Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| // Copyright 2014 The Rust Project Developers. See the COPYRIGHT | |
| // file at the top-level directory of this distribution and at | |
| // http://rust-lang.org/COPYRIGHT. | |
| // | |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | |
| // option. This file may not be copied, modified, or distributed | |
| // except according to those terms. | |
| use fmt; | |
| use sync::atomic::{AtomicUsize, Ordering}; | |
| use sync::{mutex, MutexGuard, PoisonError}; | |
| use sys_common::condvar as sys; | |
| use sys_common::mutex as sys_mutex; | |
| use sys_common::poison::{self, LockResult}; | |
| use time::{Duration, Instant}; | |
| /// A type indicating whether a timed wait on a condition variable returned | |
| /// due to a time out or not. | |
| /// | |
| /// It is returned by the [`wait_timeout`] method. | |
| /// | |
| /// [`wait_timeout`]: struct.Condvar.html#method.wait_timeout | |
| #[derive(Debug, PartialEq, Eq, Copy, Clone)] | |
| #[stable(feature = "wait_timeout", since = "1.5.0")] | |
| pub struct WaitTimeoutResult(bool); | |
| impl WaitTimeoutResult { | |
| /// Returns whether the wait was known to have timed out. | |
| /// | |
| /// # Examples | |
| /// | |
| /// This example spawns a thread which will update the boolean value and | |
| /// then wait 100 milliseconds before notifying the condvar. | |
| /// | |
| /// The main thread will wait with a timeout on the condvar and then leave | |
| /// once the boolean has been updated and notified. | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// use std::time::Duration; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// | |
| /// // Let's wait 20 milliseconds before notifying the condvar. | |
| /// thread::sleep(Duration::from_millis(20)); | |
| /// | |
| /// let mut started = lock.lock().unwrap(); | |
| /// // We update the boolean value. | |
| /// *started = true; | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// loop { | |
| /// // Let's put a timeout on the condvar's wait. | |
| /// let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap(); | |
| /// // 10 milliseconds have passed, or maybe the value changed! | |
| /// started = result.0; | |
| /// if *started == true { | |
| /// // We received the notification and the value has been updated, we can leave. | |
| /// break | |
| /// } | |
| /// } | |
| /// ``` | |
| #[stable(feature = "wait_timeout", since = "1.5.0")] | |
| pub fn timed_out(&self) -> bool { | |
| self.0 | |
| } | |
| } | |
| /// A Condition Variable | |
| /// | |
| /// Condition variables represent the ability to block a thread such that it | |
| /// consumes no CPU time while waiting for an event to occur. Condition | |
| /// variables are typically associated with a boolean predicate (a condition) | |
| /// and a mutex. The predicate is always verified inside of the mutex before | |
| /// determining that a thread must block. | |
| /// | |
| /// Functions in this module will block the current **thread** of execution and | |
| /// are bindings to system-provided condition variables where possible. Note | |
| /// that this module places one additional restriction over the system condition | |
| /// variables: each condvar can be used with precisely one mutex at runtime. Any | |
| /// attempt to use multiple mutexes on the same condition variable will result | |
| /// in a runtime panic. If this is not desired, then the unsafe primitives in | |
| /// `sys` do not have this restriction but may result in undefined behavior. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// // Inside of our lock, spawn a new thread, and then wait for it to start. | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// while !*started { | |
| /// started = cvar.wait(started).unwrap(); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct Condvar { | |
| inner: Box<sys::Condvar>, | |
| mutex: AtomicUsize, | |
| } | |
| impl Condvar { | |
| /// Creates a new condition variable which is ready to be waited on and | |
| /// notified. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::Condvar; | |
| /// | |
| /// let condvar = Condvar::new(); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn new() -> Condvar { | |
| let mut c = Condvar { | |
| inner: box sys::Condvar::new(), | |
| mutex: AtomicUsize::new(0), | |
| }; | |
| unsafe { | |
| c.inner.init(); | |
| } | |
| c | |
| } | |
| /// Blocks the current thread until this condition variable receives a | |
| /// notification. | |
| /// | |
| /// This function will atomically unlock the mutex specified (represented by | |
| /// `guard`) and block the current thread. This means that any calls | |
| /// to [`notify_one`] or [`notify_all`] which happen logically after the | |
| /// mutex is unlocked are candidates to wake this thread up. When this | |
| /// function call returns, the lock specified will have been re-acquired. | |
| /// | |
| /// Note that this function is susceptible to spurious wakeups. Condition | |
| /// variables normally have a boolean predicate associated with them, and | |
| /// the predicate must always be checked each time this function returns to | |
| /// protect against spurious wakeups. | |
| /// | |
| /// # Errors | |
| /// | |
| /// This function will return an error if the mutex being waited on is | |
| /// poisoned when this thread re-acquires the lock. For more information, | |
| /// see information about [poisoning] on the [`Mutex`] type. | |
| /// | |
| /// # Panics | |
| /// | |
| /// This function will [`panic!`] if it is used with more than one mutex | |
| /// over time. Each condition variable is dynamically bound to exactly one | |
| /// mutex to ensure defined behavior across platforms. If this functionality | |
| /// is not desired, then unsafe primitives in `sys` are provided. | |
| /// | |
| /// [`notify_one`]: #method.notify_one | |
| /// [`notify_all`]: #method.notify_all | |
| /// [poisoning]: ../sync/struct.Mutex.html#poisoning | |
| /// [`Mutex`]: ../sync/struct.Mutex.html | |
| /// [`panic!`]: ../../std/macro.panic.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// // As long as the value inside the `Mutex` is false, we wait. | |
| /// while !*started { | |
| /// started = cvar.wait(started).unwrap(); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) | |
| -> LockResult<MutexGuard<'a, T>> { | |
| let poisoned = unsafe { | |
| let lock = mutex::guard_lock(&guard); | |
| self.verify(lock); | |
| self.inner.wait(lock); | |
| mutex::guard_poison(&guard).get() | |
| }; | |
| if poisoned { | |
| Err(PoisonError::new(guard)) | |
| } else { | |
| Ok(guard) | |
| } | |
| } | |
| /// Blocks the current thread until this condition variable receives a | |
| /// notification and the required condition is met. Spurious wakeups are | |
| /// ignored and this function will only return once the condition has been | |
| /// met. | |
| /// | |
| /// This function will atomically unlock the mutex specified (represented by | |
| /// `guard`) and block the current thread. This means that any calls | |
| /// to [`notify_one`] or [`notify_all`] which happen logically after the | |
| /// mutex is unlocked are candidates to wake this thread up. When this | |
| /// function call returns, the lock specified will have been re-acquired. | |
| /// | |
| /// # Errors | |
| /// | |
| /// This function will return an error if the mutex being waited on is | |
| /// poisoned when this thread re-acquires the lock. For more information, | |
| /// see information about [poisoning] on the [`Mutex`] type. | |
| /// | |
| /// [`notify_one`]: #method.notify_one | |
| /// [`notify_all`]: #method.notify_all | |
| /// [poisoning]: ../sync/struct.Mutex.html#poisoning | |
| /// [`Mutex`]: ../sync/struct.Mutex.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(wait_until)] | |
| /// | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// // As long as the value inside the `Mutex` is false, we wait. | |
| /// let _guard = cvar.wait_until(lock.lock().unwrap(), |started| { *started }).unwrap(); | |
| /// ``` | |
| #[unstable(feature = "wait_until", issue = "47960")] | |
| pub fn wait_until<'a, T, F>(&self, mut guard: MutexGuard<'a, T>, | |
| mut condition: F) | |
| -> LockResult<MutexGuard<'a, T>> | |
| where F: FnMut(&mut T) -> bool { | |
| while !condition(&mut *guard) { | |
| guard = self.wait(guard)?; | |
| } | |
| Ok(guard) | |
| } | |
| /// Waits on this condition variable for a notification, timing out after a | |
| /// specified duration. | |
| /// | |
| /// The semantics of this function are equivalent to [`wait`] | |
| /// except that the thread will be blocked for roughly no longer | |
| /// than `ms` milliseconds. This method should not be used for | |
| /// precise timing due to anomalies such as preemption or platform | |
| /// differences that may not cause the maximum amount of time | |
| /// waited to be precisely `ms`. | |
| /// | |
| /// Note that the best effort is made to ensure that the time waited is | |
| /// measured with a monotonic clock, and not affected by the changes made to | |
| /// the system time. | |
| /// | |
| /// The returned boolean is `false` only if the timeout is known | |
| /// to have elapsed. | |
| /// | |
| /// Like [`wait`], the lock specified will be re-acquired when this function | |
| /// returns, regardless of whether the timeout elapsed or not. | |
| /// | |
| /// [`wait`]: #method.wait | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// // As long as the value inside the `Mutex` is false, we wait. | |
| /// loop { | |
| /// let result = cvar.wait_timeout_ms(started, 10).unwrap(); | |
| /// // 10 milliseconds have passed, or maybe the value changed! | |
| /// started = result.0; | |
| /// if *started == true { | |
| /// // We received the notification and the value has been updated, we can leave. | |
| /// break | |
| /// } | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::sync::Condvar::wait_timeout`")] | |
| pub fn wait_timeout_ms<'a, T>(&self, guard: MutexGuard<'a, T>, ms: u32) | |
| -> LockResult<(MutexGuard<'a, T>, bool)> { | |
| let res = self.wait_timeout(guard, Duration::from_millis(ms as u64)); | |
| poison::map_result(res, |(a, b)| { | |
| (a, !b.timed_out()) | |
| }) | |
| } | |
| /// Waits on this condition variable for a notification, timing out after a | |
| /// specified duration. | |
| /// | |
| /// The semantics of this function are equivalent to [`wait`] except that | |
| /// the thread will be blocked for roughly no longer than `dur`. This | |
| /// method should not be used for precise timing due to anomalies such as | |
| /// preemption or platform differences that may not cause the maximum | |
| /// amount of time waited to be precisely `dur`. | |
| /// | |
| /// Note that the best effort is made to ensure that the time waited is | |
| /// measured with a monotonic clock, and not affected by the changes made to | |
| /// the system time. This function is susceptible to spurious wakeups. | |
| /// Condition variables normally have a boolean predicate associated with | |
| /// them, and the predicate must always be checked each time this function | |
| /// returns to protect against spurious wakeups. Additionally, it is | |
| /// typically desirable for the time-out to not exceed some duration in | |
| /// spite of spurious wakes, thus the sleep-duration is decremented by the | |
| /// amount slept. Alternatively, use the `wait_timeout_until` method | |
| /// to wait until a condition is met with a total time-out regardless | |
| /// of spurious wakes. | |
| /// | |
| /// The returned [`WaitTimeoutResult`] value indicates if the timeout is | |
| /// known to have elapsed. | |
| /// | |
| /// Like [`wait`], the lock specified will be re-acquired when this function | |
| /// returns, regardless of whether the timeout elapsed or not. | |
| /// | |
| /// [`wait`]: #method.wait | |
| /// [`wait_timeout_until`]: #method.wait_timeout_until | |
| /// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// use std::time::Duration; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // wait for the thread to start up | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// // as long as the value inside the `Mutex` is false, we wait | |
| /// loop { | |
| /// let result = cvar.wait_timeout(started, Duration::from_millis(10)).unwrap(); | |
| /// // 10 milliseconds have passed, or maybe the value changed! | |
| /// started = result.0; | |
| /// if *started == true { | |
| /// // We received the notification and the value has been updated, we can leave. | |
| /// break | |
| /// } | |
| /// } | |
| /// ``` | |
| #[stable(feature = "wait_timeout", since = "1.5.0")] | |
| pub fn wait_timeout<'a, T>(&self, guard: MutexGuard<'a, T>, | |
| dur: Duration) | |
| -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> { | |
| let (poisoned, result) = unsafe { | |
| let lock = mutex::guard_lock(&guard); | |
| self.verify(lock); | |
| let success = self.inner.wait_timeout(lock, dur); | |
| (mutex::guard_poison(&guard).get(), WaitTimeoutResult(!success)) | |
| }; | |
| if poisoned { | |
| Err(PoisonError::new((guard, result))) | |
| } else { | |
| Ok((guard, result)) | |
| } | |
| } | |
| /// Waits on this condition variable for a notification, timing out after a | |
| /// specified duration. Spurious wakes will not cause this function to | |
| /// return. | |
| /// | |
| /// The semantics of this function are equivalent to [`wait_until`] except | |
| /// that the thread will be blocked for roughly no longer than `dur`. This | |
| /// method should not be used for precise timing due to anomalies such as | |
| /// preemption or platform differences that may not cause the maximum | |
| /// amount of time waited to be precisely `dur`. | |
| /// | |
| /// Note that the best effort is made to ensure that the time waited is | |
| /// measured with a monotonic clock, and not affected by the changes made to | |
| /// the system time. | |
| /// | |
| /// The returned [`WaitTimeoutResult`] value indicates if the timeout is | |
| /// known to have elapsed without the condition being met. | |
| /// | |
| /// Like [`wait_until`], the lock specified will be re-acquired when this | |
| /// function returns, regardless of whether the timeout elapsed or not. | |
| /// | |
| /// [`wait_until`]: #method.wait_until | |
| /// [`wait_timeout`]: #method.wait_timeout | |
| /// [`WaitTimeoutResult`]: struct.WaitTimeoutResult.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(wait_timeout_until)] | |
| /// | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// use std::time::Duration; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // wait for the thread to start up | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let result = cvar.wait_timeout_until( | |
| /// lock.lock().unwrap(), | |
| /// Duration::from_millis(100), | |
| /// |&mut started| started, | |
| /// ).unwrap(); | |
| /// if result.1.timed_out() { | |
| /// // timed-out without the condition ever evaluating to true. | |
| /// } | |
| /// // access the locked mutex via result.0 | |
| /// ``` | |
| #[unstable(feature = "wait_timeout_until", issue = "47960")] | |
| pub fn wait_timeout_until<'a, T, F>(&self, mut guard: MutexGuard<'a, T>, | |
| dur: Duration, mut condition: F) | |
| -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> | |
| where F: FnMut(&mut T) -> bool { | |
| let start = Instant::now(); | |
| loop { | |
| if condition(&mut *guard) { | |
| return Ok((guard, WaitTimeoutResult(false))); | |
| } | |
| let timeout = match dur.checked_sub(start.elapsed()) { | |
| Some(timeout) => timeout, | |
| None => return Ok((guard, WaitTimeoutResult(true))), | |
| }; | |
| guard = self.wait_timeout(guard, timeout)?.0; | |
| } | |
| } | |
| /// Wakes up one blocked thread on this condvar. | |
| /// | |
| /// If there is a blocked thread on this condition variable, then it will | |
| /// be woken up from its call to [`wait`] or [`wait_timeout`]. Calls to | |
| /// `notify_one` are not buffered in any way. | |
| /// | |
| /// To wake up all threads, see [`notify_all`]. | |
| /// | |
| /// [`wait`]: #method.wait | |
| /// [`wait_timeout`]: #method.wait_timeout | |
| /// [`notify_all`]: #method.notify_all | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_one(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// // As long as the value inside the `Mutex` is false, we wait. | |
| /// while !*started { | |
| /// started = cvar.wait(started).unwrap(); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn notify_one(&self) { | |
| unsafe { self.inner.notify_one() } | |
| } | |
| /// Wakes up all blocked threads on this condvar. | |
| /// | |
| /// This method will ensure that any current waiters on the condition | |
| /// variable are awoken. Calls to `notify_all()` are not buffered in any | |
| /// way. | |
| /// | |
| /// To wake up only one thread, see [`notify_one`]. | |
| /// | |
| /// [`notify_one`]: #method.notify_one | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::sync::{Arc, Mutex, Condvar}; | |
| /// use std::thread; | |
| /// | |
| /// let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| /// let pair2 = pair.clone(); | |
| /// | |
| /// thread::spawn(move|| { | |
| /// let &(ref lock, ref cvar) = &*pair2; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// *started = true; | |
| /// // We notify the condvar that the value has changed. | |
| /// cvar.notify_all(); | |
| /// }); | |
| /// | |
| /// // Wait for the thread to start up. | |
| /// let &(ref lock, ref cvar) = &*pair; | |
| /// let mut started = lock.lock().unwrap(); | |
| /// // As long as the value inside the `Mutex` is false, we wait. | |
| /// while !*started { | |
| /// started = cvar.wait(started).unwrap(); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn notify_all(&self) { | |
| unsafe { self.inner.notify_all() } | |
| } | |
| fn verify(&self, mutex: &sys_mutex::Mutex) { | |
| let addr = mutex as *const _ as usize; | |
| match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) { | |
| // If we got out 0, then we have successfully bound the mutex to | |
| // this cvar. | |
| 0 => {} | |
| // If we get out a value that's the same as `addr`, then someone | |
| // already beat us to the punch. | |
| n if n == addr => {} | |
| // Anything else and we're using more than one mutex on this cvar, | |
| // which is currently disallowed. | |
| _ => panic!("attempted to use a condition variable with two \ | |
| mutexes"), | |
| } | |
| } | |
| } | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl fmt::Debug for Condvar { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.pad("Condvar { .. }") | |
| } | |
| } | |
| #[stable(feature = "condvar_default", since = "1.10.0")] | |
| impl Default for Condvar { | |
| /// Creates a `Condvar` which is ready to be waited on and notified. | |
| fn default() -> Condvar { | |
| Condvar::new() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl Drop for Condvar { | |
| fn drop(&mut self) { | |
| unsafe { self.inner.destroy() } | |
| } | |
| } | |
| #[cfg(test)] | |
| mod tests { | |
| /// #![feature(wait_until)] | |
| use sync::mpsc::channel; | |
| use sync::{Condvar, Mutex, Arc}; | |
| use sync::atomic::{AtomicBool, Ordering}; | |
| use thread; | |
| use time::Duration; | |
| use u64; | |
| #[test] | |
| fn smoke() { | |
| let c = Condvar::new(); | |
| c.notify_one(); | |
| c.notify_all(); | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn notify_one() { | |
| let m = Arc::new(Mutex::new(())); | |
| let m2 = m.clone(); | |
| let c = Arc::new(Condvar::new()); | |
| let c2 = c.clone(); | |
| let g = m.lock().unwrap(); | |
| let _t = thread::spawn(move|| { | |
| let _g = m2.lock().unwrap(); | |
| c2.notify_one(); | |
| }); | |
| let g = c.wait(g).unwrap(); | |
| drop(g); | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn notify_all() { | |
| const N: usize = 10; | |
| let data = Arc::new((Mutex::new(0), Condvar::new())); | |
| let (tx, rx) = channel(); | |
| for _ in 0..N { | |
| let data = data.clone(); | |
| let tx = tx.clone(); | |
| thread::spawn(move|| { | |
| let &(ref lock, ref cond) = &*data; | |
| let mut cnt = lock.lock().unwrap(); | |
| *cnt += 1; | |
| if *cnt == N { | |
| tx.send(()).unwrap(); | |
| } | |
| while *cnt != 0 { | |
| cnt = cond.wait(cnt).unwrap(); | |
| } | |
| tx.send(()).unwrap(); | |
| }); | |
| } | |
| drop(tx); | |
| let &(ref lock, ref cond) = &*data; | |
| rx.recv().unwrap(); | |
| let mut cnt = lock.lock().unwrap(); | |
| *cnt = 0; | |
| cond.notify_all(); | |
| drop(cnt); | |
| for _ in 0..N { | |
| rx.recv().unwrap(); | |
| } | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn wait_until() { | |
| let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| let pair2 = pair.clone(); | |
| // Inside of our lock, spawn a new thread, and then wait for it to start. | |
| thread::spawn(move|| { | |
| let &(ref lock, ref cvar) = &*pair2; | |
| let mut started = lock.lock().unwrap(); | |
| *started = true; | |
| // We notify the condvar that the value has changed. | |
| cvar.notify_one(); | |
| }); | |
| // Wait for the thread to start up. | |
| let &(ref lock, ref cvar) = &*pair; | |
| let guard = cvar.wait_until(lock.lock().unwrap(), |started| { | |
| *started | |
| }); | |
| assert!(*guard.unwrap()); | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn wait_timeout_wait() { | |
| let m = Arc::new(Mutex::new(())); | |
| let c = Arc::new(Condvar::new()); | |
| loop { | |
| let g = m.lock().unwrap(); | |
| let (_g, no_timeout) = c.wait_timeout(g, Duration::from_millis(1)).unwrap(); | |
| // spurious wakeups mean this isn't necessarily true | |
| // so execute test again, if not timeout | |
| if !no_timeout.timed_out() { | |
| continue; | |
| } | |
| break; | |
| } | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn wait_timeout_until_wait() { | |
| let m = Arc::new(Mutex::new(())); | |
| let c = Arc::new(Condvar::new()); | |
| let g = m.lock().unwrap(); | |
| let (_g, wait) = c.wait_timeout_until(g, Duration::from_millis(1), |_| { false }).unwrap(); | |
| // no spurious wakeups. ensure it timed-out | |
| assert!(wait.timed_out()); | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn wait_timeout_until_instant_satisfy() { | |
| let m = Arc::new(Mutex::new(())); | |
| let c = Arc::new(Condvar::new()); | |
| let g = m.lock().unwrap(); | |
| let (_g, wait) = c.wait_timeout_until(g, Duration::from_millis(0), |_| { true }).unwrap(); | |
| // ensure it didn't time-out even if we were not given any time. | |
| assert!(!wait.timed_out()); | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn wait_timeout_until_wake() { | |
| let pair = Arc::new((Mutex::new(false), Condvar::new())); | |
| let pair_copy = pair.clone(); | |
| let &(ref m, ref c) = &*pair; | |
| let g = m.lock().unwrap(); | |
| let _t = thread::spawn(move || { | |
| let &(ref lock, ref cvar) = &*pair_copy; | |
| let mut started = lock.lock().unwrap(); | |
| thread::sleep(Duration::from_millis(1)); | |
| *started = true; | |
| cvar.notify_one(); | |
| }); | |
| let (g2, wait) = c.wait_timeout_until(g, Duration::from_millis(u64::MAX), |&mut notified| { | |
| notified | |
| }).unwrap(); | |
| // ensure it didn't time-out even if we were not given any time. | |
| assert!(!wait.timed_out()); | |
| assert!(*g2); | |
| } | |
| #[test] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn wait_timeout_wake() { | |
| let m = Arc::new(Mutex::new(())); | |
| let c = Arc::new(Condvar::new()); | |
| loop { | |
| let g = m.lock().unwrap(); | |
| let c2 = c.clone(); | |
| let m2 = m.clone(); | |
| let notified = Arc::new(AtomicBool::new(false)); | |
| let notified_copy = notified.clone(); | |
| let t = thread::spawn(move || { | |
| let _g = m2.lock().unwrap(); | |
| thread::sleep(Duration::from_millis(1)); | |
| notified_copy.store(true, Ordering::SeqCst); | |
| c2.notify_one(); | |
| }); | |
| let (g, timeout_res) = c.wait_timeout(g, Duration::from_millis(u64::MAX)).unwrap(); | |
| assert!(!timeout_res.timed_out()); | |
| // spurious wakeups mean this isn't necessarily true | |
| // so execute test again, if not notified | |
| if !notified.load(Ordering::SeqCst) { | |
| t.join().unwrap(); | |
| continue; | |
| } | |
| drop(g); | |
| t.join().unwrap(); | |
| break; | |
| } | |
| } | |
| #[test] | |
| #[should_panic] | |
| #[cfg_attr(target_os = "emscripten", ignore)] | |
| fn two_mutexes() { | |
| let m = Arc::new(Mutex::new(())); | |
| let m2 = m.clone(); | |
| let c = Arc::new(Condvar::new()); | |
| let c2 = c.clone(); | |
| let mut g = m.lock().unwrap(); | |
| let _t = thread::spawn(move|| { | |
| let _g = m2.lock().unwrap(); | |
| c2.notify_one(); | |
| }); | |
| g = c.wait(g).unwrap(); | |
| drop(g); | |
| let m = Mutex::new(()); | |
| let _ = c.wait(m.lock().unwrap()).unwrap(); | |
| } | |
| } |