Binary Heap with TDD

2020-03-17 RubySG Online Meetup

Who am [?

| am a Software Engineer working at Shopify (Singapore).
| hardly use Social Media, but you can find me on Twitter @taykangsheng

My hobby is long distance running! Find me on Strava Kang Sheng Tay!

Objective of today’s sharing

1. 80% Learn / revisit a data structure (Binary Heap) today!
2. 20% Do some Test Driven Development together!

What is Binary Heap used for?

Commonly used to build Priority Queues
- Introduced by J. W. J. Williams in 1964 as a data structure for heap sort.
O(log n) time complexity for Insert and Extracting elements from the heap.

What is a Binary °

1. Binary Heap is a structure that stores data in % %
the form of a binary tree (and of course with
some rules / constraints).

Rules (Constraints) °

of Binary Heap
@ &

Binary Heap have 2 rules (constraints) that makes it

more than just a binary tree. ° ° ° ‘
1. Shape property
2. Heap property ’ ’

Rules (Constraints)
of Binary Heap

Shape Property:

1. Alllevels of the tree, except possibly the last one
(deepest) are fully filled, and,

2. If the last level of the tree is not complete, the
nodes of that level are filled from left to right.

Rules (Constraints)
of Binary Heap

Heap Property:

1. the key stored in each node is either greater than
or equal to () or less than or equal to (<) the
keys in the node's children

2. Max-Heap & Min-Heap

Operations of Binary °

Heap
@ @

1. Insert a new node / element to the Binary

Heap.
2. Extract the top node / element from the
Binary Heap.

Operations of Binary
Heap (Insert)

1. Add the node at the end of the tree according
to the Shape Property*

2. Move the node up the tree to match the
heap property**

* Shape Property: Fill the tree from top to down, left to right.
** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Insert)

1. Add the node at the end of the tree according
to the Shape Property*

2. Move the node up the tree to match the
heap property**

* Shape Property: Fill the tree from top to down, left to right.
** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Insert)

1. Add the node at the end of the tree according
to the Shape Property*

2. Move the node up the tree to match the
heap property**

* Shape Property: Fill the tree from top to down, left to right.
** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Insert)

1. Add the node at the end of the tree according
to the Shape Property*

2. Move the node up the tree to match the
heap property**

* Shape Property: Fill the tree from top to down, left to right.
** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Extract)

1. Move the last node to the position of the first
node.

2. Move the “last” node down until tree fulfils
the Heap Property*

** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Extract)

1. Switch the biggest node with the last node.
2. Move the “last” node down until tree fulfils
the Heap Property*

** Heap Property: Parent nodes are >= to daughter nodes

‘‘‘‘‘

Operations of Binary
Heap (Extract)

1. Switch the biggest node with the last node.
2. Move the “last” node down until tree fulfils
the Heap Property*

** Heap Property: Parent nodes are >= to daughter nodes

-

36

Operations of Binary
Heap (Extract)

1. Switch the biggest node with the last node.
2. Move the “last” node down until tree fulfils
the Heap Property*

** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Extract)

1. Switch the biggest node with the last node.
2. Move the “last” node down until tree fulfils
the Heap Property*

** Heap Property: Parent nodes are >= to daughter nodes

Operations of Binary
Heap (Extract)

1. Switch the biggest node with the last node.
2. Move the “last” node down until tree fulfils
the Heap Property*

** Heap Property: Parent nodes are >= to daughter nodes

Recap: Binary Heap

Rules / Constraints: Operations:

- Shape Property. Top to bottom; right to left. - Insert a new node

- Heap Property. Consistent order of values - Extract the top node
throughout the tree. Parent nodes >=to

daughter nodes or Parent nodes <=to

daughter nodes.

Writing Tests!

TDD! Why?

- TDD helps keep us from going Yak Shaving*

- Yak shaving is what you are doing when you're doing some stupid, fiddly little task that bears no
obvious relationship to what you're supposed to be working on, but yet a chain of twelve causal
relations links what you're doing to the original meta-task.*

* https://www.hanselman.com/blog/YakShavingDefinedlllGetThatDoneAsSoonAsIShaveThisYak.aspx

Writing Tests!

Binary Heap can be easily represented using an Array.

Test Data

Insert(45)

Test Data

Solution

https://github.com/TayKangSheng/ruby-algorithms

What we have today: https://github.com/TayKangSheng/ruby-algorithms/blob/master/binary_heap.rb

Solution: https://github.com/TayKangSheng/ruby-algorithms/blob/master/binary_heap_solution.rb

https://github.com/TayKangSheng/ruby-algorithms
https://github.com/TayKangSheng/ruby-algorithms/blob/master/binary_heap.rb
https://github.com/TayKangSheng/ruby-algorithms/blob/master/binary_heap_solution.rb

Feedbacks are

welcome!

Twitter: @taykangsheng
GitHub: @taykangsheng

