-
Notifications
You must be signed in to change notification settings - Fork 730
/
Copy pathmod.rs
1904 lines (1655 loc) · 65.9 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
mod helpers;
use self::helpers::{attributes, ArrayTyBuilder, BlobTyBuilder};
use ir::context::BindgenContext;
use ir::item::{Item, ItemId, ItemCanonicalName, ItemCanonicalPath};
use ir::ty::{Type, TypeKind};
use ir::int::IntKind;
use ir::module::Module;
use ir::var::Var;
use ir::enum_ty::Enum;
use ir::function::{Function, FunctionSig};
use ir::item_kind::ItemKind;
use ir::comp::{CompKind, CompInfo, Field, Method};
use ir::layout::Layout;
use ir::annotations::FieldAccessorKind;
use std::ops;
use std::mem;
use std::collections::BTreeSet;
use std::collections::HashSet;
use std::collections::hash_map::{HashMap, Entry};
use syntax::abi::Abi;
use syntax::ast;
use syntax::codemap::{Span, respan};
use syntax::ptr::P;
use aster;
fn root_import(ctx: &BindgenContext) -> P<ast::Item> {
assert!(ctx.options().enable_cxx_namespaces, "Somebody messed it up");
let root = ctx.root_module().canonical_name(ctx);
let root_ident = ctx.rust_ident(&root);
quote_item!(ctx.ext_cx(), use $root_ident;).unwrap()
}
struct CodegenResult {
items: Vec<P<ast::Item>>,
saw_union: bool,
items_seen: HashSet<ItemId>,
/// The set of generated function names, needed because in C/C++ is legal to
/// do something like:
///
/// ```
/// extern "C" {
/// void foo();
/// }
///
/// extern "C" {
/// void foo();
/// }
/// ```
///
/// Being these two different declarations.
functions_seen: HashSet<String>,
}
impl CodegenResult {
fn new() -> Self {
CodegenResult {
items: vec![],
saw_union: false,
items_seen: Default::default(),
functions_seen: Default::default(),
}
}
fn saw_union(&mut self) {
self.saw_union = true;
}
fn seen(&self, item: ItemId) -> bool {
self.items_seen.contains(&item)
}
fn set_seen(&mut self, item: ItemId) {
self.items_seen.insert(item);
}
fn seen_function(&self, name: &str) -> bool {
self.functions_seen.contains(name)
}
fn saw_function(&mut self, name: &str) {
self.functions_seen.insert(name.into());
}
fn inner<F>(&mut self, cb: F) -> Vec<P<ast::Item>>
where F: FnOnce(&mut Self)
{
let mut new = Self::new();
cb(&mut new);
self.saw_union |= new.saw_union;
new.items
}
}
impl ops::Deref for CodegenResult {
type Target = Vec<P<ast::Item>>;
fn deref(&self) -> &Self::Target {
&self.items
}
}
impl ops::DerefMut for CodegenResult {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.items
}
}
struct ForeignModBuilder {
inner: ast::ForeignMod,
}
impl ForeignModBuilder {
fn new(abi: Abi) -> Self {
ForeignModBuilder {
inner: ast::ForeignMod {
abi: abi,
items: vec![],
}
}
}
fn with_foreign_item(mut self, item: ast::ForeignItem) -> Self {
self.inner.items.push(item);
self
}
#[allow(dead_code)]
fn with_foreign_items<I>(mut self, items: I) -> Self
where I: IntoIterator<Item=ast::ForeignItem>
{
self.inner.items.extend(items.into_iter());
self
}
fn build(self, ctx: &BindgenContext) -> P<ast::Item> {
use syntax::codemap::DUMMY_SP;
P(ast::Item {
ident: ctx.rust_ident(""),
id: ast::DUMMY_NODE_ID,
node: ast::ItemKind::ForeignMod(self.inner),
vis: ast::Visibility::Public,
attrs: vec![],
span: DUMMY_SP,
})
}
}
/// A trait to convert a rust type into a pointer, optionally const, to the same
/// type.
///
/// This is done due to aster's lack of pointer builder, I guess I should PR
/// there.
trait ToPtr {
fn to_ptr(self, is_const: bool, span: Span) -> P<ast::Ty>;
}
impl ToPtr for P<ast::Ty> {
fn to_ptr(self, is_const: bool, span: Span) -> Self {
let ty = ast::TyKind::Ptr(ast::MutTy {
ty: self,
mutbl: if is_const {
ast::Mutability::Immutable
} else {
ast::Mutability::Mutable
}
});
P(ast::Ty {
id: ast::DUMMY_NODE_ID,
node: ty,
span: span,
})
}
}
trait CodeGenerator {
/// Extra information from the caller.
type Extra;
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
extra: &Self::Extra);
}
impl CodeGenerator for Item {
type Extra = ();
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
_extra: &()) {
if self.is_hidden(ctx) || result.seen(self.id()) {
return;
}
result.set_seen(self.id());
match *self.kind() {
ItemKind::Module(ref module) => {
if !ctx.options().enable_cxx_namespaces && self.id() == ctx.root_module() {
return;
}
module.codegen(ctx, result, self);
},
ItemKind::Function(ref fun) => {
if !ctx.options().ignore_functions {
fun.codegen(ctx, result, self);
}
},
ItemKind::Var(ref var) => {
var.codegen(ctx, result, self);
},
ItemKind::Type(ref ty) => {
ty.codegen(ctx, result, self);
}
}
}
}
impl CodeGenerator for Module {
type Extra = Item;
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
item: &Item) {
if !ctx.options().enable_cxx_namespaces {
for child in self.children() {
ctx.resolve_item(*child).codegen(ctx, result, &());
}
return;
}
let inner_items = result.inner(|result| {
result.push(root_import(ctx));
for child in self.children() {
ctx.resolve_item(*child).codegen(ctx, result, &());
}
});
let module = ast::ItemKind::Mod(ast::Mod {
inner: ctx.span(),
items: inner_items,
});
let name = item.canonical_name(ctx);
let item = aster::AstBuilder::new().item().pub_()
.build_item_kind(name, module);
result.push(item);
}
}
impl CodeGenerator for Var {
type Extra = Item;
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
item: &Item) {
let name = item.canonical_name(ctx);
let ty = self.ty().to_rust_ty(ctx);
if let Some(val) = self.val() {
let const_item = aster::AstBuilder::new().item().pub_().const_(name)
.expr().int(val).build(ty);
result.push(const_item)
} else {
let mut attrs = vec![];
if let Some(mangled) = self.mangled_name() {
attrs.push(attributes::link_name(mangled));
} else if name != self.name() {
attrs.push(attributes::link_name(self.name()));
}
let item = ast::ForeignItem {
ident: ctx.rust_ident_raw(&name),
attrs: attrs,
node: ast::ForeignItemKind::Static(ty, !self.is_const()),
id: ast::DUMMY_NODE_ID,
span: ctx.span(),
vis: ast::Visibility::Public,
};
let item = ForeignModBuilder::new(Abi::C)
.with_foreign_item(item)
.build(ctx);
result.push(item);
}
}
}
impl CodeGenerator for Type {
type Extra = Item;
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
item: &Item) {
match *self.kind() {
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Array(..) |
TypeKind::Pointer(..) |
TypeKind::Reference(..) |
TypeKind::TemplateRef(..) |
TypeKind::Function(..) |
TypeKind::ResolvedTypeRef(..) |
TypeKind::Named(..) => {
// These items don't need code generation, they only need to be
// converted to rust types in fields, arguments, and such.
return;
}
TypeKind::Comp(ref ci) => ci.codegen(ctx, result, item),
TypeKind::Alias(ref spelling, inner) => {
let inner_item = ctx.resolve_item(inner);
let name = item.canonical_name(ctx);
// Try to catch the common pattern:
//
// typedef struct foo { ... } foo;
//
// here.
//
if inner_item.canonical_name(ctx) == name {
return;
}
// If this is a known named type, disallow generating anything
// for it too.
if utils::type_from_named(ctx, spelling, inner).is_some() {
return;
}
let mut applicable_template_args = item.applicable_template_args(ctx);
let inner_rust_type = if item.is_opaque(ctx) {
applicable_template_args.clear();
// Pray if there's no layout.
let layout = self.layout(ctx).unwrap_or_else(Layout::zero);
BlobTyBuilder::new(layout).build()
} else {
inner_item.to_rust_ty(ctx)
};
let rust_name = ctx.rust_ident(&name);
let mut typedef = aster::AstBuilder::new().item().pub_();
if let Some(comment) = item.comment() {
typedef = typedef.attr().doc(comment);
}
let mut generics = typedef.type_(rust_name).generics();
for template_arg in applicable_template_args.iter() {
let template_arg = ctx.resolve_type(*template_arg);
if template_arg.is_named() {
let name = template_arg.name().unwrap();
if name.contains("typename ") {
error!("Item contained `typename`'d template param: {:?}", item);
return;
}
generics = generics.ty_param_id(template_arg.name().unwrap());
}
}
let typedef = generics.build().build_ty(inner_rust_type);
result.push(typedef)
}
TypeKind::Enum(ref ei) => ei.codegen(ctx, result, item),
ref u @ TypeKind::UnresolvedTypeRef(..)
=> unreachable!("Should have been resolved after parsing {:?}!", u),
}
}
}
struct Vtable<'a> {
item_id: ItemId,
#[allow(dead_code)]
methods: &'a [Method],
#[allow(dead_code)]
base_classes: &'a [ItemId],
}
impl<'a> Vtable<'a> {
fn new(item_id: ItemId, methods: &'a [Method], base_classes: &'a [ItemId]) -> Self {
Vtable {
item_id: item_id,
methods: methods,
base_classes: base_classes,
}
}
}
impl<'a> CodeGenerator for Vtable<'a> {
type Extra = Item;
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
item: &Item) {
assert_eq!(item.id(), self.item_id);
// For now, generate an empty struct, later we should generate function
// pointers and whatnot.
let vtable = aster::AstBuilder::new().item().pub_()
.with_attr(attributes::repr("C"))
.struct_(self.canonical_name(ctx))
.build();
result.push(vtable);
}
}
impl<'a> ItemCanonicalName for Vtable<'a> {
fn canonical_name(&self, _ctx: &BindgenContext) -> String {
format!("bindgen_vtable_{}", self.item_id)
}
}
impl<'a> ItemToRustTy for Vtable<'a> {
fn to_rust_ty(&self, ctx: &BindgenContext) -> P<ast::Ty> {
aster::ty::TyBuilder::new().id(self.canonical_name(ctx))
}
}
struct Bitfield<'a> {
index: usize,
fields: Vec<&'a Field>,
}
impl<'a> Bitfield<'a> {
fn new(index: usize, fields: Vec<&'a Field>) -> Self {
Bitfield {
index: index,
fields: fields,
}
}
fn codegen_fields(self,
ctx: &BindgenContext,
fields: &mut Vec<ast::StructField>,
methods: &mut Vec<ast::ImplItem>) {
use aster::struct_field::StructFieldBuilder;
use std::cmp;
let mut total_width = self.fields.iter()
.fold(0u32, |acc, f| acc + f.bitfield().unwrap());
if !total_width.is_power_of_two() || total_width < 8 {
total_width = cmp::max(8, total_width.next_power_of_two());
}
debug_assert_eq!(total_width % 8, 0);
let total_width_in_bytes = total_width as usize / 8;
let bitfield_type =
BlobTyBuilder::new(Layout::new(total_width_in_bytes, total_width_in_bytes)).build();
let field_name = format!("_bitfield_{}", self.index);
let field_ident = ctx.ext_cx().ident_of(&field_name);
let field = StructFieldBuilder::named(&field_name).pub_()
.build_ty(bitfield_type.clone());
fields.push(field);
let mut offset = 0;
for field in self.fields {
let width = field.bitfield().unwrap();
let field_name = field.name()
.map(ToOwned::to_owned)
.unwrap_or_else(|| format!("at_offset_{}", offset));
let field_item = ctx.resolve_item(field.ty());
let field_ty_layout = field_item.kind().expect_type()
.layout(ctx)
.expect("Bitfield without layout? Gah!");
let field_type = field_item.to_rust_ty(ctx);
let int_type = BlobTyBuilder::new(field_ty_layout).build();
let getter_name = ctx.ext_cx().ident_of(&field_name);
let setter_name = ctx.ext_cx().ident_of(&format!("set_{}", &field_name));
let mask = ((1usize << width) - 1) << offset;
// The transmute is unfortunate, but it's needed for enums in
// bitfields.
let item = quote_item!(ctx.ext_cx(),
impl X {
#[inline]
pub fn $getter_name(&self) -> $field_type {
unsafe {
::std::mem::transmute(
((self.$field_ident & ($mask as $bitfield_type)) >> $offset)
as $int_type)
}
}
#[inline]
pub fn $setter_name(&mut self, val: $field_type) {
self.$field_ident &= !($mask as $bitfield_type);
self.$field_ident |= (val as $int_type as $bitfield_type << $offset) & ($mask as $bitfield_type);
}
}
).unwrap();
let items = match item.unwrap().node {
ast::ItemKind::Impl(_, _, _, _, _, items) => items,
_ => unreachable!(),
};
methods.extend(items.into_iter());
offset += width;
}
}
}
impl CodeGenerator for CompInfo {
type Extra = Item;
fn codegen(&self,
ctx: &BindgenContext,
result: &mut CodegenResult,
item: &Item) {
use aster::struct_field::StructFieldBuilder;
// Don't output classes with template parameters that aren't types, and
// also don't output template specializations, neither total or partial.
//
// TODO: Generate layout tests for template specializations, yay!
if self.has_non_type_template_params() || self.is_template_specialization() {
return;
}
let applicable_template_args = item.applicable_template_args(ctx);
let mut attributes = vec![];
let mut needs_clone_impl = false;
if let Some(comment) = item.comment() {
attributes.push(attributes::doc(comment));
}
if self.packed() {
attributes.push(attributes::repr_list(&["C", "packed"]));
} else {
attributes.push(attributes::repr("C"));
}
let mut derives = vec![];
let ty = item.expect_type();
if ty.can_derive_debug(ctx) {
derives.push("Debug");
}
if ty.can_derive_copy(ctx) && !item.annotations().disallow_copy() {
derives.push("Copy");
if !applicable_template_args.is_empty() {
// FIXME: This requires extra logic if you have a big array in a
// templated struct. The reason for this is that the magic:
// fn clone(&self) -> Self { *self }
// doesn't work for templates.
//
// It's not hard to fix though.
derives.push("Clone");
} else {
needs_clone_impl = true;
}
}
if !derives.is_empty() {
attributes.push(attributes::derives(&derives))
}
let mut template_args_used = vec![false; applicable_template_args.len()];
let canonical_name = item.canonical_name(ctx);
let builder = aster::AstBuilder::new().item().pub_()
.with_attrs(attributes)
.struct_(&canonical_name);
// Generate the vtable from the method list if appropriate.
// TODO: I don't know how this could play with virtual methods that are
// not in the list of methods found by us, we'll see. Also, could the
// order of the vtable pointers vary?
//
// FIXME: Once we generate proper vtables, we need to codegen the
// vtable, but *not* generate a field for it in the case that
// needs_explicit_vtable is false but has_vtable is true.
//
// Also, we need to generate the vtable in such a way it "inherits" from
// the parent too.
let mut fields = vec![];
if self.needs_explicit_vtable(ctx) {
let vtable = Vtable::new(item.id(),
self.methods(),
self.base_members());
vtable.codegen(ctx, result, item);
let vtable_type = vtable.to_rust_ty(ctx).to_ptr(true, ctx.span());
let vtable_field = StructFieldBuilder::named("vtable_").pub_()
.build_ty(vtable_type);
fields.push(vtable_field);
}
for (i, base) in self.base_members().iter().enumerate() {
let base_ty = ctx.resolve_type(*base);
// NB: We won't include unsized types in our base chain because they
// would contribute to our size given the dummy field we insert for
// unsized types.
//
// NB: Canonical type is here because it could be inheriting from a
// typedef, for example, and the lack of `unwrap()` is because we
// can inherit from a template parameter, yes.
if base_ty.is_unsized(ctx) {
continue;
}
for (i, ty) in applicable_template_args.iter().enumerate() {
if base_ty.signature_contains_named_type(ctx, ctx.resolve_type(*ty)) {
template_args_used[i] = true;
}
}
let inner = base.to_rust_ty(ctx);
let field_name = if i == 0 {
"_base".into()
} else {
format!("_base_{}", i)
};
let field = StructFieldBuilder::named(field_name)
.pub_().build_ty(inner);
fields.push(field);
}
let is_union = self.kind() == CompKind::Union;
if is_union {
result.saw_union();
}
let layout = item.kind().expect_type().layout(ctx);
let mut current_bitfield_width = None;
let mut current_bitfield_layout: Option<Layout> = None;
let mut current_bitfield_fields = vec![];
let mut bitfield_count = 0;
let struct_fields = self.fields();
let fields_should_be_private = item.annotations()
.private_fields()
.unwrap_or(false);
let struct_accessor_kind = item.annotations()
.accessor_kind()
.unwrap_or(FieldAccessorKind::None);
let mut methods = vec![];
let mut anonymous_field_count = 0;
for field in struct_fields {
debug_assert_eq!(current_bitfield_width.is_some(),
current_bitfield_layout.is_some());
debug_assert_eq!(current_bitfield_width.is_some(),
!current_bitfield_fields.is_empty());
let field_ty = ctx.resolve_type(field.ty());
// Try to catch a bitfield contination early.
if let (Some(ref mut bitfield_width), Some(width)) = (current_bitfield_width, field.bitfield()) {
let layout = current_bitfield_layout.unwrap();
debug!("Testing bitfield continuation {} {} {:?}",
*bitfield_width, width, layout);
if *bitfield_width + width <= (layout.size * 8) as u32 {
*bitfield_width += width;
current_bitfield_fields.push(field);
continue;
}
}
// Flush the current bitfield.
if current_bitfield_width.is_some() {
debug_assert!(!current_bitfield_fields.is_empty());
let bitfield_fields =
mem::replace(&mut current_bitfield_fields, vec![]);
bitfield_count += 1;
Bitfield::new(bitfield_count, bitfield_fields)
.codegen_fields(ctx, &mut fields, &mut methods);
current_bitfield_width = None;
current_bitfield_layout = None;
}
debug_assert!(current_bitfield_fields.is_empty());
if let Some(width) = field.bitfield() {
let layout = field_ty.layout(ctx)
.expect("Bitfield type without layout?");
current_bitfield_width = Some(width);
current_bitfield_layout = Some(layout);
current_bitfield_fields.push(field);
continue;
}
for (i, ty) in applicable_template_args.iter().enumerate() {
if field_ty.signature_contains_named_type(ctx, ctx.resolve_type(*ty)) {
template_args_used[i] = true;
}
}
let ty = field.ty().to_rust_ty(ctx);
let ty = if is_union {
quote_ty!(ctx.ext_cx(), __BindgenUnionField<$ty>)
} else {
ty
};
let mut attrs = vec![];
if let Some(comment) = field.comment() {
attrs.push(attributes::doc(comment));
}
let field_name = match field.name() {
Some(name) => ctx.rust_mangle(name).into_owned(),
None => {
anonymous_field_count += 1;
format!("__bindgen_anon_{}", anonymous_field_count)
}
};
let is_private = field.annotations()
.private_fields()
.unwrap_or(fields_should_be_private);
let accessor_kind = field.annotations()
.accessor_kind()
.unwrap_or(struct_accessor_kind);
let mut field = StructFieldBuilder::named(&field_name);
if !is_private {
field = field.pub_();
}
let field = field.with_attrs(attrs)
.build_ty(ty.clone());
fields.push(field);
// TODO: Factor the following code out, please!
if accessor_kind == FieldAccessorKind::None {
continue;
}
let getter_name =
ctx.rust_ident_raw(&format!("get_{}", field_name));
let mutable_getter_name =
ctx.rust_ident_raw(&format!("get_{}_mut", field_name));
let field_name = ctx.rust_ident_raw(&field_name);
let accessor_methods_impl = match accessor_kind {
FieldAccessorKind::None => unreachable!(),
FieldAccessorKind::Regular => {
quote_item!(ctx.ext_cx(),
impl X {
#[inline]
pub fn $getter_name(&self) -> &$ty {
&self.$field_name
}
#[inline]
pub fn $mutable_getter_name(&mut self) -> &mut $ty {
&mut self.$field_name
}
}
)
}
FieldAccessorKind::Unsafe => {
quote_item!(ctx.ext_cx(),
impl X {
#[inline]
pub unsafe fn $getter_name(&self) -> &$ty {
&self.$field_name
}
#[inline]
pub unsafe fn $mutable_getter_name(&mut self) -> &mut $ty {
&mut self.$field_name
}
}
)
}
FieldAccessorKind::Immutable => {
quote_item!(ctx.ext_cx(),
impl X {
#[inline]
pub fn $getter_name(&self) -> &$ty {
&self.$field_name
}
}
)
}
};
match accessor_methods_impl.unwrap().node {
ast::ItemKind::Impl(_, _, _, _, _, ref items)
=> methods.extend(items.clone()),
_ => unreachable!()
}
}
// Flush the last bitfield if any.
//
// FIXME: Reduce duplication with the loop above.
// FIXME: May need to pass current_bitfield_layout too.
if current_bitfield_width.is_some() {
debug_assert!(!current_bitfield_fields.is_empty());
let bitfield_fields = mem::replace(&mut current_bitfield_fields, vec![]);
bitfield_count += 1;
Bitfield::new(bitfield_count, bitfield_fields)
.codegen_fields(ctx, &mut fields, &mut methods);
}
debug_assert!(current_bitfield_fields.is_empty());
if is_union {
let layout = layout.expect("Unable to get layout information?");
let ty = BlobTyBuilder::new(layout).build();
let field = StructFieldBuilder::named("bindgen_union_field").pub_()
.build_ty(ty);
fields.push(field);
}
// Yeah, sorry about that.
if item.is_opaque(ctx) {
fields.clear();
methods.clear();
for i in 0..template_args_used.len() {
template_args_used[i] = false;
}
match layout {
Some(l) => {
let ty = BlobTyBuilder::new(l).build();
let field = StructFieldBuilder::named("_bindgen_opaque_blob").pub_()
.build_ty(ty);
fields.push(field);
}
None => {
warn!("Opaque type without layout! Expect dragons!");
}
}
}
// C requires every struct to be addressable, so what C compilers do is
// making the struct 1-byte sized.
//
// NOTE: This check is conveniently here to avoid the dummy fields we
// may add for unused template parameters.
if self.is_unsized(ctx) {
let ty = BlobTyBuilder::new(Layout::new(1, 1)).build();
let field = StructFieldBuilder::named("_address").pub_()
.build_ty(ty);
fields.push(field);
}
// Append any extra template arguments that nobody has used so far.
for (i, ty) in applicable_template_args.iter().enumerate() {
if !template_args_used[i] {
let name = ctx.resolve_type(*ty).name().unwrap();
let ident = ctx.rust_ident(name);
let field =
StructFieldBuilder::named(format!("_phantom_{}", i)).pub_()
.build_ty(quote_ty!(ctx.ext_cx(), ::std::marker::PhantomData<$ident>));
fields.push(field)
}
}
let mut generics = aster::AstBuilder::new().generics();
for template_arg in applicable_template_args.iter() {
// Take into account that here only arrive named types, not
// template specialisations that would need to be
// instantiated.
//
// TODO: Add template args from the parent, here and in
// `to_rust_ty`!!
let template_arg = ctx.resolve_type(*template_arg);
generics = generics.ty_param_id(template_arg.name().unwrap());
}
let generics = generics.build();
let rust_struct = builder.with_generics(generics.clone())
.with_fields(fields).build();
result.push(rust_struct);
// Generate the inner types and all that stuff.
//
// TODO: In the future we might want to be smart, and use nested
// modules, and whatnot.
for ty in self.inner_types() {
let child_item = ctx.resolve_item(*ty);
// assert_eq!(child_item.parent_id(), item.id());
child_item.codegen(ctx, result, &());
}
// NOTE: Some unexposed attributes (like alignment attributes) may
// affect layout, so we're bad and pray to the gods for avoid sending
// all the tests to shit when parsing things like max_align_t.
if self.found_unknown_attr() {
warn!("Type {} has an unkown attribute that may affect layout", canonical_name);
}
if applicable_template_args.is_empty() && !self.found_unknown_attr() {
for var in self.inner_vars() {
ctx.resolve_item(*var).codegen(ctx, result, &());
}
if let Some(layout) = layout {
let fn_name =
ctx.rust_ident_raw(&format!("bindgen_test_layout_{}", canonical_name));
let ident = ctx.rust_ident_raw(&canonical_name);
let size_of_expr =
quote_expr!(ctx.ext_cx(), ::std::mem::size_of::<$ident>());
let align_of_expr =
quote_expr!(ctx.ext_cx(), ::std::mem::align_of::<$ident>());
let size = layout.size;
let align = layout.align;
let item = quote_item!(ctx.ext_cx(),
#[test]
fn $fn_name() {
assert_eq!($size_of_expr, $size);
assert_eq!($align_of_expr, $align);
}).unwrap();
result.push(item);
}
let mut method_names = Default::default();
for method in self.methods() {
method.codegen_method(ctx, &mut methods, &mut method_names, result, item);
}
}
// NB: We can't use to_rust_ty here since for opaque types this tries to
// use the specialization knowledge to generate a blob field.
let ty_for_impl = aster::AstBuilder::new().ty().path().id(&canonical_name).build();
if needs_clone_impl {
let impl_ = quote_item!(ctx.ext_cx(),
impl X {
fn clone(&self) -> Self { *self }
}
);
let impl_ = match impl_.unwrap().node {
ast::ItemKind::Impl(_, _, _, _, _, ref items) => items.clone(),
_ => unreachable!(),
};
let clone_impl =
aster::AstBuilder::new().item().impl_()
.trait_().id("Clone").build()
.with_generics(generics.clone())
.with_items(impl_)
.build_ty(ty_for_impl.clone());
result.push(clone_impl);
}
if !methods.is_empty() {
let methods =
aster::AstBuilder::new().item().impl_()
.with_generics(generics)
.with_items(methods)
.build_ty(ty_for_impl);
result.push(methods);
}
}
}
trait MethodCodegen {
fn codegen_method(&self,
ctx: &BindgenContext,
methods: &mut Vec<ast::ImplItem>,
method_names: &mut HashMap<String, usize>,
result: &mut CodegenResult,
parent: &Item);
}
impl MethodCodegen for Method {
fn codegen_method(&self,
ctx: &BindgenContext,
methods: &mut Vec<ast::ImplItem>,
method_names: &mut HashMap<String, usize>,
result: &mut CodegenResult,
_parent: &Item) {
if ctx.options().ignore_methods {
return;
}
if self.is_virtual() {
return; // FIXME
}
// First of all, output the actual function.
ctx.resolve_item(self.signature()).codegen(ctx, result, &());
let function_item = ctx.resolve_item(self.signature());
let function = function_item.expect_function();