Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tag: v1_9_3_385
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 830 lines (725 sloc) 18.34 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/**********************************************************************

math.c -

$Author$
created at: Tue Jan 25 14:12:56 JST 1994

Copyright (C) 1993-2007 Yukihiro Matsumoto

**********************************************************************/

#include "ruby/ruby.h"
#include "internal.h"
#include <math.h>
#include <errno.h>

#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun__) && \
!defined(signbit)
    extern int signbit(double);
#endif

#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))

VALUE rb_mMath;
VALUE rb_eMathDomainError;

#define Need_Float(x) do {if (TYPE(x) != T_FLOAT) {(x) = rb_to_float(x);}} while(0)
#define Need_Float2(x,y) do {\
Need_Float(x);\
Need_Float(y);\
} while (0)

#define domain_error(msg) \
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg);

/*
* call-seq:
* Math.atan2(y, x) -> float
*
* Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
* -PI..PI.
*
* Math.atan2(-0.0, -1.0) #=> -3.141592653589793
* Math.atan2(-1.0, -1.0) #=> -2.356194490192345
* Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
* Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
* Math.atan2(-0.0, 1.0) #=> -0.0
* Math.atan2(0.0, 1.0) #=> 0.0
* Math.atan2(1.0, 1.0) #=> 0.7853981633974483
* Math.atan2(1.0, 0.0) #=> 1.5707963267948966
* Math.atan2(1.0, -1.0) #=> 2.356194490192345
* Math.atan2(0.0, -1.0) #=> 3.141592653589793
*
*/

static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
    double dx, dy;
    Need_Float2(y, x);
    dx = RFLOAT_VALUE(x);
    dy = RFLOAT_VALUE(y);
    if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
        if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
    }
    if (isinf(dx) && isinf(dy)) domain_error("atan2");
    return DBL2NUM(atan2(dy, dx));
}


/*
* call-seq:
* Math.cos(x) -> float
*
* Computes the cosine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/

static VALUE
math_cos(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(cos(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.sin(x) -> float
*
* Computes the sine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/

static VALUE
math_sin(VALUE obj, VALUE x)
{
    Need_Float(x);

    return DBL2NUM(sin(RFLOAT_VALUE(x)));
}


/*
* call-seq:
* Math.tan(x) -> float
*
* Returns the tangent of <i>x</i> (expressed in radians).
*/

static VALUE
math_tan(VALUE obj, VALUE x)
{
    Need_Float(x);

    return DBL2NUM(tan(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.acos(x) -> float
*
* Computes the arc cosine of <i>x</i>. Returns 0..PI.
*/

static VALUE
math_acos(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < -1.0 || 1.0 < d0) domain_error("acos");
    d = acos(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.asin(x) -> float
*
* Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/

static VALUE
math_asin(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < -1.0 || 1.0 < d0) domain_error("asin");
    d = asin(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.atan(x) -> float
*
* Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/

static VALUE
math_atan(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(atan(RFLOAT_VALUE(x)));
}

#ifndef HAVE_COSH
double
cosh(double x)
{
    return (exp(x) + exp(-x)) / 2;
}
#endif

/*
* call-seq:
* Math.cosh(x) -> float
*
* Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
*/

static VALUE
math_cosh(VALUE obj, VALUE x)
{
    Need_Float(x);

    return DBL2NUM(cosh(RFLOAT_VALUE(x)));
}

#ifndef HAVE_SINH
double
sinh(double x)
{
    return (exp(x) - exp(-x)) / 2;
}
#endif

/*
* call-seq:
* Math.sinh(x) -> float
*
* Computes the hyperbolic sine of <i>x</i> (expressed in
* radians).
*/

static VALUE
math_sinh(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(sinh(RFLOAT_VALUE(x)));
}

#ifndef HAVE_TANH
double
tanh(double x)
{
    return sinh(x) / cosh(x);
}
#endif

/*
* call-seq:
* Math.tanh() -> float
*
* Computes the hyperbolic tangent of <i>x</i> (expressed in
* radians).
*/

static VALUE
math_tanh(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(tanh(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.acosh(x) -> float
*
* Computes the inverse hyperbolic cosine of <i>x</i>.
*/

static VALUE
math_acosh(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 1.0) domain_error("acosh");
    d = acosh(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.asinh(x) -> float
*
* Computes the inverse hyperbolic sine of <i>x</i>.
*/

static VALUE
math_asinh(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(asinh(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.atanh(x) -> float
*
* Computes the inverse hyperbolic tangent of <i>x</i>.
*/

static VALUE
math_atanh(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < -1.0 || +1.0 < d0) domain_error("atanh");
    /* check for pole error */
    if (d0 == -1.0) return DBL2NUM(-INFINITY);
    if (d0 == +1.0) return DBL2NUM(+INFINITY);
    d = atanh(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.exp(x) -> float
*
* Returns e**x.
*
* Math.exp(0) #=> 1.0
* Math.exp(1) #=> 2.718281828459045
* Math.exp(1.5) #=> 4.4816890703380645
*
*/

static VALUE
math_exp(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(exp(RFLOAT_VALUE(x)));
}

#if defined __CYGWIN__
# include <cygwin/version.h>
# if CYGWIN_VERSION_DLL_MAJOR < 1005
# define nan(x) nan()
# endif
# define log(x) ((x) < 0.0 ? nan("") : log(x))
# define log10(x) ((x) < 0.0 ? nan("") : log10(x))
#endif

/*
* call-seq:
* Math.log(numeric) -> float
* Math.log(num,base) -> float
*
* Returns the natural logarithm of <i>numeric</i>.
* If additional second argument is given, it will be the base
* of logarithm.
*
* Math.log(1) #=> 0.0
* Math.log(Math::E) #=> 1.0
* Math.log(Math::E**3) #=> 3.0
* Math.log(12,3) #=> 2.2618595071429146
*
*/

static VALUE
math_log(int argc, VALUE *argv)
{
    VALUE x, base;
    double d0, d;

    rb_scan_args(argc, argv, "11", &x, &base);
    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("log");
    /* check for pole error */
    if (d0 == 0.0) return DBL2NUM(-INFINITY);
    d = log(d0);
    if (argc == 2) {
Need_Float(base);
d /= log(RFLOAT_VALUE(base));
    }
    return DBL2NUM(d);
}

#ifndef log2
#ifndef HAVE_LOG2
double
log2(double x)
{
    return log10(x)/log10(2.0);
}
#else
extern double log2(double);
#endif
#endif

/*
* call-seq:
* Math.log2(numeric) -> float
*
* Returns the base 2 logarithm of <i>numeric</i>.
*
* Math.log2(1) #=> 0.0
* Math.log2(2) #=> 1.0
* Math.log2(32768) #=> 15.0
* Math.log2(65536) #=> 16.0
*
*/

static VALUE
math_log2(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("log2");
    /* check for pole error */
    if (d0 == 0.0) return DBL2NUM(-INFINITY);
    d = log2(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.log10(numeric) -> float
*
* Returns the base 10 logarithm of <i>numeric</i>.
*
* Math.log10(1) #=> 0.0
* Math.log10(10) #=> 1.0
* Math.log10(10**100) #=> 100.0
*
*/

static VALUE
math_log10(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("log10");
    /* check for pole error */
    if (d0 == 0.0) return DBL2NUM(-INFINITY);
    d = log10(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.sqrt(numeric) -> float
*
* Returns the non-negative square root of <i>numeric</i>.
*
* 0.upto(10) {|x|
* p [x, Math.sqrt(x), Math.sqrt(x)**2]
* }
* #=>
* [0, 0.0, 0.0]
* [1, 1.0, 1.0]
* [2, 1.4142135623731, 2.0]
* [3, 1.73205080756888, 3.0]
* [4, 2.0, 4.0]
* [5, 2.23606797749979, 5.0]
* [6, 2.44948974278318, 6.0]
* [7, 2.64575131106459, 7.0]
* [8, 2.82842712474619, 8.0]
* [9, 3.0, 9.0]
* [10, 3.16227766016838, 10.0]
*
*/

static VALUE
math_sqrt(VALUE obj, VALUE x)
{
    double d0, d;

    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (d0 < 0.0) domain_error("sqrt");
    if (d0 == 0.0) return DBL2NUM(0.0);
    d = sqrt(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.cbrt(numeric) -> float
*
* Returns the cube root of <i>numeric</i>.
*
* -9.upto(9) {|x|
* p [x, Math.cbrt(x), Math.cbrt(x)**3]
* }
* #=>
* [-9, -2.0800838230519, -9.0]
* [-8, -2.0, -8.0]
* [-7, -1.91293118277239, -7.0]
* [-6, -1.81712059283214, -6.0]
* [-5, -1.7099759466767, -5.0]
* [-4, -1.5874010519682, -4.0]
* [-3, -1.44224957030741, -3.0]
* [-2, -1.25992104989487, -2.0]
* [-1, -1.0, -1.0]
* [0, 0.0, 0.0]
* [1, 1.0, 1.0]
* [2, 1.25992104989487, 2.0]
* [3, 1.44224957030741, 3.0]
* [4, 1.5874010519682, 4.0]
* [5, 1.7099759466767, 5.0]
* [6, 1.81712059283214, 6.0]
* [7, 1.91293118277239, 7.0]
* [8, 2.0, 8.0]
* [9, 2.0800838230519, 9.0]
*
*/

static VALUE
math_cbrt(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(cbrt(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.frexp(numeric) -> [ fraction, exponent ]
*
* Returns a two-element array containing the normalized fraction (a
* <code>Float</code>) and exponent (a <code>Fixnum</code>) of
* <i>numeric</i>.
*
* fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
* fraction * 2**exponent #=> 1234.0
*/

static VALUE
math_frexp(VALUE obj, VALUE x)
{
    double d;
    int exp;

    Need_Float(x);

    d = frexp(RFLOAT_VALUE(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}

/*
* call-seq:
* Math.ldexp(flt, int) -> float
*
* Returns the value of <i>flt</i>*(2**<i>int</i>).
*
* fraction, exponent = Math.frexp(1234)
* Math.ldexp(fraction, exponent) #=> 1234.0
*/

static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
    Need_Float(x);
    return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
}

/*
* call-seq:
* Math.hypot(x, y) -> float
*
* Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
* with sides <i>x</i> and <i>y</i>.
*
* Math.hypot(3, 4) #=> 5.0
*/

static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
    Need_Float2(x, y);
    return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
}

/*
* call-seq:
* Math.erf(x) -> float
*
* Calculates the error function of x.
*/

static VALUE
math_erf(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(erf(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.erfc(x) -> float
*
* Calculates the complementary error function of x.
*/

static VALUE
math_erfc(VALUE obj, VALUE x)
{
    Need_Float(x);
    return DBL2NUM(erfc(RFLOAT_VALUE(x)));
}

/*
* call-seq:
* Math.gamma(x) -> float
*
* Calculates the gamma function of x.
*
* Note that gamma(n) is same as fact(n-1) for integer n > 0.
* However gamma(n) returns float and can be an approximation.
*
* def fact(n) (1..n).inject(1) {|r,i| r*i } end
* 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
* #=> [1, 1.0, 1]
* # [2, 1.0, 1]
* # [3, 2.0, 2]
* # [4, 6.0, 6]
* # [5, 24.0, 24]
* # [6, 120.0, 120]
* # [7, 720.0, 720]
* # [8, 5040.0, 5040]
* # [9, 40320.0, 40320]
* # [10, 362880.0, 362880]
* # [11, 3628800.0, 3628800]
* # [12, 39916800.0, 39916800]
* # [13, 479001600.0, 479001600]
* # [14, 6227020800.0, 6227020800]
* # [15, 87178291200.0, 87178291200]
* # [16, 1307674368000.0, 1307674368000]
* # [17, 20922789888000.0, 20922789888000]
* # [18, 355687428096000.0, 355687428096000]
* # [19, 6.402373705728e+15, 6402373705728000]
* # [20, 1.21645100408832e+17, 121645100408832000]
* # [21, 2.43290200817664e+18, 2432902008176640000]
* # [22, 5.109094217170944e+19, 51090942171709440000]
* # [23, 1.1240007277776077e+21, 1124000727777607680000]
* # [24, 2.5852016738885062e+22, 25852016738884976640000]
* # [25, 6.204484017332391e+23, 620448401733239439360000]
* # [26, 1.5511210043330954e+25, 15511210043330985984000000]
*
*/

static VALUE
math_gamma(VALUE obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
    };
    double d0, d;
    double intpart, fracpart;
    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (isinf(d0) && signbit(d0)) domain_error("gamma");
    fracpart = modf(d0, &intpart);
    if (fracpart == 0.0) {
if (intpart < 0) domain_error("gamma");
if (0 < intpart &&
intpart - 1 < (double)numberof(fact_table)) {
return DBL2NUM(fact_table[(int)intpart - 1]);
}
    }
    d = tgamma(d0);
    return DBL2NUM(d);
}

/*
* call-seq:
* Math.lgamma(x) -> [float, -1 or 1]
*
* Calculates the logarithmic gamma of x and
* the sign of gamma of x.
*
* Math.lgamma(x) is same as
* [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
* but avoid overflow by Math.gamma(x) for large x.
*/

static VALUE
math_lgamma(VALUE obj, VALUE x)
{
    double d0, d;
    int sign=1;
    VALUE v;
    Need_Float(x);
    d0 = RFLOAT_VALUE(x);
    /* check for domain error */
    if (isinf(d0)) {
if (signbit(d0)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
    }
    d = lgamma_r(d0, &sign);
    v = DBL2NUM(d);
    return rb_assoc_new(v, INT2FIX(sign));
}


#define exp1(n) \
VALUE \
rb_math_##n(VALUE x)\
{\
return math_##n(rb_mMath, x);\
}

#define exp2(n) \
VALUE \
rb_math_##n(VALUE x, VALUE y)\
{\
return math_##n(rb_mMath, x, y);\
}

exp2(atan2)
exp1(cos)
exp1(cosh)
exp1(exp)
exp2(hypot)

VALUE
rb_math_log(int argc, VALUE *argv)
{
    return math_log(argc, argv);
}

exp1(sin)
exp1(sinh)
exp1(sqrt)


/*
* Document-class: Math::DomainError
*
* Raised when a mathematical function is evaluated outside of its
* domain of definition.
*
* For example, since +cos+ returns values in the range -1..1,
* its inverse function +acos+ is only defined on that interval:
*
* Math.acos(42)
*
* <em>produces:</em>
*
* Math::DomainError: Numerical argument is out of domain - "acos"
*/

/*
* Document-class: Math
*
* The <code>Math</code> module contains module functions for basic
* trigonometric and transcendental functions. See class
* <code>Float</code> for a list of constants that
* define Ruby's floating point accuracy.
*/


void
Init_Math(void)
{
    rb_mMath = rb_define_module("Math");
    rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError);

#ifdef M_PI
    rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI));
#else
    rb_define_const(rb_mMath, "PI", DBL2NUM(atan(1.0)*4.0));
#endif

#ifdef M_E
    rb_define_const(rb_mMath, "E", DBL2NUM(M_E));
#else
    rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0)));
#endif

    rb_define_module_function(rb_mMath, "atan2", math_atan2, 2);
    rb_define_module_function(rb_mMath, "cos", math_cos, 1);
    rb_define_module_function(rb_mMath, "sin", math_sin, 1);
    rb_define_module_function(rb_mMath, "tan", math_tan, 1);

    rb_define_module_function(rb_mMath, "acos", math_acos, 1);
    rb_define_module_function(rb_mMath, "asin", math_asin, 1);
    rb_define_module_function(rb_mMath, "atan", math_atan, 1);

    rb_define_module_function(rb_mMath, "cosh", math_cosh, 1);
    rb_define_module_function(rb_mMath, "sinh", math_sinh, 1);
    rb_define_module_function(rb_mMath, "tanh", math_tanh, 1);

    rb_define_module_function(rb_mMath, "acosh", math_acosh, 1);
    rb_define_module_function(rb_mMath, "asinh", math_asinh, 1);
    rb_define_module_function(rb_mMath, "atanh", math_atanh, 1);

    rb_define_module_function(rb_mMath, "exp", math_exp, 1);
    rb_define_module_function(rb_mMath, "log", math_log, -1);
    rb_define_module_function(rb_mMath, "log2", math_log2, 1);
    rb_define_module_function(rb_mMath, "log10", math_log10, 1);
    rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
    rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1);

    rb_define_module_function(rb_mMath, "frexp", math_frexp, 1);
    rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);

    rb_define_module_function(rb_mMath, "hypot", math_hypot, 2);

    rb_define_module_function(rb_mMath, "erf", math_erf, 1);
    rb_define_module_function(rb_mMath, "erfc", math_erfc, 1);

    rb_define_module_function(rb_mMath, "gamma", math_gamma, 1);
    rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
}
Something went wrong with that request. Please try again.