Matlab Code for ECCV 2014 paper "A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies using a Hybrid Generative-Descriptive Model". Includes vocabulary learning and basic test image inference code. The code is regularly updated to have new features.
License
rusen/CHOP
master
Name already in use
Code
-
Clone
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more about the CLI.
- Open with GitHub Desktop
- Download ZIP
Sign In Required
Please sign in to use Codespaces.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
Git stats
Files
README FOR CHOP - Compositional Hierarchy of Parts This file is meant to help the developer who will use CHOP base algorithm in order to learn visual hierarchical vocabularies. // Only minimal descriptions are given for now, they will be // improved over time. Important notice: Some parts of the code are now hidden, since they contain some modifications over the ECCV code which have not been documented in a paper yet. We sincerely apologize for any inconvenience caused. We will try our best to make these parts and more improvements available really soon. The algorithm is implemented entirely in Matlab. It has been tested with 2012a and up. If you have any problems, please ping rusenaktas <at> gmail <dot> com. You can also use the Issues section on our Github page. %% *************** Running the Code *************** %% 1) In order to run the code and learn a hierarchy of parts in an unsupervised manner, place all of your images under <CHOP_PATH>/input/<DATASET_NAME>/vocab . They can be in sub-folders. If there are ground truth masks (either in form of boundary box or binary mask of segments), they can be placed under <CHOP_PATH>/input/<DATASET_NAME>/gt . All program specific parameters are in <CHOP_PATH/parameters/SetParametersCommon.m file. If you wish to have a separate parameter file for a dataset, feel free to make a copy of SetParametersCommon.m under the same folder with the name SetParameters<DATASET_NAME>.m and change any parameters you wish. The program will use a dataset-specific parameter file whenever it can, reverting back to the common version in case no parameter file is set for the dataset. The routine for training vocabulary is : >> runVocabularyLearning(<DATASET_NAME>, <FILE_EXT>) where <DATASET_NAME> is the name of the dataset, and <FILE_EXT> is the extension of every file in the dataset. Examples of <FILE_EXT> can be: '.png', '.jpg', '.gif', ... 2) In order to run inference in test images, place all of your test images under <CHOP_PATH>/input/<DATASET_NAME>/test . Similarly, test inference over all images under the test folder can be initiated with: >> runTestInference(<DATASET_NAME>, <FILE_EXT>); 3) An additional script that keeps logs and calls both training and inference is provided in Experiment.m. It can be called as: >> Experiment(<DATASET_NAME>, <FILE_EXT>); %% *************** Understanding the Output *************** %% 1) The output of the program is put under ./debug/<DATASET_NAME> ./output/<DATASET_NAME> folders. debug folder includes the visualizations of the vocabulary elements across all layers. For the output folder: ./output/<DATASET_NAME>/vb.mat includes the 'vocabulary'. Explanation of a vocabNode (basic building block) is given in its class file. The vocabulary includes all learned parts across all levels. ./output/<DATASET_NAME>/trtime.mat Total time spent on training. ./output/<DATASET_NAME>/tetime.mat Total time spent on inference (only graphical inference). ./output/<DATASET_NAME>/preInhibition_l.mat Statistics in lth level before inhibition. ./output/<DATASET_NAME>/postInhibition_l.mat Statistics in lth level after inhibition. ./output/<DATASET_NAME>/export.mat Exported realizations of TRAINING images. It is of the form (exportArr): [labelId, node1, node2, levelId, imageId; [labelId2, node21, node22, levelId2, imageId2; [labelId3, node31, node32, levelId3, imageId3; ...] labelId can be used to index in 'vocabulary'. levelId is the id of the level. They start from 1, and may go up to 20. imageId is the id of the image the realization is seen in. It can be used to index into categoryArr, categoryArrIdx, poseArr, trainingFileNames to learn various information regarding the image. ./output/<DATASET_NAME>/smoothed Mean response image for level 1 Gabors. ./output/<DATASET_NAME>/original Original images, downsampled if they are too big. ./output/<DATASET_NAME>/test/inference includes 'exportArr's of the given format for each test image. The learned parts are hierarchically searched for in every test image. ./output/<DATASET_NAME>/reconstruction includes visualizations of realizations in both training and test images across all levels. %% *************** PAPER *************** %% If you use the code, please cite the following paper: Umit Rusen Aktas, Mete Ozay, Aleš Leonardis, Jeremy L. Wyatt: A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model. ECCV (3) 2014: 566-581 Sept. 8, 2014 Umit Rusen Aktas
About
Matlab Code for ECCV 2014 paper "A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies using a Hybrid Generative-Descriptive Model". Includes vocabulary learning and basic test image inference code. The code is regularly updated to have new features.