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1
Lecture 1

1.1 History

Date People What Why Techniques

1969
Faddeev

and Popov
Gauge fixing

(adding ghosts)
Quantize
Yang-Mills

Berezinian
integration

1973
’t Hooft and
Veltman

Quantized
Yang-Mills

Quantize
Yang-Mills

Feynman
diagrams

1975
Becchi, Rouet,
Stora, Tyutin

(BRST)

Cohomological
theory to quantize

Yang-Mills

Understanding
’t Hooft

and Veltman

Derived invariants
(Lie algebra
cohomology)

1981
Batallin and
Vilkovisky

(BV)

Quantize systems
with complicated
gauge symmetries

Supergravity
Derived

intersections
(Koszul complexes)

1992 Henneaux
Quantize
Yang-Mills
using BV

Analyze
Yang-Mills
using BV

Derived
intersections

2007 Costello
Combine BV
with effective
field theory

Make BV
quantization
rigorous

Derived everything,
analysis, and

homotopy theory

1.2 References
The main references for this seminar will be:

• Costello - Renormalization and Effective Field Theory [Cos11];

• Elliot, Williams, Yoo - Asymptotic Freedom in the BV Formalism [EWY18];

• Gwilliam - Factorization algebras and free field theories [Gwi].

1.3 Roadmap to BV Quantization
The space of fields E• is a cochain complex

. . . E−1 E0 E1 E2 . . .
& & &
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Classical
BV theory

Quantum
BV theory

Quantization

Functional
analysis

DANGER!

Quantum
Yang-Mills

Figure 1.1: Roadmap to BV quantization.

equipped with a differential & such that &2 = 0. Moreover, E admits a −1-shifted
symplectic structure, that is, there exists a non degenerate pairing of degree −1

〈·, ·〉 : E ⊗ E −→ ℝ[−1]

such that 〈G,~〉 = −(−1) ( |G |+1) ( |~ |+1) 〈~, G〉. This structure defines a +1-shifted Poisson
bracket

{·, ·} : �(E) ⊗ �(E) −→ �(E)
where �(E) � Sym•(E∨) is the (graded) commutative algebra of polynomial func-
tions on the dual complex E∨. Pick ( ∈ �(E) obeying the classicalmaster equation
(CME)

{(, (} = 0.

The data (E, 〈·, ·〉, () defines a classical BV theory. The CME says {(, ·} is a differ-
ential which makes (�(E), {(, ·}) into a cochain complex such that

H0
�(E) � �(Crit(()),

where Crit(() denotes the critical locus of ( . We will restrict to ( of the form

( (4) = 〈4,&4〉︸ ︷︷ ︸
free part
(kinetic +

mass terms)

+ � (4)︸︷︷︸
interaction
part (cubic
or higher)

.

Example 1. Why are the cubic and higher order terms called interaction terms? For
electromagnetism on a manifold" we have a space of fields F = Ω1(") ⊕ Ω0(", ()
in degree 0. Let � = d� and define

( (�,k ) =
∫
"

� ∧★� + 〈k, /dk 〉 dvol︸                      ︷︷                      ︸
quadratic terms

+ 〈k, /�k 〉 dvol︸         ︷︷         ︸
interaction terms

.

Computing the Euler-Lagrange equations we obtain the system of differential equa-
tions

★d★� = k̄W `k dG`
/3�k = 0

which is coupled because of the interaction term.
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1.4 Quantization in the BV formalism
The slogan of quantization in the BV formalism is to deform the differential. In the
perturbative context we work in formal power series in ℏ, for example, over the ring
ℝ[[ℏ]]. Quantization results in a cochain complex (�(E)[[ℏ]], {(@, ·} + ℏ∆, where
∆ is called the BV Laplacian, and (@ ∈ �(E)[[ℏ]] satisfies the quantum master
equation (QME)

({(@, ·} + ℏ∆)2 = 0

Example 2. In finite dimensions, i.e. F � ℝ= , the BV fields are

E = ℝ ℝ

therefore
�(E) � ℝ

[
G1, . . . , G=, b1, . . . , b=

]
and the BV Laplacian takes the form

∆ =

=∑̀
=1

m

mb`
m

mG `
.

In this form, it becomes clear that ∆ is a differential operator of degree 1 such that
∆2 = 0.

The quantum action is a function of the form

(@ (4) = 〈4,&4〉 + �@ (4)

where �@ ∈ �(E)[[ℏ]] is cubic mod ℏ and satisfies the QME

&�@ + 1
2
{�@, �@} + ℏ∆�@ = 0

which resembles the Maurer-Cartan (MC) equation. In infinite dimensions, some
problems arise:

i) there may be no solution to this equation. In this case we say that quantization
is obstructed (there is an anomaly);

ii) the QME in infinite dimensions is ill-defined. Some functional analysis is needed
to make sense of this problem.
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Lecture 2

In this lecture we consider a naive example that aims to exemplify how the Euler-
Lagrange equations lead us to classical BV theories.

Example 3. Let F be a finite-dimensional vector space encoding the naive space of
fields and consider an action

( : F −→ ℝ.

We say that ( is a naive action because it might be necessary to add additional
terms to ( to guarantee that it satisfies the CME. The solutions to the Euler-Lagrange
equation are fields 5 ∈ F such that d( 5 = 0. Restricting to the case F = " for
some finite-dimensional manifold " , we say that critical points of the action form
the critical locus of (

Crit(() =
{
? ∈ "

�� d(? = 0
}
.

Alternatively, we can characterize the critical locus of ( as an intersection in ) ∗"

Crit(() = Graph(d() ∩ Graph(")

where we identify" with the zero section. It follows that

�(Crit(()) = �(Graph(d()) ⊗�() ∗") �(").

We are going to consider a derived version of this construction, where the tensor
product ⊗ is replaced by a derived tensor product ⊗L. This raises the obvious ques-
tions:

Figure 2.1: Well-behaved (in green) and badly-behaved (in red) points of an intersec-
tion.

6
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• Why? This intersection might not be well-behaved, in the sense that d( and
the zero section might not intersect transversally, or even smoothly, at every
point, as illustrated in figure 2.1. The derived approach allows us to study these
badly-behaved points using Serre’s intersection formula.

• How? We replace�(Graph(d()) ⊗�() ∗")�(") with a dg commutative algebra
� such that

H0� = �(Graph(d()) ⊗�() ∗") �(").
To compute the derived tensor product ⊗L we need to resolve either �(") or
�(Graph(d()) in �() ∗")-modules. Let us make use of Darboux coordinates
to resolve

�(Graph(d()) = �() ∗")
/ (
5 |Graph(d() = 0

)
= �() ∗")

/ (
?` − m`(

)
.

Consider the resolution

. . . �() ∗") (b1, . . . , b=) �() ∗")

�(Graph(d())

b` ↦→?`−m`(

whichwe extend to the left as a Koszul complex −? =
∧?

�() ∗") (b1, . . . , b=) with
differential

d =
∑̀

(?` − m`()
m

mb`
.

This complex freely resolves �(Graph(d()). Alternatively, ( •, d) admits a
coordinate free description where

 −? = �() ∗") ⊗�(") X
? (").

A model for �(Graph(d()) ⊗L
�() ∗") �(") is given by

�(Crith(()) =  −• ⊗) ∗" �(")

which we call the derived critical locus. But notice that

�() ∗") ⊗�(") PV•(") ⊗�() ∗") �(") � PV•(")

where PV•(") denotes the complex of polyvector fields on M. The differential
is given by contracting with d( , so we write

�(Crith(()) = (PV•("),−]d( ).
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Lecture 3

We want to sketch how to go from the Yang-Mills action

(naive(�) =
∫
"=

tr(�� ∧★��)

to the Yang-Mills classical BV theory

−1
Ω0(", g)︸    ︷︷    ︸

ghosts

0
Ω1(", g)︸    ︷︷    ︸

fields

1
Ω=−1(", g)︸       ︷︷       ︸

antifields

2
Ω= (", g)︸     ︷︷     ︸
antighosts

d d★d d

with BV action
(BV(4) = 〈4,&4〉 + � (4)

where
〈4, 5 〉 =

∫
"=

tr(4 ∧ 5 )

is the −1-shifted symplectic structure. There are some points to motivate:
i) fields  fields and antifields: coming from the derived critical locus dCrit(();
ii) ghosts: coming from taking the derived coinvariants of g y + .

For Yang-Mills spacetime is a manifold "= and Ω1(", g) is the space of fields.
However, in what follows, let" be the space of fields. Recall that

Crit(() =
{
? ∈ "

�� d(? = 0
}

= Graph(d() ∩"

in ) ∗" . Dually
�

(
Crit(()

)
= �

(
Graph(d()

)
⊗�() ∗") �(").

By homological yoga, taking the derived intersection means that we replace the ten-
sor product ⊗ with the derived tensor product ⊗L. To find Crith(() we resolve either
�

(
Graph(d()

)
or�(") as�() ∗")-modules. Last time, we wrote the Koszul complex

 −? = PV? (") ⊗�(") �() ∗")

where PV? =
∧? X(") and differential

& : E1 ∧ · · · ∧ E: ⊗ 1 ↦−→
:∑
8=1

(−1)8+1E1 ∧ · · · ∧ Ê8 ∧ · · · ∧ E: ⊗
(
? (E8) − d( (E8)

)
8
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Exercise 1. Check that H0( •, &) � �
(
Graph(d()

)
, so

Crith(() �  • ⊗�() ∗") �(") � PV•(")
and thus �

(
Crith(()

)
' (PV•,−]d( ).

Exercise 2. Show that H0
�(Crith) � �(Crit).

We can enhance �
(
Crith(()

)
to a sheaf on" . Following Grothendieck

Crith(() =
(
", PV•

" ,−]d(
)

is an example of a dg manifold.

Definition 1. A dg manifold is a smooth manifold " with a sheaf �" of dg com-
mutative algebras (DGCAs) locally isomorphic to �" (* ) � ∧ E(* ), where E are
the smooth sections of � → " .

Ignoring the differential, we get a sheaf
(
", PV•

"

)
on" such that

PV" =
∧

X" � SymX[1] .

The underlying graded manifold of Crith(() is
) ∗ [−1]" =

(
", SymX[1]

)
displaying the following properties:
i) the graded manifold) ∗ [−1]" is a −1-shifted symplectic graded manifold just as
) ∗" is a 0-shifted symplectic manifold;

ii) Induced from the−1-shifted symplectic structurewe get a 1-shifted Poisson bracket
on �

(
) ∗ [−1]"

)
= PV(") known as the Schouten bracket

{5 , 6} = 0,
{E, 5 } = E 5 ,
{E,F} = [E,F],

{D, E ∧F} = {D, E} ∧F + E ∧ {D,F}
for 5 , 6 ∈ �(") and D, E,F ∈ PV−1(").

Exercise 3. Show that −]d( = {(, ·}.

Definition 2. A ℙ0 algebra
(
�, d, {·, ·}

)
is a DGCA (�, d) equipped with a 1-shifted

Poisson bracket {·, ·} : � ⊗ � → � obeying:
i) graded skew-symmetry:

{G,~} = −(−1) ( |G |+1) ( |~ |+1){~, G};

ii) graded Poisson identity:

{G,~I} = {G,~}I + (−1) (|G |+1) |~ |~{G, I}
so {G, ·} is a degree |G | + 1 derivation;

iii) graded Jacobi identity:

{G, {~, I}} = {{G,~}, I} + (−1) ( |G |+1) ( |~ |+1){~, {G, I}};

iv) compatibility with differential:

d{G,~} = {dG,~} + (−1) |G |+1{G, d~}.

Exercise 4. Check that the Schouten bracket defines a ℙ0-algebra on �
(
) ∗ [−1]"

)
.
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Lecture 4

Last time we constructed the derived critical locus of ( : " → ℝ

Crith(() =
(
) ∗ [−1]",−]d(

)
where we understand ) ∗ [1]" =

(
", PV•) as the underlying manifold " equipped

with the sheaf defined by the assignment

PV• : * −→ Sym•
�(* )

(
T" (* ) [1]

)
.

Proposition 1. If + is a locally-finite −1-shifted symplectic dg vector space then

�(+ ) = Sym(+ ∨)

is a ℙ-algebra.

Proof. The pairing 〈·, ·〉 induces an isomorphism+ � + ∨ [−1] whichwe use to define
a bracket

{·, ·} : Sym2(+ ∨) −→ ℝ

which we extend as a derivation to �(+ ). �

4.1 Work Perturbatively
Fix a solution to the equations of motion ? ∈ " , and consider+ = )?" instead of" .
Then we can expand ( as a polynomial (or formal power series).

For us, the space of fields F will always be a sheaf of vector spaces on spacetime.
In our example, spacetime is a point pt and F = + for some finite-dimensional vector
space. Going forward we rewrite ) ∗ [−1]"   ) ∗ [−1]+ .

Remark. Be analogy to ungraded geometry ) ∗+ � + ⊕ + ∨ we have that

) ∗ [−1]+ � + ⊕ + ∨ [−1] .

In infinite dimensions we consider the sheaves

) ∗ [−1]F = F ⊕ F ∨ [−1]︸          ︷︷          ︸
sheaf of BV fields

without gauge symmetry

.

10
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Because we are expanding around a critical point the action has takes the form

( (4) = 〈4,&4〉︸ ︷︷ ︸
Hessian
of (

+� (4), & : F −→ F ∨ [−1] .

Now let" be a finite-dimensional manifold called spacetime, F the space of naive
fields, as a sheaf of vector spaces on " , and E the sheaf of BV fields. Our ultimate
goal is to make sense of expressions of the form∫

q∈F (")
exp

(
−(naive

ℏ

)
Dq.

If F = + and ( is quadratic then∫
+

exp
(
−( (q)

ℏ

)
dq =

∫
+

exp
(
−〈q,&q〉

ℏ

)
dq

=

(c
ℏ

) =
2
det(&)− 1

2

and if ( (q) = 〈q,&q〉 + � (q) we incorporate the interaction terms by working per-
turbatively.

Even at finite dimensions, the case det(&) = 0 poses a bad problemwhen trying to
apply the previous formula. However, degenerate critical points are an unavoidable
feature with gauge symmetry 1

G

�

F .︸  ︷︷  ︸
nonlinear action

Example 4. Consider Yang-Mills with gauge group � and trivial gauge bundle" ×
� → " . The space of fields is

F (") = Ω1(", g), g = Lie(�)

and the group of gauge transformations

G = Aut(" ×� −→ ") � Map(",�)

where
LieG � Map(", g) = Ω0(", g).

Instead of G

�

F ("), we focus on the action of the Lie algebra of gauge transforma-
tions

Lie(G)

�

F (").
Adopting the standard notation, we write that 2 ∈ Ω0(", g) acts on � ∈ Ω1(", g) by

2 · � = d2 + [2, �] .

Exercise 5. Check that
(YMnaive =

∫
〈��, ��〉 dvol

is invariant under infinitesimal gauge transformations.

1Gauge transformations preserve the action (naive and the equations of motion.
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Lecture 5

(John Huerta)

5.1 Ultimate Goal
Define and use the Feynman “path” integral∫

q∈F
4−

( (q )
ℏ �q.

(Euclidean field theory)
In the constructive track: see Gonçalo on how to do this. In the BV track: we will

produce a formal power series in ℏ.

5.2 Recall
• From now on: We work perturbatively, i.e., formally (in Algebraic Geometry
speak), i.e., in formal power series, i.e., infinitesimally.

• Now" is going to be a finite dimensional manifold, denoting space-time. E.g.,

" = ℝ3 , or" = pt.

• F always denotes the naive fields, a sheaf of vector spaces on " ; specifically,
sections of some vector bundle � −→ " .
Example: Yang-Mills fields for a trivial �-bundle " ×� −→ " , then F (") =
Ω1(", g), where g = Lie(�).

• E (“extended”), the space of BV-fields, a sheaf of graded vector spaces over " ,
sections of a graded vector bundle � −→ " . E0(") = F (").
In the Yang-Mills example, where 3 = dim"

E(") =
−1

Ω0(", g)︸    ︷︷    ︸
“ghosts”

⊕
0

Ω1(", g)︸    ︷︷    ︸
“fields”

⊕
1

Ω3−1(", g)︸       ︷︷       ︸
“anti-fields”

⊕
2

Ω3 (", g)︸     ︷︷     ︸
“anti-ghosts”

12
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5.3 BV Formulation of Gauge Theory
Input: Naive gauge theory

L︸︷︷︸
Lie algebra of

infinitesimal gauge
transformations

y F︸︷︷︸
space of naive fields

.

The action may be non-linear. In the Young-Mills example it is an affine action

Ω0("g) y Ω1("g) .

There is a two-step process to writing down the gauge theory:
1. Take the “stacky quotient”

F   F��L (this lecture)

2. Take the derived critical locus of (gauge:

) ∗ [−1] (F //L) . (already done)

5.4 Lightning Fast Introduction to Derived Invari-
ants

g a finite dimensional Lie algebra, ' a finite dimensional representation of g

g → gl(')

over some field k ∈ {ℝ,ℂ}. Observe that

'g = {E ∈ ℝ | -E = 0 for all - ∈ g}
= Homg (k, ')

Derived version Hom   ℝHom.
Try 'hg = ℝHom*g (k, '), where* is the enveloping algebra. I.e.,

*g =
)g

G ⊗ ~ − ~ ⊗ G − [G,~]

where )g is the tensor algebra.

Fact 1. Repg ' *g−mod .

To compute ℝHom*g (k, ') we need to resolve k or ' as*g modules.
Similar to the Koszul complex

· · ·
−:

Λ:g ⊗ *g · · ·
−1

g ⊗ *g
0
*g
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with differential

Λ:+1g⊗ −→Λ: ⊗ *g

G0 ∧ · · · ∧ G: ⊗ ~ ↦−→
:∑
8=0

(−1)8G0 ∧ · · · Ĝ8 · · · ∧ G: ⊗ G8~

+
∑
8< 9

(−1)8+ 9 [G8, G 9 ] ∧ G0 ∧ · · · Ĝ8 · · · Ĝ 9 · · · ∧ G: ⊗ ~ .

With this differential

� 0 (Λ•g ⊗ *g) ' k

�: (Λ•g ⊗ *g) = 0 for : < 0

Hence

'hg = ℝHom*g (k, ')
= Hom*g (Λ•g ⊗ *g, ')
' Homk (Λ•g, ')

because Λ•g ⊗ *g is free.

Definition 3. For g a Lie algebra, ' a representation of g, the Chevalley-Eilenberg
complex �•(g, ') is defined as

�: (g, ') = Hom(Λ:g, ')

with

dl (G0, . . . , G:) =
:∑
8=0

(−1)8G8 · l (G0, . . . , Ĝ8, . . . , G:)

+
∑
8< 9

(−1)8+ 9l ( [G8, G 9 ], G0, . . . , Ĝ8, . . . , Ĝ 9 , . . . , G:)

Conclusion. Back to ' = O(+ ), then

'hg = O(+ )hg

= Homk (Λ•g,O(+ ))
' Λ•g∗ ⊗ O(+ )
' Sym(g∗ [−1]) ⊗ Sym(+ ∗)

' Sym(
0
+ ∗ ⊕

1
g∗ [−1])

' O(
−1

g[1] ⊕
0
+ )

=: O(+ //g) .

Hence

Definition 4. + //g := g[1] ⊕ +

Puzzle: what happened to the differential d. It becomes a vector field on g ⊕ + !.
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5.5 Back to Yang-Mills

+   Ω1(", g)
g   Ω0(", g)

Step 1: Ω1(", g) //Ω0(", g) := Ω0(", g) [1] ⊕ Ω1(", g)
Step 2: E for Yang-Mills

) ∗ [−1] (
−1

Ω0(", g) [1] ⊕
0

Ω1(", g)) ' Ω0(", g) [1] ⊕ Ω1(", g)
⊕ (Ω0(", g) [1] ⊕ Ω1(", g))∗ [−1]
' Ω0(", g) [1] ⊕ Ω1(", g)
⊕ Ω3−1(", g) [−1] ⊕ Ω3 (", g) [−2]
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Lecture 6

Last time we discussed perturbative classical BV gauge theory. We had

L
�

F

with (naive ∈ �loc(F ). The recipe is:
i) take the stacky quotient

F��L = L[1] ⊕ F

with a vector field&CE. The condition that (naive is gauge-invariant is equivalent
to

&CE(naive = 0;

ii) take the derived critical locus

) ∗ [−1]
(
F��L

)
with differential {(naive, ·}. The underlying space is

L[1] ⊕ F ⊕
(
L[1] ⊕ F

)∨ [−1] = L[1] ⊕ F ⊕ F ∨ [−1] ⊕ L∨ [−2] .

iii) obtain the BV action ( satisfying the CME

{(, (} = 0

and incorporate (somehow) (naive and &CE. This means that

(naive = (
��
F , and &CE = {(, ·}

��
L[1]⊕F .

Fact 2. The vector field &CE is Hamiltonian, i.e.

&CE = {(CE, ·}

with respect to the −1-shifted symplectic structure, for some (CE. As such, we can
define

( = (naive + (CE.

16
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For Yang-Mills on an oriented Riemannian =-manifold, with trivial bundle " ×
� → " and g = Lie(�), E looks like

Ω0(", g) Ω1(", g) Ω=−1(", g) Ω= (", g)

and the we write the action

(naive(�) =
∫
"

1
4
〈��, ��〉.

We compute that

(CE(2, �,�∗, 2∗) =
∫
"

〈d�2, �∗〉 + 1
2
〈[2, 2], 2∗〉.

Choose bases {)0} for g and {48} for + . An element of 65 A0: [1] ⊕ + can be written

-0)0 [1] + E848, -0, E8 ∈ ℝ.

Let b0 be the linear coordinate corresponding to )0 [1] and G8 corresponding to 48 .
Note that b0 has degree +1.

Proposition 2 (Berezin, Leites). Consider

Der
(
�(ℝ=) ⊗

∧
, ∨

)
where {\0} is a basis of, , and \0 denotes the respective dual basis elements. Then

Der
(
�(ℝ=) ⊗

∧
, ∨

)
=

(
�(ℝ=) ⊗

∧
, ∨

) { m

mG8
,
m

m\ 8

}
where m

m\ 8
is the degree −1 derivation such that

m

m\ 8
\ 1 . . . \= = (−1)8+1\ 1 . . . \̂: . . . \=X8,: .

The idea of the computation is to determine the coefficients of the derivation&��
by computing &CEG

8 and &CEb
0 . We obtain

&CE = b0d80
m

mG8

(
− 1
2
5 0
12
b1b2

m

mb0︸         ︷︷         ︸
1
2 [2,2]

)

where d : g → X(+ ) and [)0,)1] = 5 20,1)2 .

Definition 5. A perturbative classical BV theory consists of the data:
i) a graded vector bundle � → " ;

ii) a −1-shifted symplectic structure

� � � −→ Dens" ;

iii) a local action functional ( ∈ �loc(E) that is at least quadratic and satisfies the
CME.
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Let E be the topological vector space (TVS) of global smooth sections, and E2 the
TVS of compactly supported sections. Then�(E) is the completion of the symmetric
algebra on E∨

2 . We define
�(E)loc(E) ⊆ �(E)

where � ∈ �loc(E) is a sum of terms of the form

4 ∈ E2 ↦−→
∫
"

D14 . . .D=4Ω

for D8 : E → C∞(") and Ω a density on" .

Proposition 3. For a classical BF theory E we can write

( =

∫
"

〈4,&4〉 + � (4)

where & : E → E is a differential operator of degree +1, squares to zero, and � ∈
�loc(E) is at least cubic and satisfies the QME

&� + 1
2
{� , � } = 0.
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Lecture 7 - Rui Peixoto

7.1 Quantum BV in Finite Dimensions
In this section we start out journey towards the quantization of BV theories. Recall
that out goal is to provide a homological approach to compute integrals of the form∫

q∈F
e−

(
ℏ Dq.

We will introduce the quantum BV complex as a generalized divergence complex.
In finite dimensions this is an obscured version of the de Rham complex, where we
have the usual homological approach to integration.

For this chapter we return to the finite-dimensional case, which corresponds to
the case where spacetime is a point" = pt. Consider:
i) a =-dimensional graded vector space + of fields;
ii) a −1-shifted symplectic pairing 〈·, ·〉 : + ⊗ + → ℝ;
iii) an action ( ∈ �(+ ) such that

{(, (} = 0, classical master
equation (CME)

where {·, ·} : �(+ ) ⊗�(+ ) → �(+ ) is the +1-shifted Poisson bracket induced
by the symplectic pairing.

Such a setup makes
(
�(+ ), {·, ·}

)
into a cochain complex such that

H0
�(+ ) � �(Crit(()) .

Passing to the derived critical locus, we have seen that functions on Crith(() form
a commutative dg algebra

�
(
Crith(()

)
=

(
PV•(+ ),−]d(

)
which we call the classical BV complex. Passing to the quantum version amounts
to deforming this complex by changing the differential.

7.2 Integration in Finite Dimensions
Fixing a nonvanishing top form ` ∈ Ω= (+ ) defines a map∫

+

: �(+ ) −→ ℝ

5 ↦−→
∫
+

5 `

19
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where wemake the necessary assumptions on� such that 5 is integrable with respect
to `. This map depends only on cohomological data. Explicitly, we have that∫

"

5 ` =

[
5 `

][
`
]

where [·] denotes the cohomology class inHdR(+ ). Note that the denominator is just
a normalizing factor. If we pick ` ∈ Ω= (+ ) such that ∫+ ` = 1, computing the integral
of 5 with respect to ` boils down to computing a class in cohomology∫

+

5 ` =
[
5 `

]
.

The pairing by integration with ` is nondegenerate so it defines an isomorphism
�(+ ) → Ω= (+ ) which we can extends to an isomorphism of complexes

<` : PV−: (+ ) −→ Ω=−: (+ )
- ↦−→ ]- `.

Example 5. In coordinates, let ` = dG1 ∧ · · · ∧ dG= and - = 5 m
mG 91

∧ · · · ∧ m

mG 9:
. Then

<` (- ) = 5<`

(
m

mG 91
∧ · · · ∧ m

mG 9:

)
= f 5 dG1 . . . dĜ 98 . . . dĜ 9: . . . dG=

where the terms dĜ 98 are omitted, and f = ±1 is such that

fdG1 . . . dG= = dG 91 . . . dG 9: ∧ dG1 . . . dG= .

The divergence operator on PV•(+ )

div` =<−1
` d<`

is obtained by pulling back the de Rham differential on Ω• using `.

. . . PV−2(+ ) PV−1(+ ) �(+ )

. . . Ω=−2(+ ) Ω=−1(+ ) Ω= (+ )

div`

<`

div`

<` <`

d d

Because it admits this definition in the finite-dimensional case, we say that the
divergence complex is an obscured version of the usual de Rham complex. At this
point, onemight wonder: why dowe not just use the de Rham complex to beginwith?
The point is that, unlike the de Rham complex, the divergence complex generalizes
to the infinite-dimensional case.

Recall how before we recovered the space of functions on the critical locusCrit(()
from PV• by passing to cohomology in degree 0. This crucial information is encoded
in the de Rham complex in degree =, where top forms live. In infinite dimensions,
this data escapes as the de Rham complex ceases to be bounded above. However,
it still resides in degree 0 in the divergence complex. In this sense, the natural ap-
proach in quantumfield theory is to generalize the divergence operator to the infinite-
dimensional case.
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Example 6. Let + = ℝ and `Leb be the Lebesgue measure. A simple computation
recovers the usual divergence operator

divLeb

(
5
m

mG

)
=<−1

` d<`

(
5
m

mG

)
=<−1

`

(
d5

)
=<−1

`

(
m5

mG
`

)
=
m5

mG
.

If we write the generator of the vector fields as b = m
mG

then

divLeb =
m

mG

m

mb
= ∆BV

takes the form of the usual BV Laplacian. It is straightforward to generalize to the
=-dimensional case

divLeb = ∆BV =
∑
8=1

m

mG8
m

mb8
.

Example 7. Consider again + = ℝ but let `( be a Gaussian measure of the form

`( = e−
(
ℏ `Leb.

In this case, we see that

div( =<−1
`(
d<`(

(
5
m

mG

)
=<−1

`(
d
(
5 e−

(
ℏ

)
=<−1

`(

(
m5

mG
e−

(
ℏ `Leb −

1
ℏ

m(

mG
5 e−

(
ℏ `Leb

)
=
m5

mG
− 1
ℏ

m(

mG
5 .

from which we conclude that

div( = −1
ℏ
]d( + ∆BV.

If ℏ ≠ 0 (and is not formal) we can multiply by ℏ to obtain a differential

ℏ div( = −]d( + ℏ∆BV

on PV•(+ ) that we recognize as a deformation of the classical BV differential given
by contracting with d( . Alternatively, we can also write the divergence operator in
terms of the Schouten bracket

div( = {(, ·} + ℏ∆BV.
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Proposition 4 (Wick’s Lemma). We can recover (a baby version of)Wick’s Lemma
employing just cohomological methods. This lemma gives a formula to compute the
moments of the Gaussian measure associated to a free field theory. Let

( =
G2

2
, ℏ div( = −G m

mb
+ ℏ

m

mG

m

mb

with respect to which we compute

div(
(
G=−1b

)
= −G= + ℏ(= − 1)G=−2.

Passing to cohomology we get [
G=

]
= ℏ(= − 1)

[
G=−2

]
which we apply recursively to conclude that[

G=
]
=

∫
+

G=` =

{
ℏ

=
2 (= − 1)!! if = ∈ 2ℤ≥0

0 otherwise
.

7.3 Quantum Master Equation
The quantum master equation (QME) can be formulated as the requirement that
the divergence operator squares to zero

div2( = 0

such that
(
PV•, div(

)
is a cochain complex. We have seen that

ℏ div( (- ) = {(, - } + ℏ∆BV(- ), ∀- ∈ PV−2(+ )

therefore (
ℏ div( (- )

)2
= {(, {(, - }} + ℏ{(,∆BV- }
+ ℏ∆BV{(, - } + ℏ2∆2

BV-

=

{1
2
{(, (} + ℏ∆BV(, -

}
where we employed the graded Jacobi identity for the Schouten bracket

{{(, (}, - } = 2{(, {(, - }}

and compatibility with the differential ∆BV

∆BV{(, - } = {∆BV(, - } − {(,∆BV- }.

Because - is arbitrary, we conclude that div2( = 0 if

1
2
{(, (} + ℏ∆BV( = 0.

which we recognize as the Maurer-Cartan equation.
We conclude with one more reformulation of the QME. A straightforward but

lengthy computation shows that for -,. ∈ PV•

div( (- ∧ . ) = div( - ∧ . + (−1) |- |- div( . + {-,. }.
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This is a consequence of the fact that, even though<` defines a chain map, it is not
a Lie algebra morphisms with respect to the wedge product. The failure of div( to
be a derivation is measured by the bracket. Using this identity, we can formulate the
QME as the condition

div(
(
e−

(
ℏ

)
= 0.

To see this, note that

div( (e−
(
ℏ ) =

{
(, e−

(
ℏ

}
+ ℏ∆BVe−

(
ℏ = − 1

ℏ2

(1
2
{(, (} + ℏ∆BV(

)
e−

(
ℏ

vanishes if
1
2
{(, (} + ∆BV( = 0.
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8.1 Feynman Integrals in Finite Dimensions
Our study will involve integrals of the form∫

ℝ=

d=Ge−& (G,G) =
c

=
2√

det&

for a nondegenerate quadratic form & .

Expectation value of monomials
We are interested in expectation values

〈〈G81 . . . G82<〉〉 =
∫
ℝ= d=Ge−

1
2& (G,G)G81 . . . G82<∫

ℝ= d=Ge−
1
2& (G,G)

.

To compute these consider

, (� ) =
∫
ℝ=

d=Ge−
1
2& (G,G)+〈� ,G〉

which is such that

〈〈G81 . . . G82<〉〉 =
m

m�81
. . .

m

m�82<

����
�=0

, (� )
, (0)

Completing the square we get

, (� ) = e
1
2 〈� ,&

−1 � 〉
∫
ℝ=

d=Ge−
1
2& (G,G)+〈� ,G〉− 1

2 〈� ,&
−1G〉

= e
1
2 〈� ,&

−1 � 〉
∫
ℝ=

d=Ge−
1
2& (G−&−1 � ,G−&−1 � )

= e
1
2 〈� ,&

−1 � 〉
∫
ℝ=

d=~e−
1
2& (~,~)︸              ︷︷              ︸

, (0)

therefore

〈〈G81 . . . G82<〉〉 =
m

m�81
. . .

m

m�82<

����
�=0

e−
1
2 〈� ,&

−1 � 〉

24
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and Taylor expanding the exponential we obtain

〈〈G81 . . . G82<〉〉 =
m

m�81
. . .

m

m�82<

����
�=0

∞∑
?=0

1
2??!

(∑
9,:

� 9 �:&
−1
9:

)?
=

1
2<<!

m

m�81
. . .

m

m�82<

����
�=0

(∑
9,:

� 9 �:&
−1
9:

)<
=

1
2<<!

∑
f∈(2<

&−1
8f18f2

. . . &−1
8f2<−18f2<

.

We can exploit the symmetry of this formula by noticing that there exists a free action
of the group

(< n ℤ<2

corresponding to permutations of the elements in each pair, as well as the order of
the pairings. We call the equivalence classes of permutations corresponding to pick-
ing (unordered) pairs of elements by pairings, and write the corresponding quotient
group

Matchings2< = (2<
/
(< n ℤ<2

.

which we will often abbreviate to justM2< . The size of any orbit is |O(f) | = 2<<! so
we sum on matchings to obtain

〈〈G81 . . . G82<〉〉 =
∑
f∈M2<

&−1
8f18f2

. . . &−1
8f2<−18f2<

=
∑
f∈M2<

(&−1)⊗< ◦ f ◦
(
G81 ⊗ · · · ⊗ G82<

)
.

Example 8. Consider a monomialk = G1G2G3G4, then

〈〈G1G2G3G4〉〉 =
G1 G2 G3 G4

+
G1 G2 G3 G4

+
G1 G2 G3 G4

= &−1
12&

−1
34 +&−1

14&
−1
23 +&−1

13&
−1
24 .

On the other hand, for the monomialk = G4 there is further symmetry, so we get

〈〈G4〉〉 = 3&−1
11&

−1
11 .

For a general finite-dimensional vector space+ the expectation value corresponds
to a map

〈〈·〉〉 : T+ ∨ −→ ℝ

where T+ ∨ denotes the tensor algebra of + . Picking a top form ` on + we can write

〈〈q81 ⊗ · · · ⊗ q82<〉〉 =
∫
+
`e−

1
2& (G,G)q81 (G) . . . q82< (G)∫

+
`e−

1
2& (G,G)

=
∑
[f]

(&−1)⊗< ◦ f ◦ (q81 ⊗ · · · ⊗ q82< )

The graphical representation systematize the computations. In this context, a
graph consists of:
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i) a finite set + of vertices;
ii) a finite set �� of half-edges (an even number of them);

iii) an incidence map 8 : �� → + ;

iv) a matching f on ��.
A graph automorphism permutes vertices and half-edges, respecting 8 and f .

Example 9. The following graph has a nontrivial automorphism

0 1

corresponding to permuting half-edges 0 ↔ 1.

Expectation value of symmetric tensors
Consider homogeneous elements Ψ1, . . . ,ΨA ∈ Sym+ ∨ such that

Ψ0 =
∑

(k0)81,...,830G81 . . . G830

where |Ψ0 | = 30 and 2< =
∑A
0=1 30 . We compute the expectation value

〈〈Ψ1 ⊗ · · · ⊗ ΨA 〉〉 =
∑
[f]

(&−1)⊗< ◦ f ◦ (Ψ1 ⊗ · · · ⊗ ΨA ).

Example 10. For Ψ ∈ Sym4+ ∨ we have

〈〈Ψ〉〉 =

Ψ

+

Ψ

+

Ψ

= 3

Ψ

In general, on 〈〈Ψ1 ⊗ · · · ⊗ ΨA 〉〉 there exists an action of

(31 × · · · × (3A

therefore we can write〈〈
1
31!

Ψ1 ⊗ · · · ⊗ 1
3A !

ΨA

〉〉
=

∑
[f]

1��Stabf �� (&−1)⊗< ◦ f ◦ (Ψ1 ⊗ · · · ⊗ ΨA )

where
[f] ∈ (∏A

0=1 (30
) ∖Matchings2< .

Example 11. Employing the previous formula we see that〈〈
1
4!
Ψ

〉〉
=

1��Stabf ��
Ψ

=
1
8

∑
8, 9,:,;

Ψ8 9:; (&−1)8: (&−1) 9; .
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Example 12. Let Ψ1,Ψ2 ∈ Sym3+ ∨. We can verify the previous formula by explicitly
computing

〈〈Ψ1Ψ2〉〉 =

Ψ1 Ψ2

+ 5 terms

+

Ψ1 Ψ2

+ 9 terms

= 6
Ψ1 Ψ2 + 9

Ψ1 Ψ2

=
3!3!
3!

Ψ1 Ψ2 + 3!3!
4

Ψ1 Ψ2
.

Example 13. The example Ψ ∈ Sym3+ ∨ exhibits more symmetry. As before, we
have

〈〈Ψ ⊗ Ψ〉〉 = 6
Ψ Ψ + 9

Ψ Ψ
.

In this case, there exists an action of ((3 × (3) n (2 therefore

〈〈Ψ ⊗ Ψ〉〉 = 3!3!2
3!2︸︷︷︸

|Aut Γ |

Ψ Ψ + 3!3!2
8︸︷︷︸

|Aut Γ |

Ψ Ψ

where we identify the denominators with number of automorphisms of the respective
graph.
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9.1 Feynman Integrals - Part 2

Groupoid of graphs with prescribed vertices
Let+3 be the set of verticeswith valency3 ∈ ℤ>0. The groupoidGraphs+1,...,+� consists
of the data:
i) objects: matchings in HE (set of half-edges);

ii) isomorphisms: collections of morphisms

i3 : +3 −→ +3 , 0 ≤ 3 ≤ �

and i : �� → �� respecting the incidence maps.
The action of the group

� =

�∏
3=0

((3)+3︸︷︷︸
permute
half-edges

n (+3︸︷︷︸
permute
vertices

on Matchings2< is such that

Stabf � Aut Γf , ∀f ∈ �
∖
Matchings2<

where Γf is the graph corresponding to a matching f , in the obvious way. Fixing
6 ∈ � and f ∈ M2< defines a canonical isomorphism

Γf −→ Γ6·f

and we identify Graphs+0,...,+� with the action groupoid of � acting on Matchings2< .

Example 14. There is an isomorphism of graphs

G ~

0

1
2

8

9
:

�
8 ↦→ 9

9 ↦→ 8

G ~

0

1
2

9

8
:

but no such graph isomorphism exists for between the following graphs.

�

28
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Example 15. Consider homogeneous polynomials %3 ∈ Sym3 + ∨. We compute〈〈
%0(G)+0 . . . %� (G)+�

〉〉
=

∑
[f]

|� |
|Aut Γf |

(&−1)⊗< ◦ f ◦ (%+00 ⊗ · · · ⊗ %+�
�
)

where

|� | =
�∏
3=0

(3!)+3+3 !.

We can rewrite this as〈〈
%0(G)+0 . . . %� (G)+�

〉〉
=

( �∏
3=0

(3!)+3+3 !
) ∑

Γ

1
|Aut Γ |Φ&−1,{%3 } (Γ)

where we relabel the sum as being over graphs, to which we apply the following
procedure.

Φ&−1,{%3 }�3=0
(Γ)

label vertices %3 label edges &−1

contract Γ

Example 16. For Ψ ∈ Sym2+ ∨ we check that〈〈
Ψ3〉〉 = 8 · 3!

(
1

8 · 3! + 1
8

+ 1
6

)
.

Perturbed Gaussian
We define a perturbed Gaussian integral∫ pert

ℝ=

dGe−
1
2& (G,G)+? (G) =

(∫ pert

ℝ=

dGe
1
2& (G,G)

) 〈〈
e? (G)

〉〉
where

? (G) =
�∑
3=0

63%3

3!
, %3 ∈ Sym3 + ∨.

We write

e? (G) =
�∏
3=0

e
63%3
3! =

∑
+0,...,+�

( �∏
3=0

6
+3
3

+3 !(3!)+3

)
%0(G)+0 . . . %� (G)+�

therefore 〈〈
e? (G)

〉〉
=

∑
+0,...,+�

6
+0
0 . . . 6

+�
�

∑
Γ∈Graphs+0,...,+�

1
|Aut Γ |Φ&−1,{%3 } (Γ)

=
∑
Γ︸︷︷︸

sum over
all graphs

1
|Aut Γ | Φ&−1,{63%3 }︸      ︷︷      ︸

change labels
%3 ↦→63%3

.
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Example 17. Let

& (G, G) = G2, ? (G) = _

4!
G4.

In this case

�? (_) =
∫ pert

ℝ=

dGe−
1
2G

2+ _
4!G

4

=
√
2c

(
1 + 1

8 _ + 1
822 _ _

+ 1
4!2 _ _ + 1

24
_ _

+�
(
_3

)
.

)
The =-th coefficient of this series expansion is given by∑

Γ︸︷︷︸
= vertices

of valency 4

1
|Aut Γ | =

(4= − 1)!!
=!4=

.

This expression for �? (_) has radius of convergence zero. Asymptotically, one can
say that for all # > 0 there exists"# such that�����? (_) − √

2c
#∑
==0

_=
(4= − 1)!!
=!4=

���� ≤ "# |_ |#+1

for _ < 0 provided that |_ | is sufficiently small.

Connected graphs
It can be useful to rewrite the usual expression in term of connected graphs. To
achieve this, we decompose the sum with respect to the number of connected com-
ponents of the graphs

∑
Γ

1
|Aut Γ |Φ(Γ) =

connected
components︷︸︸︷

∞∑
:=0

∑
W1<···<W:

valencies︷ ︸︸ ︷
∞∑

A1,...,A:=1

( :∏
8=1

1
A8 !|AutW8 |

)
Φ(W1)A1 . . .Φ(W:)A:

=
∏

W connected︸    ︷︷    ︸
finitely-many

nonzero valencies

( ∞∑
A=0

1
A !|AutW |A Φ(W)

A

)

=
∏

W connected

exp
(

1
|AutW |Φ(W)

)
= exp

( ∑
W connected

1
|AutW |Φ(W)

)
.
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Example 18. We can repeat the same computation summing on connected diagrams

�? (_) =
√
2c exp

(
1
8 _ + 1

4!2 _ _ + 1
24

_ _
+�

(
_3

))
=
√
2c exp

(
_

8
+ _

2

4!
+ _

2

16
+�

(
_3

) )
=
√
2c

(
1 + _

8
+ _2

24!
+ _

2

16
+ _2

822
+�

(
_3

) )
.

Expectation value of perturbed Gaussian
To compute expectation values note that

〈〈
Ψ1 . . .ΨA

〉〉
pert =

∫ pert
ℝ= dGe−

1
2& (G,G)+? (G)Ψ1(G) . . .ΨA (G)∫ pert
ℝ= e−

1
2& (G,G)+? (G)

=

〈〈
e? (G)Ψ1 . . .ΨA

〉〉〈〈
e? (G)

〉〉
where each term Ψ9 is of the form

Ψ9 =
∑
3≥0

1
3!
Ψ9,3

for Ψ9,3 homogeneous polynomials of degree 3 , therefore〈〈
e? (G)Ψ1 . . .ΨA

〉〉
=

(2c) =2√
det&

∑
Γ

1
|Aut Γ |Ψ(Γ)

where now we are summing over graphs Γ colored by {0, . . . , A } where each nonzero
color appears exactly once, and where Φ(Γ) encodes the following procedure.

Φ(Γ)

label 0-colored
vertices of valency 3

by 63%3

label 9-colored
vertices of valency 3

by Ψ9,3

label edges
by &−1

contract Γ

Decomposing each graph Γ into a 0-colored part components and the rest we get

Γ = Γ̃ q W<8

1 q · · · q W<:

:︸             ︷︷             ︸
0-colored
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where the graphs W8 are connected 0-colored and (each connected component of) Γ̃
has at least one nonzero color. Therefore〈〈

e? (G)Ψ1 . . .ΨA
〉〉

=

∞∑
:=0

∑
W1<···<W:

∞∑
<1,...,<:=1

1
|Aut Γ |Φ(Γ)

=

( ∞∑
:=0

∑
W1<···<W:

∑
<1,...,<:

(∏
9

1
< 9 !|AutW 9 |< 9

)
Φ(W1)<1 . . .Φ(W:)<:

)
·
(∑̃

Γ

1

|Aut Γ̃ |
Φ(Γ̃)

)
= exp

( ∑
W︸︷︷︸

0-colored
connected

1
|AutW |Φ(W)

) (∑̃
Γ

Φ(Γ̃)
)

which, when normalized, wields the simpler formula〈〈
Ψ1 . . .ΨA

〉〉
pert =

∑
Γ︸︷︷︸

connected components
with at least one
nonzero color

1
|Aut Γ |Φ(Γ).

Planck’s constant
In this section we study a different type of perturbed Gaussian integrals. Let us con-
sider formal power series on ℝÈℏÉ for some paremter ℏ, and fix a polynomial of
degree at least 3 (we justify this requirement later)

? =

�∑
3=3

%3

3!
.

Then we compute∫ pert

ℝ=

dG exp
[
1
ℏ

(
−1
2
& (G, G) + ? (G)

)]
=

(2cℏ) =2√
det&

∑
Γ

1
|Aut Γ |Φℏ&−1,{ℏ%3 } (Γ)

=
(2cℏ) =2√
det&

∑
Γ

ℏ−j (Γ)

|Aut Γ |Φℏ&−1,{ℏ%3 }

where j (Γ) is the Euler characteristic of the graph. Note that

|� | − |+ | = 1
2
|�� | − |+ | =

�∑
3=3

+3

(
3

2
− 1

)
︸   ︷︷   ︸

>0

holds if p is at least cubic. Finally, for expectation values we get a familiar result∫ pert

ℝ=

dG exp
[
1
ℏ

(
−1
2
& (G, G) + ? (G)

)]
Ψ1 . . .ΨA =

(2cℏ) =2√
det&

∑
Γ

ℏA−j (Γ)

|Aut Γ |Φ(Γ).

where we sum over graphs with at least one nonzero color in each connected com-
ponent.
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Lecture 10

10.1 Scalar QFT in the Wilsonian Sense
The main reference for this lecture is [Cos11, Sections 1.1 to 1.5 and 2.1 to 2.7]. Our
goal is to give a Wilsonian definition of scaler QFT. Consider the data:
i) spacetime: smooth Riemannian manifold" (we consider" = ℝ=);

ii) scalar fields: smooth functions i : " → ℝ;

iii) action functional: a local functional

( (i) =
∫
"

−1
2
i
(
D +<2)i + � (i)︸︷︷︸

interactions terms
(cubic or higher)

where we call< > 0 the mass parameter and D denotes the Laplacian.
For the Dirichlet problem on some domain* ⊆ "{

Di (G) + _i (G), if G ∈ *
i (G) = 0, if G ∈ m*

we write the associated eigenfunctions i= with corresponding eigenvalues _= . It is
known that the inverse Laplacian operator is compact and self-adjoint. From the
spectral theorem follows that

0 < _1 ≤ · · · ≤ _=︸          ︷︷          ︸
energies

≤ · · · −→ ∞.

In this context, observables are functionals O : C∞(") → ℂ.

Example 19. The evaluation map is an observable

OG (i) = i (G), ∀G ∈ ".

The physical information of the theory is encoded in the correlation functions,
which we compute (up to normalization) using the Feynman sum of histories ap-
proach

〈O1, . . . ,O=〉 =
∫
i∈C∞ (")

e
1
ℏ
( (i)O1(i) . . .O= (i)Di.

33
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To proceed, we restrict to low-energy fields

C≤Λ = C∞(")≤Λ

corresponding to the space spanned by eigenfunctions with associated energy _= ≤ Λ
(in principle finite-dimensional), and low-energy observables

(O : C≤Λ −→ ℂ) ∈ Obs≤Λ .

Then
〈O1, . . . ,O=〉 =

∫
i∈C≤Λ

e
1
ℏ
(eff [Λ] (i)O1(i) . . .O= (i)Di

for some low-energy effective action (eff [Λ]. For low-energy observable we have

O ∈ Obs≤Λ′ =⇒ O ∈ Obs≤Λ, 0 < Λ′ < Λ

which motivates the decomposition of fields into low- and high-energy parts

i = i! + i� , i! ⊥ i�

wherei! is the projection ofi onC≤Λ′ , andi� the corresponding parallel component
in C≤Λ. Then ∫

i!∈C≤Λ′
e

1
ℏ
(eff [Λ′] (i!)O1(i!) . . .O= (i!)Di

=

∫
i∈C≤Λ

e
1
ℏ
(eff [Λ] (i)O1(i) . . .O= (i)Di

=

∫
i!

(∫
i�

e
1
ℏ
(eff [Λ] (i!+i� )

)
O1(i!) . . .O= (i!)Di

implying that

e
1
ℏ
(eff [Λ′] (i!) =

∫
i�

e
1
ℏ
(eff [Λ] (i!+i� )Di� .

Taking the logarithm we obtain the renormalization group equation (RGE)

(eff [Λ′] (i!) = ℏ log
∫
i�

e
1
ℏ
(eff [Λ] (i!+i� )Di� .

Renormalization Group Equation
Assume that

(eff [Λ] (i) =
∫
"

−1
2
i
(
� +<2)i + � eff [Λ] (i)︸      ︷︷      ︸

effective interaction

.

From the linearity of the Laplacian and the RGE follows that

� eff [Λ′] (i!) = ℏ log
∫
i�

exp
(
− 1
2ℏ
i�

(
� +<2)i� + 1

ℏ
� eff [Λ] (i! + i� )

)
Di� .

We are interested in finite-dimensional integrals of the form

, (%, � ) =
∫
*

exp
(
1
2ℏ

Φ(G, G) + 1
ℏ
� (G + 0)

)
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for some nondegenerate negative-definite quadratic form Φ, understood as a Feyn-
man diagram expansion. Here % is the integral kernel of (D +<2)−1 (propagator)

% (G,~) =
∫ ∞

g=0
e−g<

2
dg  0

g (G,~)︸   ︷︷   ︸
heat kernel

where we write

 0
g (G,~) =

∫
5 ∈ΩG,~

exp
(∫ g

0
‖d5 ‖2 dB

)
d,

for
ΩG,~ = {5 : [0, g] → " | 5 (0) = G, 5 (g) = ~}.

In terms of eigenfunctions

 0
g (G,~) =

∞∑
==0

e−_=gi= (G)i= (~)

and  g =  0
g e
g<2

is such that

% (G,~) =
∫ ∞

g=0
 g (G,~) dg .

Length scale instead of energy scale
The high-energy regimes correspond to small scales:

short lengths ¡ high energy.

Because of this, the RGE should relate different length scales

% (Y, !) (G,~) =
∫ !

;=Y

 ; (G,~) d; .

Again, the RGE for relating different scales

� eff [!] =,
(
% (Y, !), � eff [Y]

)
is given in terms of Feynman diagrams. Expanding in powers

� eff =
∑
8, 9

ℏ 9i:� 9,: .

Example 20. Some examples of the diagrammatic approach are

� eff0,4 [!] = � eff0,4 [Y] +

� eff0,3 [Y]

� eff0,3 [Y]

% (Y, !)
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and

� eff1,1 [!] = � eff1,1 [Y] + � eff0,3 [Y]

% (Y, !)

.

Definition 6. A perturbative QFT with space of fields and action functional as
prescribed earlier, is given by a set of interactions � [!] such that:
i) the RGE holds for any positive scales:

� [!] =,
(
? (Y, !), � [Y]

)
, ∀Y, ! ∈ (0,∞];

ii) the components � 9,: are local: if

(eff [!] (i) =
∑
8

58 (!)Θ8 (i)

then Θ8 are local functionals.
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11.1 Elliptic Operators and Complexes
Let " be a closed, oriented Riemannian manifold, and �, � → " complex vector
bundles over" . A differential operator

% : Γ(�) −→ Γ(� )

is a ℂ-linear map that, in local coordinates (* , G 8) of" with local trivializations of �
and � , has the form

% =
∑
|U |≤:

�U
m |U |

mGU

where U is a multi-index and

�U ∈ Hom(� |* , � |* )

is a bundle map over* . The number : ∈ ℤ≥0 is called the order of % .

Definition 7. The principal symbol f (%) of a differential operator is a section of
the pullback bundle c∗Hom(�, � ) over ) ∗" , as in the following diagram.

c∗Hom(�, � )
ù

Hom(�, � )

) ∗" "
c

At b ∈ ) ∗" , f (%) is given by

f (%)b =
∑
|U |≤:

�U (G)bU

where for U = (U1, . . . , U=), we write b = b8dG8 . Since f (%) is the only symbol we will
need, let us just call it the symbol of % .

Lemma 1. The symbol of % is equivalently defined by

f (%)b = lim
C→∞

(8C)−:e−8C 5 %e8C 5

where 5 is any smooth function such that

d5 (G) = b .

37
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Proof. In a local trivialization over a chart, for a local section B , we compute

%e8C 5 B =
∑
|U |≤:

�U
m |U |

mGU

(
e8C 5 B

)
=

∑
|U |≤:

(8C): m
|U | 5

mGU
e8C 5�UB + lower

order in C

hence

lim
C→∞

(8C)−:e−8C 5 %e8C 5 B =
∑
|U |=:

d5
(
m |U |
mGU

)
�UB .

Evaluating at G gives f (%)b . �

Example 21. The exterior derivative

d: Ω•(") −→ Ω•(")

can be writen in local coordinates as

d =

=∑
8=1

m

mG8
dG8∧

therefore

f (d)b =
=∑
8=1

b8dG8∧ = b∧

so the symbol is given by the wedge product.

Example 22. The Laplacian

∆ : C∞(") −→ C∞(")

can be writen in normal coordinates around ? ∈ "

∆|? = −
=∑
8=1

(
m

mG8

)2
hence f (∆)b = −|b |2.

Example 23. The Hodge Laplacian

∆ : Ω•(") −→ Ω•(")

is given by

∆ = dd★ + d★d

= −
=∑
8=1

(
m

mG8

)2 (
] m

mG8
dG8 + dG8] m

mG8

)
= −

=∑
8=1

[
] m

mG8
, dG8

] ( m

mG8

)2
where ] m

mG8
denotes the interior product and dG8 is the operator dG8∧ in Ω•(").

Remarkably, we still have f (∆)b = −|b |2. To see this, we need the following
proposition.
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Proposition 5. For differential operators % and % ′ we have

f (%)bf (% ′)b = f (%% ′)b .

Proof. If % has order : and % ′ has order :′, then %% ′ has order : + :′ and

lim
C→∞

(
(8C)−:e−8C 5 %e8C 5

) (
(8C)−: ′e−8C 5 % ′e8C 5

)
= lim
C→∞

(
(8C)−:−: ′e−8C 5 %% ′e8C 5

)
.

We also need that
f (d★)b = −]b#

where b# ∈ )G" is the unique vector such that b = 6(b#, ·). Then

f (∆)b = f (dd★ + d★d)b
= f (dd★)b + f (d★d)b
=

[
b,−]b#

]
= −|b |2.

Definition 8. An operator % : Λ(�) → Λ(� ) is elliptic if the symbol f (%)b is invert-
ible for all b ≠ 0.

Remember that, for all b ∈ ) ∗
G" , the symbol is a linear operator f (%)b : �G → �G .

Definition 9. An operator % : Λ(�) → Λ(�) is called a generalized Laplacian if

f (%)b = −|b |26̃

for some metric 6̃ on" , not necessarily the one we started with.

The previous definition comes from [BGV96], but we have taken the opposite sign
convention.

11.2 Elliptic Complexes
Suppose % : Γ(�) → Γ(� ) is elliptic. The symbol f (%) defines a bundle map over) ∗"

0 c∗� c∗� 0
f (%)

which is exact over) ∗" away from the zero section. Now let (�•, &) be theℤ-graded
vector bundle �• → " , and

& : Γ(�•) −→ Γ(�•)

a differential operator of cohomological degree 1 such that &2 = 0.

Definition 10. The complex (�•, &) is an elliptic complex if the symbol complex
(c∗�, f (&)) is exact over ) ∗" → " .
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Example 24. To the de Rham complex

0 Ω0(") Ω1(") . . . Ω= (")d d d

corresponds the symbol complex for b ∈ Ω1(")

0 Ω0(") Ω1(") . . . Ω= (")b b b
.

If b ≠ 0 and b ∧ V = 0, then V = b ∧ U for some U ∈ Ω•("). We conclude that the
symbol complex is exact, and thus (Ω•, d) is an elliptic complex.

Example 25. To the Yang-Mills complex

Ω0(", g) Ω1(", g) Ω=−1(", g) Ω= (", g)d d★d d

we associate

0
∧0(") ⊗ g

∧1(") ⊗ g
∧=−1(") ⊗ g

∧= (") ⊗ g 0 .

The de Rham complex is exact, so it suffices to show that

ker
(
f (d★d)b

)
= ker(b∧)

by showing that
ker

(
f (d★)b

)︸         ︷︷         ︸
ker(−]b )

∩ Imf (d)b︸    ︷︷    ︸
Im(b∧)

= 0.

Suppose that (�•, &) is elliptic and choose ℎ8 a Hermitian metric on �8 . Define an
L2-norm on sections

ℎL
2

8 (B, B′) =
∫
"

ℎ8 (B, B′) dvol6 (G).

The we a get a formal adjoint

. . . E8−1 E8 E8+1 . . .
&∗ &∗ &∗ &∗

defined such that

ℎL
2

8+1(&D, E) = ℎL
2

8 (D,&∗E), ∀D ∈ E8,∀E ∈ E8+1.
Lemma 2. The operator

D = [&,&∗] = &&∗ +&∗&

is elliptic.

Proof. Note that
f (&∗)bG =

(
f (&)bG

)∗
where the second ∗ denotes the usual finite-dimensional adjoint with respect to the
fiber metric. Thus

f (D) = f (&)f (&∗) + f (&∗)f (&) = f (&)f (&)∗ + f (&)∗f (&)
and for all E ∈ ker

(
f (D)b

)
we have

0 = ℎ
(
E, f (D)bE

)
=

��f (&)bE ��2ℎ + ��f (&)∗
b
E
��2
ℎ
.

We conclude that

E ∈ ker
(
f (&)b

)
∩ ker

(
f (&)∗

b

)
= ker

(
f (&)b

)
∩ ker

(
f (&)b

)⊥
implying that E = 0. �
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12.1 Gauge Fixing Operator
Definition 11. A free theory in the BV formalism is the data:
i) a ℤ-graded vector bundle � → " ;

ii) a Hermitian nondegenerate pairing 〈·, ·〉 of degree −1;
iii) a differential operator & : Γ(�) → Γ(�) of degree 1 such that &2 = 0 and & is

skew-symmetric with respect to the pairing. This makes (�,&) into an elliptic
complex.

Definition 12. A gauge fixing operator &GF : Γ(�) → Γ is a differential operator of
degree −1, symmetric with respect to the pairing 〈·, ·〉. We define D =

[
&,&GF

]
, and

say that it is a generalized Laplacian if

f (D)b = −|b |2

where | · | is defined with respect to any metric on" .

12.2 Heat Kernel and Propagators
Theorem 1. Fix a Hermitian metric ℎ8 on the fibers �8 . Suppose that % is an elliptic
operator, symmetric and positive, that is

ℎL
2 (%B, B) ≥ 0, ∀B ∈ Γ(�).

Then:
i) if D ∈ HS(", �) for Sobolev space, and %D ∈ C∞(", �), then D ∈ C∞(�,");
ii) there exists a complex orthonormal basis {D 9 } 9∈ℤ≥0 of L2(", �) consisting of

smooth eigensections of % , with eigenvalues

0 ≥ _1 ≥ · · · ≥ _= ≥ . . .

such that _ 9 ∈ C29 , for some 2 = 2 (=, :) > 0 depending on = and : .

Proof. A rough idea of the proof is the following. Inverting the symbol gives a
pseudo-differential operator that is homogeneous in b−: . Construct an almost-inverse
%−1 to % . This operator smooths out functions, implying the first item. The second
item is a consequence of the spectral theorem for compact operators. �

41
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The operator D = %%∗ + %∗% obeys the conditions of the previous theorem. A
generalized Laplacian is, in general, not symmetric nor positive, only at higher order.
However, a generalized Laplacian is of the form

D∇ + F

where D∇ is symmetric and positive, and F is of order 0.
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