
Fiber
RubySG - April 2020

Who am I?
Software Developer working at
Shopify Singapore.

Twitter → @taykangsheng

GitHub → @taykangsheng

What is Fiber?
Fiber is a control flow primitive introduced in Ruby-1.9. [6]

They are a means of creating code blocks that can be paused and resumed. [5]

They provide lightweight concurrency (Coroutines) in Ruby. [4]

The documentation for Fiber can be found at
https://ruby-doc.org/core-2.7.1/Fiber.html

https://ruby-doc.org/core-2.7.1/Fiber.html

Basic usage of Fiber
3 main methods.

1. .new
2. .yield
3. #resume

a = Fiber.new do
 puts "checkpoint 1"
 Fiber.yield
 puts "checkpoint 2"
end

>> a.resume
"checkpoint 1"
=> nil
>> a.resume
"checkpoint 2"
=> nil

Basic usage of Fiber
.new

The standard operator to create new
Ruby objects!

To create a Fiber, pass in a block while
calling .new.

a = Fiber.new do
 puts "checkpoint 1"
 Fiber.yield
 puts "checkpoint 2"
end

>> a.resume
"checkpoint 1"
=> nil
>> a.resume
"checkpoint 2"
=> nil

Basic usage of Fiber
.yield(args, …)

.yield pauses the code execution. It is
like the “pause button”.

When the code execution hits .yield, it
will pause the code execution at that
point. Code execution will start from
this point again the next time.

a = Fiber.new do
 puts "checkpoint 1"
 Fiber.yield
 puts "checkpoint 2"
end

>> a.resume
"checkpoint 1"
=> nil
>> a.resume
"checkpoint 2"
=> nil

Basic usage of Fiber
#resume(args, …)

Call #resume to execute the code
inside the given block.

If #resume is not called before, then it
will just start executing the code.

If #resume is called before, then it will
continue where it left off.

a = Fiber.new do
 puts "checkpoint 1"
 Fiber.yield
 puts "checkpoint 2"
end

>> a.resume
"checkpoint 1"
=> nil
>> a.resume
"checkpoint 2"
=> nil

Basic usage of Fiber
a = Fiber.new do
 puts "checkpoint 1"
 Fiber.yield
 puts "checkpoint 2"
end

>> a.resume
"checkpoint 1"
=> nil
>> a.resume
"checkpoint 2"
=> nil

What is the difference between Threads and Fiber?
1. Threads run in the “background” while Fiber runs as the main program

when it is executing. [2]
2. Fibers are never preempted and that the scheduling must be done by the

programmer and not the VM. [5]

Libraries that uses Fiber?
#1 use of fibers in Ruby is to implement Enumerators [2].

Notable RubyGems that uses Fiber:

1. Falcon, https://github.com/socketry/falcon
2. Async, https://github.com/socketry/async

https://github.com/socketry/falcon
https://github.com/socketry/async

fib = Fiber.new do
 x, y = 0, 1

 loop do
 Fiber.yield y
 x, y = y, x + y
 end
end

Implementing infinite Fibonacci sequence with Fiber
>> fib.resume
=> 1
>> fib.resume
=> 1
>> fib.resume
=> 2
>> fib.resume
=> 3
>> fib.resume
=> 5
>> fib.resume
=> 8
>> fib.resume
=> 13
....

Conclusion
Fiber implicitly preserve state without having the programmer to worry about it.
[3]

Fiber force the programmer to do explicit scheduling which can certainly add to
the complexity of the program, but offer us the full flexibility of determining how
our CPU resources are used and also help us avoid the need for locks in mutexes
in our code! [3]

References
[1] https://stackoverflow.com/a/9194052

[2] https://www.rubyguides.com/2019/11/what-are-fibers-in-ruby/

[3] https://www.igvita.com/2009/05/13/fibers-cooperative-scheduling-in-ruby/

[4] https://www.infoq.com/news/2007/08/ruby-1-9-fibers/

[5] https://ruby-doc.org/core-2.7.1/Fiber.html

[6] http://www.rubyinside.com/ruby-fibers-8-useful-reads-on-rubys-new-concurrency-feature-1769.html

https://stackoverflow.com/a/9194052
https://www.rubyguides.com/2019/11/what-are-fibers-in-ruby/
https://www.igvita.com/2009/05/13/fibers-cooperative-scheduling-in-ruby/
https://www.infoq.com/news/2007/08/ruby-1-9-fibers/
https://ruby-doc.org/core-2.7.1/Fiber.html#method-i-resume
http://www.rubyinside.com/ruby-fibers-8-useful-reads-on-rubys-new-concurrency-feature-1769.html

That’s all folks

