
      }
      range--, startpos++;
    }
    else {
      range++, startpos--;
      {
const char *s, *d, *p;

s = string; d = string + startpos;
for (p = d; p-- > s && ismbchar(*p); )
/* --p >= s would not work on 80[12]?86.
(when the offset of s equals 0 other than huge model.) */
;
if (!((d - p) & 1)) {
if (!range)
break;
range++, startpos--;
}
      }
    }
  }
  return -1;
}




/* The following are used for re_match, defined below: */

/* Accessing macros used in re_match: */

#define IS_ACTIVE(R) ((R).bits.is_active)
#define MATCHED_SOMETHING(R) ((R).bits.matched_something)


/* Macros used by re_match: */

/* I.e., regstart, regend, and reg_info. */
#define NUM_REG_ITEMS 3

/* I.e., ptr and count. */
#define NUM_COUNT_ITEMS 2

/* Individual items aside from the registers. */
#define NUM_NONREG_ITEMS 4

/* We push at most this many things on the stack whenever we
fail. The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are
arguments to the PUSH_FAILURE_POINT macro. */
#define MAX_NUM_FAILURE_ITEMS (num_regs * NUM_REG_ITEMS + NUM_NONREG_ITEMS)

/* We push this many things on the stack whenever we fail. */
#define NUM_FAILURE_ITEMS (last_used_reg * NUM_REG_ITEMS + NUM_NONREG_ITEMS + 1)

/* This pushes counter information for succeed_n and jump_n */
#define PUSH_FAILURE_COUNT(ptr) \
do { \
int c; \
EXTRACT_NUMBER(c, ptr); \
ENSURE_FAIL_STACK(NUM_COUNT_ITEMS); \
*stackp++ = (unsigned char*)(long)c; \
*stackp++ = (ptr); \
num_failure_counts++; \
} while (0)

/* This pushes most of the information about the current state we will want
if we ever fail back to it. */

#define PUSH_FAILURE_POINT(pattern_place, string_place) \
do { \
long last_used_reg, this_reg; \
\
/* Find out how many registers are active or have been matched. \
(Aside from register zero, which is only set at the end.) */ \
for (last_used_reg = num_regs-1; last_used_reg > 0; last_used_reg--)\
if (!REG_UNSET(regstart[last_used_reg])) \
break; \
\
ENSURE_FAIL_STACK(NUM_FAILURE_ITEMS); \
*stackp++ = (unsigned char*)(long)num_failure_counts; \
num_failure_counts = 0; \
\
/* Now push the info for each of those registers. */ \
for (this_reg = 1; this_reg <= last_used_reg; this_reg++) { \
*stackp++ = regstart[this_reg]; \
*stackp++ = regend[this_reg]; \
*stackp++ = reg_info[this_reg].word; \
} \
\
/* Push how many registers we saved. */ \
*stackp++ = (unsigned char*)last_used_reg; \
\
*stackp++ = pattern_place; \
*stackp++ = string_place; \
*stackp++ = (unsigned char*)(long)options; /* current option status */ \
*stackp++ = (unsigned char*)0; /* non-greedy flag */ \
} while(0)

#define NON_GREEDY ((unsigned char*)1)

#define POP_FAILURE_COUNT() \
do { \
unsigned char *ptr = *--stackp; \
int count = (long)*--stackp; \
STORE_NUMBER(ptr, count); \
} while (0)

/* This pops what PUSH_FAILURE_POINT pushes. */

#define POP_FAILURE_POINT() \
do { \
long temp; \
stackp -= NUM_NONREG_ITEMS; /* Remove failure points (and flag). */ \
temp = (long)*--stackp; /* How many regs pushed. */ \
temp *= NUM_REG_ITEMS; /* How much to take off the stack. */ \
stackp -= temp; /* Remove the register info. */ \
temp = (long)*--stackp; /* How many counters pushed. */ \
while (temp--) { \
POP_FAILURE_COUNT(); /* Remove the counter info. */ \
} \
num_failure_counts = 0; /* Reset num_failure_counts. */ \
} while(0)

     /* Registers are set to a sentinel when they haven't yet matched. */
#define REG_UNSET_VALUE ((unsigned char*)-1)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)

#define PREFETCH if (d == dend) goto fail

     /* Call this when have matched something; it sets `matched' flags for the
registers corresponding to the subexpressions of which we currently
are inside. */
#define SET_REGS_MATCHED \
do { unsigned this_reg; \
for (this_reg = 0; this_reg < num_regs; this_reg++) { \
if (IS_ACTIVE(reg_info[this_reg])) \
MATCHED_SOMETHING(reg_info[this_reg]) = 1; \
else \
MATCHED_SOMETHING(reg_info[this_reg]) = 0; \
} \
} while(0)

#define AT_STRINGS_BEG(d) ((d) == string)
#define AT_STRINGS_END(d) ((d) == dend)

#define IS_A_LETTER(d) (SYNTAX(*(d)) == Sword || \
(current_mbctype ? \
(re_mbctab[*(d)] && ((d)+mbclen(*(d)))<=dend): \
SYNTAX(*(d)) == Sword2))

#define PREV_IS_A_LETTER(d) ((current_mbctype == MBCTYPE_SJIS)? \
IS_A_LETTER((d)-(!AT_STRINGS_BEG((d)-1)&& \
ismbchar((d)[-2])?2:1)): \
((current_mbctype && ((d)[-1] >= 0x80)) || \
IS_A_LETTER((d)-1)))

static void
init_regs(regs, num_regs)
     struct re_registers *regs;
     unsigned int num_regs;
{
  int i;

  regs->num_regs = num_regs;
  if (num_regs < RE_NREGS)
    num_regs = RE_NREGS;

  if (regs->allocated == 0) {
    regs->beg = TMALLOC(num_regs, int);
    regs->end = TMALLOC(num_regs, int);
    regs->allocated = num_regs;
  }
  else if (regs->allocated < num_regs) {
    TREALLOC(regs->beg, num_regs, int);
    TREALLOC(regs->end, num_regs, int);
    regs->allocated = num_regs;
  }
  for (i=0; i<num_regs; i++) {
    regs->beg[i] = regs->end[i] = -1;
  }
}

/* Match the pattern described by BUFP against STRING, which is of
SIZE. Start the match at index POS in STRING. In REGS, return the
indices of STRING that matched the entire BUFP->buffer and its
contained subexpressions.

If bufp->fastmap is nonzero, then it had better be up to date.

The reason that the data to match are specified as two components
which are to be regarded as concatenated is so this function can be
used directly on the contents of an Emacs buffer.

-1 is returned if there is no match. -2 is returned if there is an
error (such as match stack overflow). Otherwise the value is the
length of the substring which was matched. */

int
re_match(bufp, string_arg, size, pos, regs)
     struct re_pattern_buffer *bufp;
     const char *string_arg;
     int size, pos;
     struct re_registers *regs;
{
  return re_match_exec(bufp, string_arg, size, pos, pos, regs);
}

static int
re_match_exec(bufp, string_arg, size, pos, beg, regs)
     struct re_pattern_buffer *bufp;
     const char *string_arg;
     int size, pos, beg;
     struct re_registers *regs;
{
  register unsigned char *p = (unsigned char*)bufp->buffer;
  unsigned char *p1;

  /* Pointer to beyond end of buffer. */
  register unsigned char *pend = p + bufp->used;

  unsigned num_regs = bufp->re_nsub;

  unsigned char *string = (unsigned char*)string_arg;

  register unsigned char *d, *dend;
  register int mcnt; /* Multipurpose. */
  int options = bufp->options;

  /* Failure point stack. Each place that can handle a failure further
down the line pushes a failure point on this stack. It consists of
restart, regend, and reg_info for all registers corresponding to the
subexpressions we're currently inside, plus the number of such
registers, and, finally, two char *'s. The first char * is where to
resume scanning the pattern; the second one is where to resume
scanning the strings. If the latter is zero, the failure point is a
``dummy''; if a failure happens and the failure point is a dummy, it
gets discarded and the next next one is tried. */

  unsigned char **const stacka = 0;
  unsigned char **stackb;
  unsigned char **stackp;
  unsigned char **stacke;

  /* Information on the contents of registers. These are pointers into
the input strings; they record just what was matched (on this
attempt) by a subexpression part of the pattern, that is, the
regnum-th regstart pointer points to where in the pattern we began
matching and the regnum-th regend points to right after where we
stopped matching the regnum-th subexpression. (The zeroth register
keeps track of what the whole pattern matches.) */

  unsigned char **regstart = bufp->regstart;
  unsigned char **regend = bufp->regend;

  /* If a group that's operated upon by a repetition operator fails to
match anything, then the register for its start will need to be
restored because it will have been set to wherever in the string we
are when we last see its open-group operator. Similarly for a
register's end. */
  unsigned char **old_regstart = bufp->old_regstart;
  unsigned char **old_regend = bufp->old_regend;

  /* The is_active field of reg_info helps us keep track of which (possibly
nested) subexpressions we are currently in. The matched_something
field of reg_info[reg_num] helps us tell whether or not we have
matched any of the pattern so far this time through the reg_num-th
subexpression. These two fields get reset each time through any
loop their register is in. */

  register_info_type *reg_info = bufp->reg_info;

  /* The following record the register info as found in the above
variables when we find a match better than any we've seen before.
This happens as we backtrack through the failure points, which in
turn happens only if we have not yet matched the entire string. */

  unsigned best_regs_set = 0;
  unsigned char **best_regstart = bufp->best_regstart;
  unsigned char **best_regend = bufp->best_regend;

  int num_failure_counts = 0;

  if (regs) {
    init_regs(regs, num_regs);
  }

  /* Initialize the stack. */
  stackb = TMALLOC(MAX_NUM_FAILURE_ITEMS * NFAILURES, unsigned char*);
  stackp = stackb;
  stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES];

#ifdef DEBUG_REGEX
  fprintf(stderr, "Entering re_match(%s)\n", string_arg);
#endif

  /* Initialize subexpression text positions to -1 to mark ones that no
( or ( and ) or ) has been seen for. Also set all registers to
inactive and mark them as not having matched anything or ever
failed. */
  for (mcnt = 0; mcnt < num_regs; mcnt++) {
    regstart[mcnt] = regend[mcnt]
      = old_regstart[mcnt] = old_regend[mcnt]
      = best_regstart[mcnt] = best_regend[mcnt] = REG_UNSET_VALUE;
#ifdef __CHECKER__
    reg_info[mcnt].word = 0;
#endif
    IS_ACTIVE (reg_info[mcnt]) = 0;
    MATCHED_SOMETHING (reg_info[mcnt]) = 0;
  }

  /* Set up pointers to ends of strings.
Don't allow the second string to be empty unless both are empty. */


  /* `p' scans through the pattern as `d' scans through the data. `dend'
is the end of the input string that `d' points within. `d' is
advanced into the following input string whenever necessary, but
this happens before fetching; therefore, at the beginning of the
loop, `d' can be pointing at the end of a string, but it cannot
equal string2. */

  d = string + pos, dend = string + size;

  /* This loops over pattern commands. It exits by returning from the
function if match is complete, or it drops through if match fails
at this starting point in the input data. */

  for (;;) {
#ifdef DEBUG_REGEX
    fprintf(stderr,
"regex loop(%d): matching 0x%02d\n",
p - (unsigned char*)bufp->buffer,
*p);
#endif
    /* End of pattern means we might have succeeded. */
    if (p == pend) {
      /* If not end of string, try backtracking. Otherwise done. */
      if ((bufp->options & RE_OPTION_LONGEST) && d != dend) {
if (best_regs_set) /* non-greedy, no need to backtrack */
goto restore_best_regs;
while (stackp != stackb && stackp[-1] == NON_GREEDY) {
if (best_regs_set) /* non-greedy, no need to backtrack */
goto restore_best_regs;
POP_FAILURE_POINT();
}
if (stackp != stackb) {
/* More failure points to try. */

/* If exceeds best match so far, save it. */
if (! best_regs_set || (d > best_regend[0])) {
best_regs_set = 1;
best_regend[0] = d; /* Never use regstart[0]. */

for (mcnt = 1; mcnt < num_regs; mcnt++) {
best_regstart[mcnt] = regstart[mcnt];
best_regend[mcnt] = regend[mcnt];
}
}
goto fail;
}
/* If no failure points, don't restore garbage. */
else if (best_regs_set) {
restore_best_regs:
/* Restore best match. */
d = best_regend[0];

for (mcnt = 0; mcnt < num_regs; mcnt++) {
regstart[mcnt] = best_regstart[mcnt];
regend[mcnt] = best_regend[mcnt];
}
}
      }

      /* If caller wants register contents data back, convert it
to indices. */
      if (regs) {
regs->beg[0] = pos;
regs->end[0] = d - string;
for (mcnt = 1; mcnt < num_regs; mcnt++) {
if (REG_UNSET(regend[mcnt])) {
regs->beg[mcnt] = -1;
regs->end[mcnt] = -1;
continue;
}
regs->beg[mcnt] = regstart[mcnt] - string;
regs->end[mcnt] = regend[mcnt] - string;
}
      }
      FREE_AND_RETURN(stackb, (d - pos - string));
    }

    /* Otherwise match next pattern command. */
#ifdef SWITCH_ENUM_BUG
    switch ((int)((enum regexpcode)*p++))
#else
    switch ((enum regexpcode)*p++)
#endif
      {
/* ( [or `(', as appropriate] is represented by start_memory,
) by stop_memory. Both of those commands are followed by
a register number in the next byte. The text matched
within the ( and ) is recorded under that number. */
      case start_memory:
old_regstart[*p] = regstart[*p];
regstart[*p] = d;
IS_ACTIVE(reg_info[*p]) = 1;
MATCHED_SOMETHING(reg_info[*p]) = 0;
p += 2;
continue;

      case stop_memory:
old_regend[*p] = regend[*p];
regend[*p] = d;
IS_ACTIVE(reg_info[*p]) = 0;
p += 2;
continue;

      case start_paren:
      case stop_paren:
break;

/* \<digit> has been turned into a `duplicate' command which is
followed by the numeric value of <digit> as the register number. */
      case duplicate:
{
int regno = *p++; /* Get which register to match against */
register unsigned char *d2, *dend2;

/* Check if there's corresponding group */
if (regno >= num_regs) goto fail;
/* Check if corresponding group is still open */
if (IS_ACTIVE(reg_info[regno])) goto fail;

/* Where in input to try to start matching. */
d2 = regstart[regno];
if (REG_UNSET(d2)) goto fail;

/* Where to stop matching; if both the place to start and
the place to stop matching are in the same string, then
set to the place to stop, otherwise, for now have to use
the end of the first string. */

dend2 = regend[regno];
if (REG_UNSET(dend2)) goto fail;
for (;;) {
/* At end of register contents => success */
if (d2 == dend2) break;

/* If necessary, advance to next segment in data. */
PREFETCH;

/* How many characters left in this segment to match. */
mcnt = dend - d;

/* Want how many consecutive characters we can match in
one shot, so, if necessary, adjust the count. */
if (mcnt > dend2 - d2)
mcnt = dend2 - d2;

/* Compare that many; failure if mismatch, else move
past them. */
if ((options & RE_OPTION_IGNORECASE)
? memcmp_translate(d, d2, mcnt)
: memcmp((char*)d, (char*)d2, mcnt))
goto fail;
d += mcnt, d2 += mcnt;
}
}
break;

      case start_nowidth:
PUSH_FAILURE_POINT(0, d);
if (stackp - stackb > RE_DUP_MAX) {
FREE_AND_RETURN(stackb,(-2));
}
EXTRACT_NUMBER_AND_INCR(mcnt, p);
STORE_NUMBER(p+mcnt, stackp - stackb);
continue;

      case stop_nowidth:
EXTRACT_NUMBER_AND_INCR(mcnt, p);
stackp = stackb + mcnt;
d = stackp[-3];
POP_FAILURE_POINT();
continue;

      case stop_backtrack:
EXTRACT_NUMBER_AND_INCR(mcnt, p);
stackp = stackb + mcnt;
POP_FAILURE_POINT();
continue;

      case pop_and_fail:
EXTRACT_NUMBER(mcnt, p+1);
stackp = stackb + mcnt;
POP_FAILURE_POINT();
goto fail;

      case anychar:
PREFETCH;
if (ismbchar(*d)) {
if (d + mbclen(*d) > dend)
goto fail;
SET_REGS_MATCHED;
d += mbclen(*d);
break;
}
if (!(options&RE_OPTION_MULTILINE)
&& (TRANSLATE_P() ? translate[*d] : *d) == '\n')
goto fail;
SET_REGS_MATCHED;
d++;
break;

      case anychar_repeat:
for (;;) {
PUSH_FAILURE_POINT(p, d);
PREFETCH;
if (ismbchar(*d)) {
if (d + mbclen(*d) > dend)
goto fail;
SET_REGS_MATCHED;
d += mbclen(*d);
continue;
}
if (!(options&RE_OPTION_MULTILINE) &&
(TRANSLATE_P() ? translate[*d] : *d) == '\n')
goto fail;
SET_REGS_MATCHED;
d++;
}
break;

      case charset:
      case charset_not:
{
int not; /* Nonzero for charset_not. */
int part = 0; /* true if matched part of mbc */
unsigned char *dsave = d + 1;
int cc, c;

PREFETCH;
c = (unsigned char)*d++;
if (ismbchar(c)) {
if (d + mbclen(c) - 1 <= dend) {
cc = c;
MBC2WC(c, d);
not = is_in_list_mbc(c, p);
if (!not) {
part = not = is_in_list_sbc(cc, p);
}
} else {
not = is_in_list(c, p);
}
}
else {
if (TRANSLATE_P())
c = (unsigned char)translate[c];
not = is_in_list(c, p);
}

if (*(p - 1) == (unsigned char)charset_not) {
not = !not;
}
if (!not) goto fail;

p += 1 + *p + 2 + EXTRACT_UNSIGNED(&p[1 + *p])*8;
SET_REGS_MATCHED;

if (part) d = dsave;
break;
}

      case begline:
if (size == 0 || AT_STRINGS_BEG(d))
break;
if (d[-1] == '\n' && !AT_STRINGS_END(d))
break;
goto fail;

      case endline:
if (AT_STRINGS_END(d)) {
break;
}
else if (*d == '\n')
break;
goto fail;

/* Match at the very beginning of the string. */
      case begbuf:
if (AT_STRINGS_BEG(d))
break;
goto fail;

/* Match at the very end of the data. */
      case endbuf:
if (AT_STRINGS_END(d))
break;
goto fail;

/* Match at the very end of the data. */
      case endbuf2:
if (AT_STRINGS_END(d)) {
break;
}
/* .. or newline just before the end of the data. */
if (*d == '\n' && AT_STRINGS_END(d+1))
break;
goto fail;

/* `or' constructs are handled by starting each alternative with
an on_failure_jump that points to the start of the next
alternative. Each alternative except the last ends with a
jump to the joining point. (Actually, each jump except for
the last one really jumps to the following jump, because
tensioning the jumps is a hassle.) */

/* The start of a stupid repeat has an on_failure_jump that points
past the end of the repeat text. This makes a failure point so
that on failure to match a repetition, matching restarts past
as many repetitions have been found with no way to fail and
look for another one. */

/* A smart repeat is similar but loops back to the on_failure_jump
so that each repetition makes another failure point. */

/* Match at the starting position. */
      case begpos:
if (d - string == beg)
break;
goto fail;

      case on_failure_jump:
      on_failure:
      EXTRACT_NUMBER_AND_INCR(mcnt, p);
      PUSH_FAILURE_POINT(p + mcnt, d);
      continue;

      /* The end of a smart repeat has a maybe_finalize_jump back.
Change it either to a finalize_jump or an ordinary jump. */
      case maybe_finalize_jump:
EXTRACT_NUMBER_AND_INCR(mcnt, p);
p1 = p;

/* Compare the beginning of the repeat with what in the
pattern follows its end. If we can establish that there
is nothing that they would both match, i.e., that we
would have to backtrack because of (as in, e.g., `a*a')
then we can change to finalize_jump, because we'll
never have to backtrack.

This is not true in the case of alternatives: in
`(a|ab)*' we do need to backtrack to the `ab' alternative
(e.g., if the string was `ab'). But instead of trying to
detect that here, the alternative has put on a dummy
failure point which is what we will end up popping. */

/* Skip over open/close-group commands. */
while (p1 + 2 < pend) {
if ((enum regexpcode)*p1 == stop_memory ||
(enum regexpcode)*p1 == start_memory)
p1 += 3; /* Skip over args, too. */
else if (/*(enum regexpcode)*p1 == start_paren ||*/
(enum regexpcode)*p1 == stop_paren)
p1 += 1;
else
break;
}

if (p1 == pend)
p[-3] = (unsigned char)finalize_jump;
else if (*p1 == (unsigned char)exactn ||
*p1 == (unsigned char)endline) {
register int c = *p1 == (unsigned char)endline ? '\n' : p1[2];
register unsigned char *p2 = p + mcnt;
/* p2[0] ... p2[2] are an on_failure_jump.
Examine what follows that. */
if (p2[3] == (unsigned char)exactn && p2[5] != c)
p[-3] = (unsigned char)finalize_jump;
else if (p2[3] == (unsigned char)charset ||
p2[3] == (unsigned char)charset_not) {
int not;
if (ismbchar(c)) {
unsigned char *pp = p1+3;
MBC2WC(c, pp);
}
/* `is_in_list()' is TRUE if c would match */
/* That means it is not safe to finalize. */
not = is_in_list(c, p2 + 4);
if (p2[3] == (unsigned char)charset_not)
not = !not;
if (!not)
p[-3] = (unsigned char)finalize_jump;
}
}
p -= 2; /* Point at relative address again. */
if (p[-1] != (unsigned char)finalize_jump) {
p[-1] = (unsigned char)jump;
goto nofinalize;
}
/* Note fall through. */

/* The end of a stupid repeat has a finalize_jump back to the
start, where another failure point will be made which will
point to after all the repetitions found so far. */

/* Take off failure points put on by matching on_failure_jump
because didn't fail. Also remove the register information
put on by the on_failure_jump. */
      case finalize_jump:
if (stackp > stackb && stackp[-3] == d) {
p = stackp[-4];
POP_FAILURE_POINT();
continue;
}
POP_FAILURE_POINT();
/* Note fall through. */

      /* We need this opcode so we can detect where alternatives end
in `group_match_null_string_p' et al. */
      case jump_past_alt:
/* fall through */

/* Jump without taking off any failure points. */
      case jump:
      nofinalize:
        EXTRACT_NUMBER_AND_INCR(mcnt, p);
        if (mcnt < 0 && stackp > stackb && stackp[-3] == d) /* avoid infinite loop */
goto fail;
        p += mcnt;
        continue;

      case dummy_failure_jump:
/* Normally, the on_failure_jump pushes a failure point, which
then gets popped at finalize_jump. We will end up at
finalize_jump, also, and with a pattern of, say, `a+', we
are skipping over the on_failure_jump, so we have to push
something meaningless for finalize_jump to pop. */
PUSH_FAILURE_POINT(0, 0);
goto nofinalize;

/* At the end of an alternative, we need to push a dummy failure
point in case we are followed by a `finalize_jump', because
we don't want the failure point for the alternative to be
popped. For example, matching `(a|ab)*' against `aab'
requires that we match the `ab' alternative. */
      case push_dummy_failure:
/* See comments just above at `dummy_failure_jump' about the
two zeroes. */
p1 = p;
/* Skip over open/close-group commands. */
while (p1 + 2 < pend) {
if ((enum regexpcode)*p1 == stop_memory ||
(enum regexpcode)*p1 == start_memory)
p1 += 3; /* Skip over args, too. */
else if (/*(enum regexpcode)*p1 == start_paren ||*/
(enum regexpcode)*p1 == stop_paren)
p1 += 1;
else
break;
}
if (p1 < pend && (enum regexpcode)*p1 == jump)
p[-1] = unused;
else
PUSH_FAILURE_POINT(0, 0);
break;

/* Have to succeed matching what follows at least n times. Then
just handle like an on_failure_jump. */
      case succeed_n:
EXTRACT_NUMBER(mcnt, p + 2);
/* Originally, this is how many times we HAVE to succeed. */
if (mcnt != 0) {
mcnt--;
p += 2;
PUSH_FAILURE_COUNT(p);
STORE_NUMBER_AND_INCR(p, mcnt);
PUSH_FAILURE_POINT(0, 0);
}
else {
goto on_failure;
}
continue;

      case jump_n:
EXTRACT_NUMBER(mcnt, p + 2);
/* Originally, this is how many times we CAN jump. */
if (mcnt) {
mcnt--;
PUSH_FAILURE_COUNT(p + 2);
STORE_NUMBER(p + 2, mcnt);
goto nofinalize; /* Do the jump without taking off
any failure points. */
}
/* If don't have to jump any more, skip over the rest of command. */
else
p += 4;
continue;

      case set_number_at:
EXTRACT_NUMBER_AND_INCR(mcnt, p);
p1 = p + mcnt;
EXTRACT_NUMBER_AND_INCR(mcnt, p);
STORE_NUMBER(p1, mcnt);
continue;

      case try_next:
EXTRACT_NUMBER_AND_INCR(mcnt, p);
if (p + mcnt < pend) {
PUSH_FAILURE_POINT(p, d);
stackp[-1] = NON_GREEDY;
}
p += mcnt;
continue;

      case finalize_push:
POP_FAILURE_POINT();
EXTRACT_NUMBER_AND_INCR(mcnt, p);
        if (mcnt < 0 && stackp > stackb && stackp[-3] == d) /* avoid infinite loop */
goto fail;
PUSH_FAILURE_POINT(p + mcnt, d);
stackp[-1] = NON_GREEDY;
continue;

      case finalize_push_n:
EXTRACT_NUMBER(mcnt, p + 2);
/* Originally, this is how many times we CAN jump. */
if (mcnt) {
int pos, i;

mcnt--;
STORE_NUMBER(p + 2, mcnt);
EXTRACT_NUMBER(pos, p);
EXTRACT_NUMBER(i, p+pos+5);
if (i > 0) goto nofinalize;
POP_FAILURE_POINT();
EXTRACT_NUMBER_AND_INCR(mcnt, p);
PUSH_FAILURE_POINT(p + mcnt, d);
stackp[-1] = NON_GREEDY;
p += 2; /* skip n */
}
/* If don't have to push any more, skip over the rest of command. */
else
p += 4;
continue;

/* Ignore these. Used to ignore the n of succeed_n's which
currently have n == 0. */
      case unused:
continue;

      case casefold_on:
options |= RE_OPTION_IGNORECASE;
continue;

      case casefold_off:
options &= ~RE_OPTION_IGNORECASE;
continue;

      case option_set:
options = *p++;
continue;

      case wordbound:
if (AT_STRINGS_BEG(d)) {
if (AT_STRINGS_END(d)) goto fail;
if (IS_A_LETTER(d)) break;
else goto fail;
}
if (AT_STRINGS_END(d)) {
if (PREV_IS_A_LETTER(d)) break;
else goto fail;
}
if (PREV_IS_A_LETTER(d) != IS_A_LETTER(d))
break;
goto fail;

      case notwordbound:
if (AT_STRINGS_BEG(d)) {
if (IS_A_LETTER(d)) goto fail;
else break;
}
if (AT_STRINGS_END(d)) {
if (PREV_IS_A_LETTER(d)) goto fail;
else break;
}
if (PREV_IS_A_LETTER(d) != IS_A_LETTER(d))
goto fail;
break;

      case wordbeg:
if (IS_A_LETTER(d) && (AT_STRINGS_BEG(d) || !PREV_IS_A_LETTER(d)))
break;
goto fail;

      case wordend:
if (!AT_STRINGS_BEG(d) && PREV_IS_A_LETTER(d)
&& (!IS_A_LETTER(d) || AT_STRINGS_END(d)))
break;
goto fail;

      case wordchar:
PREFETCH;
if (!IS_A_LETTER(d))
goto fail;
if (ismbchar(*d) && d + mbclen(*d) - 1 < dend)
d += mbclen(*d) - 1;
d++;
SET_REGS_MATCHED;
break;

      case notwordchar:
PREFETCH;
if (IS_A_LETTER(d))
goto fail;
if (ismbchar(*d) && d + mbclen(*d) - 1 < dend)
d += mbclen(*d) - 1;
d++;
SET_REGS_MATCHED;
break;

      case exactn:
/* Match the next few pattern characters exactly.
mcnt is how many characters to match. */
mcnt = *p++;
/* This is written out as an if-else so we don't waste time
testing `translate' inside the loop. */
if (TRANSLATE_P()) {
do {
unsigned char c;

PREFETCH;
if (*p == 0xff) {
p++;
if (!--mcnt
|| AT_STRINGS_END(d)
|| (unsigned char)*d++ != (unsigned char)*p++)
goto fail;
continue;
}
c = *d++;
if (ismbchar(c)) {
int n;

if (c != (unsigned char)*p++)
goto fail;
for (n = mbclen(c) - 1; n > 0; n--)
if (!--mcnt /* redundant check if pattern was
compiled properly. */
|| AT_STRINGS_END(d)
|| (unsigned char)*d++ != (unsigned char)*p++)
goto fail;
continue;
}
/* compiled code translation needed for ruby */
if ((unsigned char)translate[c] != (unsigned char)translate[*p++])
goto fail;
}
while (--mcnt);
}
else {
do {
PREFETCH;