Permalink
Join GitHub today
GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.
Sign up| use self::Entry::*; | |
| use self::VacantEntryState::*; | |
| use intrinsics::unlikely; | |
| use collections::CollectionAllocErr; | |
| use cell::Cell; | |
| use borrow::Borrow; | |
| use cmp::max; | |
| use fmt::{self, Debug}; | |
| #[allow(deprecated)] | |
| use hash::{Hash, Hasher, BuildHasher, SipHasher13}; | |
| use iter::{FromIterator, FusedIterator}; | |
| use mem::{self, replace}; | |
| use ops::{Deref, DerefMut, Index}; | |
| use sys; | |
| use super::table::{self, Bucket, EmptyBucket, Fallibility, FullBucket, FullBucketMut, RawTable, | |
| SafeHash}; | |
| use super::table::BucketState::{Empty, Full}; | |
| use super::table::Fallibility::{Fallible, Infallible}; | |
| const MIN_NONZERO_RAW_CAPACITY: usize = 32; // must be a power of two | |
| /// The default behavior of HashMap implements a maximum load factor of 90.9%. | |
| #[derive(Clone)] | |
| struct DefaultResizePolicy; | |
| impl DefaultResizePolicy { | |
| #[inline] | |
| fn new() -> DefaultResizePolicy { | |
| DefaultResizePolicy | |
| } | |
| /// A hash map's "capacity" is the number of elements it can hold without | |
| /// being resized. Its "raw capacity" is the number of slots required to | |
| /// provide that capacity, accounting for maximum loading. The raw capacity | |
| /// is always zero or a power of two. | |
| #[inline] | |
| fn try_raw_capacity(&self, len: usize) -> Result<usize, CollectionAllocErr> { | |
| if len == 0 { | |
| Ok(0) | |
| } else { | |
| // 1. Account for loading: `raw_capacity >= len * 1.1`. | |
| // 2. Ensure it is a power of two. | |
| // 3. Ensure it is at least the minimum size. | |
| let mut raw_cap = len.checked_mul(11) | |
| .map(|l| l / 10) | |
| .and_then(|l| l.checked_next_power_of_two()) | |
| .ok_or(CollectionAllocErr::CapacityOverflow)?; | |
| raw_cap = max(MIN_NONZERO_RAW_CAPACITY, raw_cap); | |
| Ok(raw_cap) | |
| } | |
| } | |
| #[inline] | |
| fn raw_capacity(&self, len: usize) -> usize { | |
| self.try_raw_capacity(len).expect("raw_capacity overflow") | |
| } | |
| /// The capacity of the given raw capacity. | |
| #[inline] | |
| fn capacity(&self, raw_cap: usize) -> usize { | |
| // This doesn't have to be checked for overflow since allocation size | |
| // in bytes will overflow earlier than multiplication by 10. | |
| // | |
| // As per https://github.com/rust-lang/rust/pull/30991 this is updated | |
| // to be: (raw_cap * den + den - 1) / num | |
| (raw_cap * 10 + 10 - 1) / 11 | |
| } | |
| } | |
| // The main performance trick in this hashmap is called Robin Hood Hashing. | |
| // It gains its excellent performance from one essential operation: | |
| // | |
| // If an insertion collides with an existing element, and that element's | |
| // "probe distance" (how far away the element is from its ideal location) | |
| // is higher than how far we've already probed, swap the elements. | |
| // | |
| // This massively lowers variance in probe distance, and allows us to get very | |
| // high load factors with good performance. The 90% load factor I use is rather | |
| // conservative. | |
| // | |
| // > Why a load factor of approximately 90%? | |
| // | |
| // In general, all the distances to initial buckets will converge on the mean. | |
| // At a load factor of α, the odds of finding the target bucket after k | |
| // probes is approximately 1-α^k. If we set this equal to 50% (since we converge | |
| // on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round | |
| // this down to make the math easier on the CPU and avoid its FPU. | |
| // Since on average we start the probing in the middle of a cache line, this | |
| // strategy pulls in two cache lines of hashes on every lookup. I think that's | |
| // pretty good, but if you want to trade off some space, it could go down to one | |
| // cache line on average with an α of 0.84. | |
| // | |
| // > Wait, what? Where did you get 1-α^k from? | |
| // | |
| // On the first probe, your odds of a collision with an existing element is α. | |
| // The odds of doing this twice in a row is approximately α^2. For three times, | |
| // α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT | |
| // colliding after k tries is 1-α^k. | |
| // | |
| // The paper from 1986 cited below mentions an implementation which keeps track | |
| // of the distance-to-initial-bucket histogram. This approach is not suitable | |
| // for modern architectures because it requires maintaining an internal data | |
| // structure. This allows very good first guesses, but we are most concerned | |
| // with guessing entire cache lines, not individual indexes. Furthermore, array | |
| // accesses are no longer linear and in one direction, as we have now. There | |
| // is also memory and cache pressure that this would entail that would be very | |
| // difficult to properly see in a microbenchmark. | |
| // | |
| // ## Future Improvements (FIXME!) | |
| // | |
| // Allow the load factor to be changed dynamically and/or at initialization. | |
| // | |
| // Also, would it be possible for us to reuse storage when growing the | |
| // underlying table? This is exactly the use case for 'realloc', and may | |
| // be worth exploring. | |
| // | |
| // ## Future Optimizations (FIXME!) | |
| // | |
| // Another possible design choice that I made without any real reason is | |
| // parameterizing the raw table over keys and values. Technically, all we need | |
| // is the size and alignment of keys and values, and the code should be just as | |
| // efficient (well, we might need one for power-of-two size and one for not...). | |
| // This has the potential to reduce code bloat in rust executables, without | |
| // really losing anything except 4 words (key size, key alignment, val size, | |
| // val alignment) which can be passed in to every call of a `RawTable` function. | |
| // This would definitely be an avenue worth exploring if people start complaining | |
| // about the size of rust executables. | |
| // | |
| // Annotate exceedingly likely branches in `table::make_hash` | |
| // and `search_hashed` to reduce instruction cache pressure | |
| // and mispredictions once it becomes possible (blocked on issue #11092). | |
| // | |
| // Shrinking the table could simply reallocate in place after moving buckets | |
| // to the first half. | |
| // | |
| // The growth algorithm (fragment of the Proof of Correctness) | |
| // -------------------- | |
| // | |
| // The growth algorithm is basically a fast path of the naive reinsertion- | |
| // during-resize algorithm. Other paths should never be taken. | |
| // | |
| // Consider growing a robin hood hashtable of capacity n. Normally, we do this | |
| // by allocating a new table of capacity `2n`, and then individually reinsert | |
| // each element in the old table into the new one. This guarantees that the | |
| // new table is a valid robin hood hashtable with all the desired statistical | |
| // properties. Remark that the order we reinsert the elements in should not | |
| // matter. For simplicity and efficiency, we will consider only linear | |
| // reinsertions, which consist of reinserting all elements in the old table | |
| // into the new one by increasing order of index. However we will not be | |
| // starting our reinsertions from index 0 in general. If we start from index | |
| // i, for the purpose of reinsertion we will consider all elements with real | |
| // index j < i to have virtual index n + j. | |
| // | |
| // Our hash generation scheme consists of generating a 64-bit hash and | |
| // truncating the most significant bits. When moving to the new table, we | |
| // simply introduce a new bit to the front of the hash. Therefore, if an | |
| // element has ideal index i in the old table, it can have one of two ideal | |
| // locations in the new table. If the new bit is 0, then the new ideal index | |
| // is i. If the new bit is 1, then the new ideal index is n + i. Intuitively, | |
| // we are producing two independent tables of size n, and for each element we | |
| // independently choose which table to insert it into with equal probability. | |
| // However, rather than wrapping around themselves on overflowing their | |
| // indexes, the first table overflows into the second, and the second into the | |
| // first. Visually, our new table will look something like: | |
| // | |
| // [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy] | |
| // | |
| // Where x's are elements inserted into the first table, y's are elements | |
| // inserted into the second, and _'s are empty sections. We now define a few | |
| // key concepts that we will use later. Note that this is a very abstract | |
| // perspective of the table. A real resized table would be at least half | |
| // empty. | |
| // | |
| // Theorem: A linear robin hood reinsertion from the first ideal element | |
| // produces identical results to a linear naive reinsertion from the same | |
| // element. | |
| // | |
| // FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md | |
| // | |
| // Adaptive early resizing | |
| // ---------------------- | |
| // To protect against degenerate performance scenarios (including DOS attacks), | |
| // the implementation includes an adaptive behavior that can resize the map | |
| // early (before its capacity is exceeded) when suspiciously long probe sequences | |
| // are encountered. | |
| // | |
| // With this algorithm in place it would be possible to turn a CPU attack into | |
| // a memory attack due to the aggressive resizing. To prevent that the | |
| // adaptive behavior only triggers when the map is at least half full. | |
| // This reduces the effectiveness of the algorithm but also makes it completely safe. | |
| // | |
| // The previous safety measure also prevents degenerate interactions with | |
| // really bad quality hash algorithms that can make normal inputs look like a | |
| // DOS attack. | |
| // | |
| const DISPLACEMENT_THRESHOLD: usize = 128; | |
| // | |
| // The threshold of 128 is chosen to minimize the chance of exceeding it. | |
| // In particular, we want that chance to be less than 10^-8 with a load of 90%. | |
| // For displacement, the smallest constant that fits our needs is 90, | |
| // so we round that up to 128. | |
| // | |
| // At a load factor of α, the odds of finding the target bucket after exactly n | |
| // unsuccessful probes[1] are | |
| // | |
| // Pr_α{displacement = n} = | |
| // (1 - α) / α * ∑_{k≥1} e^(-kα) * (kα)^(k+n) / (k + n)! * (1 - kα / (k + n + 1)) | |
| // | |
| // We use this formula to find the probability of triggering the adaptive behavior | |
| // | |
| // Pr_0.909{displacement > 128} = 1.601 * 10^-11 | |
| // | |
| // 1. Alfredo Viola (2005). Distributional analysis of Robin Hood linear probing | |
| // hashing with buckets. | |
| /// A hash map implemented with linear probing and Robin Hood bucket stealing. | |
| /// | |
| /// By default, `HashMap` uses a hashing algorithm selected to provide | |
| /// resistance against HashDoS attacks. The algorithm is randomly seeded, and a | |
| /// reasonable best-effort is made to generate this seed from a high quality, | |
| /// secure source of randomness provided by the host without blocking the | |
| /// program. Because of this, the randomness of the seed depends on the output | |
| /// quality of the system's random number generator when the seed is created. | |
| /// In particular, seeds generated when the system's entropy pool is abnormally | |
| /// low such as during system boot may be of a lower quality. | |
| /// | |
| /// The default hashing algorithm is currently SipHash 1-3, though this is | |
| /// subject to change at any point in the future. While its performance is very | |
| /// competitive for medium sized keys, other hashing algorithms will outperform | |
| /// it for small keys such as integers as well as large keys such as long | |
| /// strings, though those algorithms will typically *not* protect against | |
| /// attacks such as HashDoS. | |
| /// | |
| /// The hashing algorithm can be replaced on a per-`HashMap` basis using the | |
| /// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many | |
| /// alternative algorithms are available on crates.io, such as the [`fnv`] crate. | |
| /// | |
| /// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although | |
| /// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`. | |
| /// If you implement these yourself, it is important that the following | |
| /// property holds: | |
| /// | |
| /// ```text | |
| /// k1 == k2 -> hash(k1) == hash(k2) | |
| /// ``` | |
| /// | |
| /// In other words, if two keys are equal, their hashes must be equal. | |
| /// | |
| /// It is a logic error for a key to be modified in such a way that the key's | |
| /// hash, as determined by the [`Hash`] trait, or its equality, as determined by | |
| /// the [`Eq`] trait, changes while it is in the map. This is normally only | |
| /// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. | |
| /// | |
| /// Relevant papers/articles: | |
| /// | |
| /// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf) | |
| /// 2. Emmanuel Goossaert. ["Robin Hood | |
| /// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/) | |
| /// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift | |
| /// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/) | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// // Type inference lets us omit an explicit type signature (which | |
| /// // would be `HashMap<String, String>` in this example). | |
| /// let mut book_reviews = HashMap::new(); | |
| /// | |
| /// // Review some books. | |
| /// book_reviews.insert( | |
| /// "Adventures of Huckleberry Finn".to_string(), | |
| /// "My favorite book.".to_string(), | |
| /// ); | |
| /// book_reviews.insert( | |
| /// "Grimms' Fairy Tales".to_string(), | |
| /// "Masterpiece.".to_string(), | |
| /// ); | |
| /// book_reviews.insert( | |
| /// "Pride and Prejudice".to_string(), | |
| /// "Very enjoyable.".to_string(), | |
| /// ); | |
| /// book_reviews.insert( | |
| /// "The Adventures of Sherlock Holmes".to_string(), | |
| /// "Eye lyked it alot.".to_string(), | |
| /// ); | |
| /// | |
| /// // Check for a specific one. | |
| /// // When collections store owned values (String), they can still be | |
| /// // queried using references (&str). | |
| /// if !book_reviews.contains_key("Les Misérables") { | |
| /// println!("We've got {} reviews, but Les Misérables ain't one.", | |
| /// book_reviews.len()); | |
| /// } | |
| /// | |
| /// // oops, this review has a lot of spelling mistakes, let's delete it. | |
| /// book_reviews.remove("The Adventures of Sherlock Holmes"); | |
| /// | |
| /// // Look up the values associated with some keys. | |
| /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; | |
| /// for &book in &to_find { | |
| /// match book_reviews.get(book) { | |
| /// Some(review) => println!("{}: {}", book, review), | |
| /// None => println!("{} is unreviewed.", book) | |
| /// } | |
| /// } | |
| /// | |
| /// // Look up the value for a key (will panic if the key is not found). | |
| /// println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]); | |
| /// | |
| /// // Iterate over everything. | |
| /// for (book, review) in &book_reviews { | |
| /// println!("{}: \"{}\"", book, review); | |
| /// } | |
| /// ``` | |
| /// | |
| /// `HashMap` also implements an [`Entry API`](#method.entry), which allows | |
| /// for more complex methods of getting, setting, updating and removing keys and | |
| /// their values: | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// // type inference lets us omit an explicit type signature (which | |
| /// // would be `HashMap<&str, u8>` in this example). | |
| /// let mut player_stats = HashMap::new(); | |
| /// | |
| /// fn random_stat_buff() -> u8 { | |
| /// // could actually return some random value here - let's just return | |
| /// // some fixed value for now | |
| /// 42 | |
| /// } | |
| /// | |
| /// // insert a key only if it doesn't already exist | |
| /// player_stats.entry("health").or_insert(100); | |
| /// | |
| /// // insert a key using a function that provides a new value only if it | |
| /// // doesn't already exist | |
| /// player_stats.entry("defence").or_insert_with(random_stat_buff); | |
| /// | |
| /// // update a key, guarding against the key possibly not being set | |
| /// let stat = player_stats.entry("attack").or_insert(100); | |
| /// *stat += random_stat_buff(); | |
| /// ``` | |
| /// | |
| /// The easiest way to use `HashMap` with a custom key type is to derive [`Eq`] and [`Hash`]. | |
| /// We must also derive [`PartialEq`]. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html | |
| /// [`RefCell`]: ../../std/cell/struct.RefCell.html | |
| /// [`Cell`]: ../../std/cell/struct.Cell.html | |
| /// [`default`]: #method.default | |
| /// [`with_hasher`]: #method.with_hasher | |
| /// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher | |
| /// [`fnv`]: https://crates.io/crates/fnv | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// #[derive(Hash, Eq, PartialEq, Debug)] | |
| /// struct Viking { | |
| /// name: String, | |
| /// country: String, | |
| /// } | |
| /// | |
| /// impl Viking { | |
| /// /// Create a new Viking. | |
| /// fn new(name: &str, country: &str) -> Viking { | |
| /// Viking { name: name.to_string(), country: country.to_string() } | |
| /// } | |
| /// } | |
| /// | |
| /// // Use a HashMap to store the vikings' health points. | |
| /// let mut vikings = HashMap::new(); | |
| /// | |
| /// vikings.insert(Viking::new("Einar", "Norway"), 25); | |
| /// vikings.insert(Viking::new("Olaf", "Denmark"), 24); | |
| /// vikings.insert(Viking::new("Harald", "Iceland"), 12); | |
| /// | |
| /// // Use derived implementation to print the status of the vikings. | |
| /// for (viking, health) in &vikings { | |
| /// println!("{:?} has {} hp", viking, health); | |
| /// } | |
| /// ``` | |
| /// | |
| /// A `HashMap` with fixed list of elements can be initialized from an array: | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// fn main() { | |
| /// let timber_resources: HashMap<&str, i32> = | |
| /// [("Norway", 100), | |
| /// ("Denmark", 50), | |
| /// ("Iceland", 10)] | |
| /// .iter().cloned().collect(); | |
| /// // use the values stored in map | |
| /// } | |
| /// ``` | |
| #[derive(Clone)] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct HashMap<K, V, S = RandomState> { | |
| // All hashes are keyed on these values, to prevent hash collision attacks. | |
| hash_builder: S, | |
| table: RawTable<K, V>, | |
| resize_policy: DefaultResizePolicy, | |
| } | |
| /// Search for a pre-hashed key. | |
| /// If you don't already know the hash, use search or search_mut instead | |
| #[inline] | |
| fn search_hashed<K, V, M, F>(table: M, hash: SafeHash, is_match: F) -> InternalEntry<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>>, | |
| F: FnMut(&K) -> bool | |
| { | |
| // This is the only function where capacity can be zero. To avoid | |
| // undefined behavior when Bucket::new gets the raw bucket in this | |
| // case, immediately return the appropriate search result. | |
| if table.capacity() == 0 { | |
| return InternalEntry::TableIsEmpty; | |
| } | |
| search_hashed_nonempty(table, hash, is_match, true) | |
| } | |
| /// Search for a pre-hashed key when the hash map is known to be non-empty. | |
| #[inline] | |
| fn search_hashed_nonempty<K, V, M, F>(table: M, hash: SafeHash, mut is_match: F, | |
| compare_hashes: bool) | |
| -> InternalEntry<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>>, | |
| F: FnMut(&K) -> bool | |
| { | |
| // Do not check the capacity as an extra branch could slow the lookup. | |
| let size = table.size(); | |
| let mut probe = Bucket::new(table, hash); | |
| let mut displacement = 0; | |
| loop { | |
| let full = match probe.peek() { | |
| Empty(bucket) => { | |
| // Found a hole! | |
| return InternalEntry::Vacant { | |
| hash, | |
| elem: NoElem(bucket, displacement), | |
| }; | |
| } | |
| Full(bucket) => bucket, | |
| }; | |
| let probe_displacement = full.displacement(); | |
| if probe_displacement < displacement { | |
| // Found a luckier bucket than me. | |
| // We can finish the search early if we hit any bucket | |
| // with a lower distance to initial bucket than we've probed. | |
| return InternalEntry::Vacant { | |
| hash, | |
| elem: NeqElem(full, probe_displacement), | |
| }; | |
| } | |
| // If the hash doesn't match, it can't be this one.. | |
| if !compare_hashes || hash == full.hash() { | |
| // If the key doesn't match, it can't be this one.. | |
| if is_match(full.read().0) { | |
| return InternalEntry::Occupied { elem: full }; | |
| } | |
| } | |
| displacement += 1; | |
| probe = full.next(); | |
| debug_assert!(displacement <= size); | |
| } | |
| } | |
| /// Same as `search_hashed_nonempty` but for mutable access. | |
| #[inline] | |
| fn search_hashed_nonempty_mut<K, V, M, F>(table: M, hash: SafeHash, mut is_match: F, | |
| compare_hashes: bool) | |
| -> InternalEntry<K, V, M> | |
| where M: DerefMut<Target = RawTable<K, V>>, | |
| F: FnMut(&K) -> bool | |
| { | |
| // Do not check the capacity as an extra branch could slow the lookup. | |
| let size = table.size(); | |
| let mut probe = Bucket::new(table, hash); | |
| let mut displacement = 0; | |
| loop { | |
| let mut full = match probe.peek() { | |
| Empty(bucket) => { | |
| // Found a hole! | |
| return InternalEntry::Vacant { | |
| hash, | |
| elem: NoElem(bucket, displacement), | |
| }; | |
| } | |
| Full(bucket) => bucket, | |
| }; | |
| let probe_displacement = full.displacement(); | |
| if probe_displacement < displacement { | |
| // Found a luckier bucket than me. | |
| // We can finish the search early if we hit any bucket | |
| // with a lower distance to initial bucket than we've probed. | |
| return InternalEntry::Vacant { | |
| hash, | |
| elem: NeqElem(full, probe_displacement), | |
| }; | |
| } | |
| // If the hash doesn't match, it can't be this one.. | |
| if hash == full.hash() || !compare_hashes { | |
| // If the key doesn't match, it can't be this one.. | |
| if is_match(full.read_mut().0) { | |
| return InternalEntry::Occupied { elem: full }; | |
| } | |
| } | |
| displacement += 1; | |
| probe = full.next(); | |
| debug_assert!(displacement <= size); | |
| } | |
| } | |
| fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>) | |
| -> (K, V, &mut RawTable<K, V>) | |
| { | |
| let (empty, retkey, retval) = starting_bucket.take(); | |
| let mut gap = match empty.gap_peek() { | |
| Ok(b) => b, | |
| Err(b) => return (retkey, retval, b.into_table()), | |
| }; | |
| while gap.full().displacement() != 0 { | |
| gap = match gap.shift() { | |
| Ok(b) => b, | |
| Err(b) => { | |
| return (retkey, retval, b.into_table()); | |
| }, | |
| }; | |
| } | |
| // Now we've done all our shifting. Return the value we grabbed earlier. | |
| (retkey, retval, gap.into_table()) | |
| } | |
| /// Perform robin hood bucket stealing at the given `bucket`. You must | |
| /// also pass that bucket's displacement so we don't have to recalculate it. | |
| /// | |
| /// `hash`, `key`, and `val` are the elements to "robin hood" into the hashtable. | |
| fn robin_hood<'a, K: 'a, V: 'a>(bucket: FullBucketMut<'a, K, V>, | |
| mut displacement: usize, | |
| mut hash: SafeHash, | |
| mut key: K, | |
| mut val: V) | |
| -> FullBucketMut<'a, K, V> { | |
| let size = bucket.table().size(); | |
| let raw_capacity = bucket.table().capacity(); | |
| // There can be at most `size - dib` buckets to displace, because | |
| // in the worst case, there are `size` elements and we already are | |
| // `displacement` buckets away from the initial one. | |
| let idx_end = (bucket.index() + size - bucket.displacement()) % raw_capacity; | |
| // Save the *starting point*. | |
| let mut bucket = bucket.stash(); | |
| loop { | |
| let (old_hash, old_key, old_val) = bucket.replace(hash, key, val); | |
| hash = old_hash; | |
| key = old_key; | |
| val = old_val; | |
| loop { | |
| displacement += 1; | |
| let probe = bucket.next(); | |
| debug_assert!(probe.index() != idx_end); | |
| let full_bucket = match probe.peek() { | |
| Empty(bucket) => { | |
| // Found a hole! | |
| let bucket = bucket.put(hash, key, val); | |
| // Now that it's stolen, just read the value's pointer | |
| // right out of the table! Go back to the *starting point*. | |
| // | |
| // This use of `into_table` is misleading. It turns the | |
| // bucket, which is a FullBucket on top of a | |
| // FullBucketMut, into just one FullBucketMut. The "table" | |
| // refers to the inner FullBucketMut in this context. | |
| return bucket.into_table(); | |
| } | |
| Full(bucket) => bucket, | |
| }; | |
| let probe_displacement = full_bucket.displacement(); | |
| bucket = full_bucket; | |
| // Robin hood! Steal the spot. | |
| if probe_displacement < displacement { | |
| displacement = probe_displacement; | |
| break; | |
| } | |
| } | |
| } | |
| } | |
| impl<K, V, S> HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash | |
| where X: Hash | |
| { | |
| table::make_hash(&self.hash_builder, x) | |
| } | |
| /// Search for a key, yielding the index if it's found in the hashtable. | |
| /// If you already have the hash for the key lying around, or if you need an | |
| /// InternalEntry, use search_hashed or search_hashed_nonempty. | |
| #[inline] | |
| fn search<'a, Q: ?Sized>(&'a self, q: &Q) | |
| -> Option<FullBucket<K, V, &'a RawTable<K, V>>> | |
| where K: Borrow<Q>, | |
| Q: Eq + Hash | |
| { | |
| if self.is_empty() { | |
| return None; | |
| } | |
| let hash = self.make_hash(q); | |
| search_hashed_nonempty(&self.table, hash, |k| q.eq(k.borrow()), true) | |
| .into_occupied_bucket() | |
| } | |
| #[inline] | |
| fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) | |
| -> Option<FullBucket<K, V, &'a mut RawTable<K, V>>> | |
| where K: Borrow<Q>, | |
| Q: Eq + Hash | |
| { | |
| if self.is_empty() { | |
| return None; | |
| } | |
| let hash = self.make_hash(q); | |
| search_hashed_nonempty(&mut self.table, hash, |k| q.eq(k.borrow()), true) | |
| .into_occupied_bucket() | |
| } | |
| // The caller should ensure that invariants by Robin Hood Hashing hold | |
| // and that there's space in the underlying table. | |
| fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) { | |
| let mut buckets = Bucket::new(&mut self.table, hash); | |
| let start_index = buckets.index(); | |
| loop { | |
| // We don't need to compare hashes for value swap. | |
| // Not even DIBs for Robin Hood. | |
| buckets = match buckets.peek() { | |
| Empty(empty) => { | |
| empty.put(hash, k, v); | |
| return; | |
| } | |
| Full(b) => b.into_bucket(), | |
| }; | |
| buckets.next(); | |
| debug_assert!(buckets.index() != start_index); | |
| } | |
| } | |
| } | |
| impl<K: Hash + Eq, V> HashMap<K, V, RandomState> { | |
| /// Creates an empty `HashMap`. | |
| /// | |
| /// The hash map is initially created with a capacity of 0, so it will not allocate until it | |
| /// is first inserted into. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// let mut map: HashMap<&str, i32> = HashMap::new(); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn new() -> HashMap<K, V, RandomState> { | |
| Default::default() | |
| } | |
| /// Creates an empty `HashMap` with the specified capacity. | |
| /// | |
| /// The hash map will be able to hold at least `capacity` elements without | |
| /// reallocating. If `capacity` is 0, the hash map will not allocate. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// let mut map: HashMap<&str, i32> = HashMap::with_capacity(10); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState> { | |
| HashMap::with_capacity_and_hasher(capacity, Default::default()) | |
| } | |
| } | |
| impl<K, V, S> HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| /// Creates an empty `HashMap` which will use the given hash builder to hash | |
| /// keys. | |
| /// | |
| /// The created map has the default initial capacity. | |
| /// | |
| /// Warning: `hash_builder` is normally randomly generated, and | |
| /// is designed to allow HashMaps to be resistant to attacks that | |
| /// cause many collisions and very poor performance. Setting it | |
| /// manually using this function can expose a DoS attack vector. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::RandomState; | |
| /// | |
| /// let s = RandomState::new(); | |
| /// let mut map = HashMap::with_hasher(s); | |
| /// map.insert(1, 2); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] | |
| pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S> { | |
| HashMap { | |
| hash_builder, | |
| resize_policy: DefaultResizePolicy::new(), | |
| table: RawTable::new(0), | |
| } | |
| } | |
| /// Creates an empty `HashMap` with the specified capacity, using `hash_builder` | |
| /// to hash the keys. | |
| /// | |
| /// The hash map will be able to hold at least `capacity` elements without | |
| /// reallocating. If `capacity` is 0, the hash map will not allocate. | |
| /// | |
| /// Warning: `hash_builder` is normally randomly generated, and | |
| /// is designed to allow HashMaps to be resistant to attacks that | |
| /// cause many collisions and very poor performance. Setting it | |
| /// manually using this function can expose a DoS attack vector. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::RandomState; | |
| /// | |
| /// let s = RandomState::new(); | |
| /// let mut map = HashMap::with_capacity_and_hasher(10, s); | |
| /// map.insert(1, 2); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] | |
| pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap<K, V, S> { | |
| let resize_policy = DefaultResizePolicy::new(); | |
| let raw_cap = resize_policy.raw_capacity(capacity); | |
| HashMap { | |
| hash_builder, | |
| resize_policy, | |
| table: RawTable::new(raw_cap), | |
| } | |
| } | |
| /// Returns a reference to the map's [`BuildHasher`]. | |
| /// | |
| /// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::RandomState; | |
| /// | |
| /// let hasher = RandomState::new(); | |
| /// let map: HashMap<i32, i32> = HashMap::with_hasher(hasher); | |
| /// let hasher: &RandomState = map.hasher(); | |
| /// ``` | |
| #[stable(feature = "hashmap_public_hasher", since = "1.9.0")] | |
| pub fn hasher(&self) -> &S { | |
| &self.hash_builder | |
| } | |
| /// Returns the number of elements the map can hold without reallocating. | |
| /// | |
| /// This number is a lower bound; the `HashMap<K, V>` might be able to hold | |
| /// more, but is guaranteed to be able to hold at least this many. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// let map: HashMap<i32, i32> = HashMap::with_capacity(100); | |
| /// assert!(map.capacity() >= 100); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn capacity(&self) -> usize { | |
| self.resize_policy.capacity(self.raw_capacity()) | |
| } | |
| /// Returns the hash map's raw capacity. | |
| #[inline] | |
| fn raw_capacity(&self) -> usize { | |
| self.table.capacity() | |
| } | |
| /// Reserves capacity for at least `additional` more elements to be inserted | |
| /// in the `HashMap`. The collection may reserve more space to avoid | |
| /// frequent reallocations. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the new allocation size overflows [`usize`]. | |
| /// | |
| /// [`usize`]: ../../std/primitive.usize.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// let mut map: HashMap<&str, i32> = HashMap::new(); | |
| /// map.reserve(10); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn reserve(&mut self, additional: usize) { | |
| match self.reserve_internal(additional, Infallible) { | |
| Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"), | |
| Err(CollectionAllocErr::AllocErr) => unreachable!(), | |
| Ok(()) => { /* yay */ } | |
| } | |
| } | |
| /// Tries to reserve capacity for at least `additional` more elements to be inserted | |
| /// in the given `HashMap<K,V>`. The collection may reserve more space to avoid | |
| /// frequent reallocations. | |
| /// | |
| /// # Errors | |
| /// | |
| /// If the capacity overflows, or the allocator reports a failure, then an error | |
| /// is returned. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(try_reserve)] | |
| /// use std::collections::HashMap; | |
| /// let mut map: HashMap<&str, isize> = HashMap::new(); | |
| /// map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?"); | |
| /// ``` | |
| #[unstable(feature = "try_reserve", reason = "new API", issue="48043")] | |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { | |
| self.reserve_internal(additional, Fallible) | |
| } | |
| #[inline] | |
| fn reserve_internal(&mut self, additional: usize, fallibility: Fallibility) | |
| -> Result<(), CollectionAllocErr> { | |
| let remaining = self.capacity() - self.len(); // this can't overflow | |
| if remaining < additional { | |
| let min_cap = self.len() | |
| .checked_add(additional) | |
| .ok_or(CollectionAllocErr::CapacityOverflow)?; | |
| let raw_cap = self.resize_policy.try_raw_capacity(min_cap)?; | |
| self.try_resize(raw_cap, fallibility)?; | |
| } else if self.table.tag() && remaining <= self.len() { | |
| // Probe sequence is too long and table is half full, | |
| // resize early to reduce probing length. | |
| let new_capacity = self.table.capacity() * 2; | |
| self.try_resize(new_capacity, fallibility)?; | |
| } | |
| Ok(()) | |
| } | |
| /// Resizes the internal vectors to a new capacity. It's your | |
| /// responsibility to: | |
| /// 1) Ensure `new_raw_cap` is enough for all the elements, accounting | |
| /// for the load factor. | |
| /// 2) Ensure `new_raw_cap` is a power of two or zero. | |
| #[inline(never)] | |
| #[cold] | |
| fn try_resize( | |
| &mut self, | |
| new_raw_cap: usize, | |
| fallibility: Fallibility, | |
| ) -> Result<(), CollectionAllocErr> { | |
| assert!(self.table.size() <= new_raw_cap); | |
| assert!(new_raw_cap.is_power_of_two() || new_raw_cap == 0); | |
| let mut old_table = replace( | |
| &mut self.table, | |
| match fallibility { | |
| Infallible => RawTable::new(new_raw_cap), | |
| Fallible => RawTable::try_new(new_raw_cap)?, | |
| } | |
| ); | |
| let old_size = old_table.size(); | |
| if old_table.size() == 0 { | |
| return Ok(()); | |
| } | |
| let mut bucket = Bucket::head_bucket(&mut old_table); | |
| // This is how the buckets might be laid out in memory: | |
| // ($ marks an initialized bucket) | |
| // ________________ | |
| // |$$$_$$$$$$_$$$$$| | |
| // | |
| // But we've skipped the entire initial cluster of buckets | |
| // and will continue iteration in this order: | |
| // ________________ | |
| // |$$$$$$_$$$$$ | |
| // ^ wrap around once end is reached | |
| // ________________ | |
| // $$$_____________| | |
| // ^ exit once table.size == 0 | |
| loop { | |
| bucket = match bucket.peek() { | |
| Full(bucket) => { | |
| let h = bucket.hash(); | |
| let (b, k, v) = bucket.take(); | |
| self.insert_hashed_ordered(h, k, v); | |
| if b.table().size() == 0 { | |
| break; | |
| } | |
| b.into_bucket() | |
| } | |
| Empty(b) => b.into_bucket(), | |
| }; | |
| bucket.next(); | |
| } | |
| assert_eq!(self.table.size(), old_size); | |
| Ok(()) | |
| } | |
| /// Shrinks the capacity of the map as much as possible. It will drop | |
| /// down as much as possible while maintaining the internal rules | |
| /// and possibly leaving some space in accordance with the resize policy. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); | |
| /// map.insert(1, 2); | |
| /// map.insert(3, 4); | |
| /// assert!(map.capacity() >= 100); | |
| /// map.shrink_to_fit(); | |
| /// assert!(map.capacity() >= 2); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn shrink_to_fit(&mut self) { | |
| let new_raw_cap = self.resize_policy.raw_capacity(self.len()); | |
| if self.raw_capacity() != new_raw_cap { | |
| let old_table = replace(&mut self.table, RawTable::new(new_raw_cap)); | |
| let old_size = old_table.size(); | |
| // Shrink the table. Naive algorithm for resizing: | |
| for (h, k, v) in old_table.into_iter() { | |
| self.insert_hashed_nocheck(h, k, v); | |
| } | |
| debug_assert_eq!(self.table.size(), old_size); | |
| } | |
| } | |
| /// Shrinks the capacity of the map with a lower limit. It will drop | |
| /// down no lower than the supplied limit while maintaining the internal rules | |
| /// and possibly leaving some space in accordance with the resize policy. | |
| /// | |
| /// Panics if the current capacity is smaller than the supplied | |
| /// minimum capacity. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(shrink_to)] | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); | |
| /// map.insert(1, 2); | |
| /// map.insert(3, 4); | |
| /// assert!(map.capacity() >= 100); | |
| /// map.shrink_to(10); | |
| /// assert!(map.capacity() >= 10); | |
| /// map.shrink_to(0); | |
| /// assert!(map.capacity() >= 2); | |
| /// ``` | |
| #[unstable(feature = "shrink_to", reason = "new API", issue="56431")] | |
| pub fn shrink_to(&mut self, min_capacity: usize) { | |
| assert!(self.capacity() >= min_capacity, "Tried to shrink to a larger capacity"); | |
| let new_raw_cap = self.resize_policy.raw_capacity(max(self.len(), min_capacity)); | |
| if self.raw_capacity() != new_raw_cap { | |
| let old_table = replace(&mut self.table, RawTable::new(new_raw_cap)); | |
| let old_size = old_table.size(); | |
| // Shrink the table. Naive algorithm for resizing: | |
| for (h, k, v) in old_table.into_iter() { | |
| self.insert_hashed_nocheck(h, k, v); | |
| } | |
| debug_assert_eq!(self.table.size(), old_size); | |
| } | |
| } | |
| /// Insert a pre-hashed key-value pair, without first checking | |
| /// that there's enough room in the buckets. Returns a reference to the | |
| /// newly insert value. | |
| /// | |
| /// If the key already exists, the hashtable will be returned untouched | |
| /// and a reference to the existing element will be returned. | |
| fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> Option<V> { | |
| let entry = search_hashed(&mut self.table, hash, |key| *key == k).into_entry(k); | |
| match entry { | |
| Some(Occupied(mut elem)) => Some(elem.insert(v)), | |
| Some(Vacant(elem)) => { | |
| elem.insert(v); | |
| None | |
| } | |
| None => unreachable!(), | |
| } | |
| } | |
| /// An iterator visiting all keys in arbitrary order. | |
| /// The iterator element type is `&'a K`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert("a", 1); | |
| /// map.insert("b", 2); | |
| /// map.insert("c", 3); | |
| /// | |
| /// for key in map.keys() { | |
| /// println!("{}", key); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn keys(&self) -> Keys<K, V> { | |
| Keys { inner: self.iter() } | |
| } | |
| /// An iterator visiting all values in arbitrary order. | |
| /// The iterator element type is `&'a V`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert("a", 1); | |
| /// map.insert("b", 2); | |
| /// map.insert("c", 3); | |
| /// | |
| /// for val in map.values() { | |
| /// println!("{}", val); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn values(&self) -> Values<K, V> { | |
| Values { inner: self.iter() } | |
| } | |
| /// An iterator visiting all values mutably in arbitrary order. | |
| /// The iterator element type is `&'a mut V`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// | |
| /// map.insert("a", 1); | |
| /// map.insert("b", 2); | |
| /// map.insert("c", 3); | |
| /// | |
| /// for val in map.values_mut() { | |
| /// *val = *val + 10; | |
| /// } | |
| /// | |
| /// for val in map.values() { | |
| /// println!("{}", val); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "map_values_mut", since = "1.10.0")] | |
| pub fn values_mut(&mut self) -> ValuesMut<K, V> { | |
| ValuesMut { inner: self.iter_mut() } | |
| } | |
| /// An iterator visiting all key-value pairs in arbitrary order. | |
| /// The iterator element type is `(&'a K, &'a V)`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert("a", 1); | |
| /// map.insert("b", 2); | |
| /// map.insert("c", 3); | |
| /// | |
| /// for (key, val) in map.iter() { | |
| /// println!("key: {} val: {}", key, val); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn iter(&self) -> Iter<K, V> { | |
| Iter { inner: self.table.iter() } | |
| } | |
| /// An iterator visiting all key-value pairs in arbitrary order, | |
| /// with mutable references to the values. | |
| /// The iterator element type is `(&'a K, &'a mut V)`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert("a", 1); | |
| /// map.insert("b", 2); | |
| /// map.insert("c", 3); | |
| /// | |
| /// // Update all values | |
| /// for (_, val) in map.iter_mut() { | |
| /// *val *= 2; | |
| /// } | |
| /// | |
| /// for (key, val) in &map { | |
| /// println!("key: {} val: {}", key, val); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn iter_mut(&mut self) -> IterMut<K, V> { | |
| IterMut { inner: self.table.iter_mut() } | |
| } | |
| /// Gets the given key's corresponding entry in the map for in-place manipulation. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut letters = HashMap::new(); | |
| /// | |
| /// for ch in "a short treatise on fungi".chars() { | |
| /// let counter = letters.entry(ch).or_insert(0); | |
| /// *counter += 1; | |
| /// } | |
| /// | |
| /// assert_eq!(letters[&'s'], 2); | |
| /// assert_eq!(letters[&'t'], 3); | |
| /// assert_eq!(letters[&'u'], 1); | |
| /// assert_eq!(letters.get(&'y'), None); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn entry(&mut self, key: K) -> Entry<K, V> { | |
| // Gotta resize now. | |
| self.reserve(1); | |
| let hash = self.make_hash(&key); | |
| search_hashed(&mut self.table, hash, |q| q.eq(&key)) | |
| .into_entry(key).expect("unreachable") | |
| } | |
| /// Returns the number of elements in the map. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut a = HashMap::new(); | |
| /// assert_eq!(a.len(), 0); | |
| /// a.insert(1, "a"); | |
| /// assert_eq!(a.len(), 1); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn len(&self) -> usize { | |
| self.table.size() | |
| } | |
| /// Returns true if the map contains no elements. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut a = HashMap::new(); | |
| /// assert!(a.is_empty()); | |
| /// a.insert(1, "a"); | |
| /// assert!(!a.is_empty()); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn is_empty(&self) -> bool { | |
| self.len() == 0 | |
| } | |
| /// Clears the map, returning all key-value pairs as an iterator. Keeps the | |
| /// allocated memory for reuse. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut a = HashMap::new(); | |
| /// a.insert(1, "a"); | |
| /// a.insert(2, "b"); | |
| /// | |
| /// for (k, v) in a.drain().take(1) { | |
| /// assert!(k == 1 || k == 2); | |
| /// assert!(v == "a" || v == "b"); | |
| /// } | |
| /// | |
| /// assert!(a.is_empty()); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| pub fn drain(&mut self) -> Drain<K, V> { | |
| Drain { inner: self.table.drain() } | |
| } | |
| /// Clears the map, removing all key-value pairs. Keeps the allocated memory | |
| /// for reuse. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut a = HashMap::new(); | |
| /// a.insert(1, "a"); | |
| /// a.clear(); | |
| /// assert!(a.is_empty()); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[inline] | |
| pub fn clear(&mut self) { | |
| self.drain(); | |
| } | |
| /// Returns a reference to the value corresponding to the key. | |
| /// | |
| /// The key may be any borrowed form of the map's key type, but | |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for | |
| /// the key type. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert(1, "a"); | |
| /// assert_eq!(map.get(&1), Some(&"a")); | |
| /// assert_eq!(map.get(&2), None); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[inline] | |
| pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.search(k).map(|bucket| bucket.into_refs().1) | |
| } | |
| /// Returns the key-value pair corresponding to the supplied key. | |
| /// | |
| /// The supplied key may be any borrowed form of the map's key type, but | |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for | |
| /// the key type. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(map_get_key_value)] | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert(1, "a"); | |
| /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); | |
| /// assert_eq!(map.get_key_value(&2), None); | |
| /// ``` | |
| #[unstable(feature = "map_get_key_value", issue = "49347")] | |
| pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.search(k).map(|bucket| bucket.into_refs()) | |
| } | |
| /// Returns true if the map contains a value for the specified key. | |
| /// | |
| /// The key may be any borrowed form of the map's key type, but | |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for | |
| /// the key type. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert(1, "a"); | |
| /// assert_eq!(map.contains_key(&1), true); | |
| /// assert_eq!(map.contains_key(&2), false); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.search(k).is_some() | |
| } | |
| /// Returns a mutable reference to the value corresponding to the key. | |
| /// | |
| /// The key may be any borrowed form of the map's key type, but | |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for | |
| /// the key type. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert(1, "a"); | |
| /// if let Some(x) = map.get_mut(&1) { | |
| /// *x = "b"; | |
| /// } | |
| /// assert_eq!(map[&1], "b"); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.search_mut(k).map(|bucket| bucket.into_mut_refs().1) | |
| } | |
| /// Inserts a key-value pair into the map. | |
| /// | |
| /// If the map did not have this key present, [`None`] is returned. | |
| /// | |
| /// If the map did have this key present, the value is updated, and the old | |
| /// value is returned. The key is not updated, though; this matters for | |
| /// types that can be `==` without being identical. See the [module-level | |
| /// documentation] for more. | |
| /// | |
| /// [`None`]: ../../std/option/enum.Option.html#variant.None | |
| /// [module-level documentation]: index.html#insert-and-complex-keys | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// assert_eq!(map.insert(37, "a"), None); | |
| /// assert_eq!(map.is_empty(), false); | |
| /// | |
| /// map.insert(37, "b"); | |
| /// assert_eq!(map.insert(37, "c"), Some("b")); | |
| /// assert_eq!(map[&37], "c"); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn insert(&mut self, k: K, v: V) -> Option<V> { | |
| let hash = self.make_hash(&k); | |
| self.reserve(1); | |
| self.insert_hashed_nocheck(hash, k, v) | |
| } | |
| /// Removes a key from the map, returning the value at the key if the key | |
| /// was previously in the map. | |
| /// | |
| /// The key may be any borrowed form of the map's key type, but | |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for | |
| /// the key type. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert(1, "a"); | |
| /// assert_eq!(map.remove(&1), Some("a")); | |
| /// assert_eq!(map.remove(&1), None); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.search_mut(k).map(|bucket| pop_internal(bucket).1) | |
| } | |
| /// Removes a key from the map, returning the stored key and value if the | |
| /// key was previously in the map. | |
| /// | |
| /// The key may be any borrowed form of the map's key type, but | |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for | |
| /// the key type. | |
| /// | |
| /// [`Eq`]: ../../std/cmp/trait.Eq.html | |
| /// [`Hash`]: ../../std/hash/trait.Hash.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// # fn main() { | |
| /// let mut map = HashMap::new(); | |
| /// map.insert(1, "a"); | |
| /// assert_eq!(map.remove_entry(&1), Some((1, "a"))); | |
| /// assert_eq!(map.remove(&1), None); | |
| /// # } | |
| /// ``` | |
| #[stable(feature = "hash_map_remove_entry", since = "1.27.0")] | |
| pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.search_mut(k) | |
| .map(|bucket| { | |
| let (k, v, _) = pop_internal(bucket); | |
| (k, v) | |
| }) | |
| } | |
| /// Retains only the elements specified by the predicate. | |
| /// | |
| /// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect(); | |
| /// map.retain(|&k, _| k % 2 == 0); | |
| /// assert_eq!(map.len(), 4); | |
| /// ``` | |
| #[stable(feature = "retain_hash_collection", since = "1.18.0")] | |
| pub fn retain<F>(&mut self, mut f: F) | |
| where F: FnMut(&K, &mut V) -> bool | |
| { | |
| if self.table.size() == 0 { | |
| return; | |
| } | |
| let mut elems_left = self.table.size(); | |
| let mut bucket = Bucket::head_bucket(&mut self.table); | |
| bucket.prev(); | |
| let start_index = bucket.index(); | |
| while elems_left != 0 { | |
| bucket = match bucket.peek() { | |
| Full(mut full) => { | |
| elems_left -= 1; | |
| let should_remove = { | |
| let (k, v) = full.read_mut(); | |
| !f(k, v) | |
| }; | |
| if should_remove { | |
| let prev_raw = full.raw(); | |
| let (_, _, t) = pop_internal(full); | |
| Bucket::new_from(prev_raw, t) | |
| } else { | |
| full.into_bucket() | |
| } | |
| }, | |
| Empty(b) => { | |
| b.into_bucket() | |
| } | |
| }; | |
| bucket.prev(); // reverse iteration | |
| debug_assert!(elems_left == 0 || bucket.index() != start_index); | |
| } | |
| } | |
| } | |
| impl<K, V, S> HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| /// Creates a raw entry builder for the HashMap. | |
| /// | |
| /// Raw entries provide the lowest level of control for searching and | |
| /// manipulating a map. They must be manually initialized with a hash and | |
| /// then manually searched. After this, insertions into a vacant entry | |
| /// still require an owned key to be provided. | |
| /// | |
| /// Raw entries are useful for such exotic situations as: | |
| /// | |
| /// * Hash memoization | |
| /// * Deferring the creation of an owned key until it is known to be required | |
| /// * Using a search key that doesn't work with the Borrow trait | |
| /// * Using custom comparison logic without newtype wrappers | |
| /// | |
| /// Because raw entries provide much more low-level control, it's much easier | |
| /// to put the HashMap into an inconsistent state which, while memory-safe, | |
| /// will cause the map to produce seemingly random results. Higher-level and | |
| /// more foolproof APIs like `entry` should be preferred when possible. | |
| /// | |
| /// In particular, the hash used to initialized the raw entry must still be | |
| /// consistent with the hash of the key that is ultimately stored in the entry. | |
| /// This is because implementations of HashMap may need to recompute hashes | |
| /// when resizing, at which point only the keys are available. | |
| /// | |
| /// Raw entries give mutable access to the keys. This must not be used | |
| /// to modify how the key would compare or hash, as the map will not re-evaluate | |
| /// where the key should go, meaning the keys may become "lost" if their | |
| /// location does not reflect their state. For instance, if you change a key | |
| /// so that the map now contains keys which compare equal, search may start | |
| /// acting erratically, with two keys randomly masking each other. Implementations | |
| /// are free to assume this doesn't happen (within the limits of memory-safety). | |
| #[inline(always)] | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<K, V, S> { | |
| self.reserve(1); | |
| RawEntryBuilderMut { map: self } | |
| } | |
| /// Creates a raw immutable entry builder for the HashMap. | |
| /// | |
| /// Raw entries provide the lowest level of control for searching and | |
| /// manipulating a map. They must be manually initialized with a hash and | |
| /// then manually searched. | |
| /// | |
| /// This is useful for | |
| /// * Hash memoization | |
| /// * Using a search key that doesn't work with the Borrow trait | |
| /// * Using custom comparison logic without newtype wrappers | |
| /// | |
| /// Unless you are in such a situation, higher-level and more foolproof APIs like | |
| /// `get` should be preferred. | |
| /// | |
| /// Immutable raw entries have very limited use; you might instead want `raw_entry_mut`. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn raw_entry(&self) -> RawEntryBuilder<K, V, S> { | |
| RawEntryBuilder { map: self } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> PartialEq for HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| V: PartialEq, | |
| S: BuildHasher | |
| { | |
| fn eq(&self, other: &HashMap<K, V, S>) -> bool { | |
| if self.len() != other.len() { | |
| return false; | |
| } | |
| self.iter().all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> Eq for HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| V: Eq, | |
| S: BuildHasher | |
| { | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> Debug for HashMap<K, V, S> | |
| where K: Eq + Hash + Debug, | |
| V: Debug, | |
| S: BuildHasher | |
| { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_map().entries(self.iter()).finish() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> Default for HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher + Default | |
| { | |
| /// Creates an empty `HashMap<K, V, S>`, with the `Default` value for the hasher. | |
| fn default() -> HashMap<K, V, S> { | |
| HashMap::with_hasher(Default::default()) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S> | |
| where K: Eq + Hash + Borrow<Q>, | |
| Q: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| type Output = V; | |
| /// Returns a reference to the value corresponding to the supplied key. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the key is not present in the `HashMap`. | |
| #[inline] | |
| fn index(&self, key: &Q) -> &V { | |
| self.get(key).expect("no entry found for key") | |
| } | |
| } | |
| /// An iterator over the entries of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`iter`] method on [`HashMap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`iter`]: struct.HashMap.html#method.iter | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct Iter<'a, K: 'a, V: 'a> { | |
| inner: table::Iter<'a, K, V>, | |
| } | |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Clone for Iter<'a, K, V> { | |
| fn clone(&self) -> Iter<'a, K, V> { | |
| Iter { inner: self.inner.clone() } | |
| } | |
| } | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<'a, K: Debug, V: Debug> fmt::Debug for Iter<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.clone()) | |
| .finish() | |
| } | |
| } | |
| /// A mutable iterator over the entries of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`iter_mut`]: struct.HashMap.html#method.iter_mut | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct IterMut<'a, K: 'a, V: 'a> { | |
| inner: table::IterMut<'a, K, V>, | |
| } | |
| /// An owning iterator over the entries of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`into_iter`] method on [`HashMap`][`HashMap`] | |
| /// (provided by the `IntoIterator` trait). See its documentation for more. | |
| /// | |
| /// [`into_iter`]: struct.HashMap.html#method.into_iter | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct IntoIter<K, V> { | |
| pub(super) inner: table::IntoIter<K, V>, | |
| } | |
| /// An iterator over the keys of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`keys`] method on [`HashMap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`keys`]: struct.HashMap.html#method.keys | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct Keys<'a, K: 'a, V: 'a> { | |
| inner: Iter<'a, K, V>, | |
| } | |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Clone for Keys<'a, K, V> { | |
| fn clone(&self) -> Keys<'a, K, V> { | |
| Keys { inner: self.inner.clone() } | |
| } | |
| } | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<'a, K: Debug, V> fmt::Debug for Keys<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.clone()) | |
| .finish() | |
| } | |
| } | |
| /// An iterator over the values of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`values`] method on [`HashMap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`values`]: struct.HashMap.html#method.values | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct Values<'a, K: 'a, V: 'a> { | |
| inner: Iter<'a, K, V>, | |
| } | |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Clone for Values<'a, K, V> { | |
| fn clone(&self) -> Values<'a, K, V> { | |
| Values { inner: self.inner.clone() } | |
| } | |
| } | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<'a, K, V: Debug> fmt::Debug for Values<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.clone()) | |
| .finish() | |
| } | |
| } | |
| /// A draining iterator over the entries of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`drain`] method on [`HashMap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`drain`]: struct.HashMap.html#method.drain | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| pub struct Drain<'a, K: 'a, V: 'a> { | |
| pub(super) inner: table::Drain<'a, K, V>, | |
| } | |
| /// A mutable iterator over the values of a `HashMap`. | |
| /// | |
| /// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`values_mut`]: struct.HashMap.html#method.values_mut | |
| /// [`HashMap`]: struct.HashMap.html | |
| #[stable(feature = "map_values_mut", since = "1.10.0")] | |
| pub struct ValuesMut<'a, K: 'a, V: 'a> { | |
| inner: IterMut<'a, K, V>, | |
| } | |
| enum InternalEntry<K, V, M> { | |
| Occupied { elem: FullBucket<K, V, M> }, | |
| Vacant { | |
| hash: SafeHash, | |
| elem: VacantEntryState<K, V, M>, | |
| }, | |
| TableIsEmpty, | |
| } | |
| impl<K, V, M> InternalEntry<K, V, M> { | |
| #[inline] | |
| fn into_occupied_bucket(self) -> Option<FullBucket<K, V, M>> { | |
| match self { | |
| InternalEntry::Occupied { elem } => Some(elem), | |
| _ => None, | |
| } | |
| } | |
| } | |
| impl<'a, K, V> InternalEntry<K, V, &'a mut RawTable<K, V>> { | |
| #[inline] | |
| fn into_entry(self, key: K) -> Option<Entry<'a, K, V>> { | |
| match self { | |
| InternalEntry::Occupied { elem } => { | |
| Some(Occupied(OccupiedEntry { | |
| key: Some(key), | |
| elem, | |
| })) | |
| } | |
| InternalEntry::Vacant { hash, elem } => { | |
| Some(Vacant(VacantEntry { | |
| hash, | |
| key, | |
| elem, | |
| })) | |
| } | |
| InternalEntry::TableIsEmpty => None, | |
| } | |
| } | |
| } | |
| /// A builder for computing where in a HashMap a key-value pair would be stored. | |
| /// | |
| /// See the [`HashMap::raw_entry_mut`] docs for usage examples. | |
| /// | |
| /// [`HashMap::raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub struct RawEntryBuilderMut<'a, K: 'a, V: 'a, S: 'a> { | |
| map: &'a mut HashMap<K, V, S>, | |
| } | |
| /// A view into a single entry in a map, which may either be vacant or occupied. | |
| /// | |
| /// This is a lower-level version of [`Entry`]. | |
| /// | |
| /// This `enum` is constructed from the [`raw_entry`] method on [`HashMap`]. | |
| /// | |
| /// [`HashMap`]: struct.HashMap.html | |
| /// [`Entry`]: enum.Entry.html | |
| /// [`raw_entry`]: struct.HashMap.html#method.raw_entry | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub enum RawEntryMut<'a, K: 'a, V: 'a, S: 'a> { | |
| /// An occupied entry. | |
| Occupied(RawOccupiedEntryMut<'a, K, V>), | |
| /// A vacant entry. | |
| Vacant(RawVacantEntryMut<'a, K, V, S>), | |
| } | |
| /// A view into an occupied entry in a `HashMap`. | |
| /// It is part of the [`RawEntryMut`] enum. | |
| /// | |
| /// [`RawEntryMut`]: enum.RawEntryMut.html | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub struct RawOccupiedEntryMut<'a, K: 'a, V: 'a> { | |
| elem: FullBucket<K, V, &'a mut RawTable<K, V>>, | |
| } | |
| /// A view into a vacant entry in a `HashMap`. | |
| /// It is part of the [`RawEntryMut`] enum. | |
| /// | |
| /// [`RawEntryMut`]: enum.RawEntryMut.html | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub struct RawVacantEntryMut<'a, K: 'a, V: 'a, S: 'a> { | |
| elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>, | |
| hash_builder: &'a S, | |
| } | |
| /// A builder for computing where in a HashMap a key-value pair would be stored. | |
| /// | |
| /// See the [`HashMap::raw_entry`] docs for usage examples. | |
| /// | |
| /// [`HashMap::raw_entry`]: struct.HashMap.html#method.raw_entry | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub struct RawEntryBuilder<'a, K: 'a, V: 'a, S: 'a> { | |
| map: &'a HashMap<K, V, S>, | |
| } | |
| impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S> | |
| where S: BuildHasher, | |
| K: Eq + Hash, | |
| { | |
| /// Create a `RawEntryMut` from the given key. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn from_key<Q: ?Sized>(self, k: &Q) -> RawEntryMut<'a, K, V, S> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| let mut hasher = self.map.hash_builder.build_hasher(); | |
| k.hash(&mut hasher); | |
| self.from_key_hashed_nocheck(hasher.finish(), k) | |
| } | |
| /// Create a `RawEntryMut` from the given key and its hash. | |
| #[inline] | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S> | |
| where K: Borrow<Q>, | |
| Q: Eq | |
| { | |
| self.from_hash(hash, |q| q.borrow().eq(k)) | |
| } | |
| #[inline] | |
| fn search<F>(self, hash: u64, is_match: F, compare_hashes: bool) -> RawEntryMut<'a, K, V, S> | |
| where for<'b> F: FnMut(&'b K) -> bool, | |
| { | |
| match search_hashed_nonempty_mut(&mut self.map.table, | |
| SafeHash::new(hash), | |
| is_match, | |
| compare_hashes) { | |
| InternalEntry::Occupied { elem } => { | |
| RawEntryMut::Occupied(RawOccupiedEntryMut { elem }) | |
| } | |
| InternalEntry::Vacant { elem, .. } => { | |
| RawEntryMut::Vacant(RawVacantEntryMut { | |
| elem, | |
| hash_builder: &self.map.hash_builder, | |
| }) | |
| } | |
| InternalEntry::TableIsEmpty => { | |
| unreachable!() | |
| } | |
| } | |
| } | |
| /// Create a `RawEntryMut` from the given hash. | |
| #[inline] | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn from_hash<F>(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S> | |
| where for<'b> F: FnMut(&'b K) -> bool, | |
| { | |
| self.search(hash, is_match, true) | |
| } | |
| /// Search possible locations for an element with hash `hash` until `is_match` returns true for | |
| /// one of them. There is no guarantee that all keys passed to `is_match` will have the provided | |
| /// hash. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn search_bucket<F>(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S> | |
| where for<'b> F: FnMut(&'b K) -> bool, | |
| { | |
| self.search(hash, is_match, false) | |
| } | |
| } | |
| impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S> | |
| where S: BuildHasher, | |
| { | |
| /// Access an entry by key. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn from_key<Q: ?Sized>(self, k: &Q) -> Option<(&'a K, &'a V)> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| let mut hasher = self.map.hash_builder.build_hasher(); | |
| k.hash(&mut hasher); | |
| self.from_key_hashed_nocheck(hasher.finish(), k) | |
| } | |
| /// Access an entry by a key and its hash. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)> | |
| where K: Borrow<Q>, | |
| Q: Hash + Eq | |
| { | |
| self.from_hash(hash, |q| q.borrow().eq(k)) | |
| } | |
| fn search<F>(self, hash: u64, is_match: F, compare_hashes: bool) -> Option<(&'a K, &'a V)> | |
| where F: FnMut(&K) -> bool | |
| { | |
| if unsafe { unlikely(self.map.table.size() == 0) } { | |
| return None; | |
| } | |
| match search_hashed_nonempty(&self.map.table, | |
| SafeHash::new(hash), | |
| is_match, | |
| compare_hashes) { | |
| InternalEntry::Occupied { elem } => Some(elem.into_refs()), | |
| InternalEntry::Vacant { .. } => None, | |
| InternalEntry::TableIsEmpty => unreachable!(), | |
| } | |
| } | |
| /// Access an entry by hash. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn from_hash<F>(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> | |
| where F: FnMut(&K) -> bool | |
| { | |
| self.search(hash, is_match, true) | |
| } | |
| /// Search possible locations for an element with hash `hash` until `is_match` returns true for | |
| /// one of them. There is no guarantee that all keys passed to `is_match` will have the provided | |
| /// hash. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn search_bucket<F>(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> | |
| where F: FnMut(&K) -> bool | |
| { | |
| self.search(hash, is_match, false) | |
| } | |
| } | |
| impl<'a, K, V, S> RawEntryMut<'a, K, V, S> { | |
| /// Ensures a value is in the entry by inserting the default if empty, and returns | |
| /// mutable references to the key and value in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(hash_raw_entry)] | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// | |
| /// map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 3); | |
| /// assert_eq!(map["poneyland"], 3); | |
| /// | |
| /// *map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 10).1 *= 2; | |
| /// assert_eq!(map["poneyland"], 6); | |
| /// ``` | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V) | |
| where K: Hash, | |
| S: BuildHasher, | |
| { | |
| match self { | |
| RawEntryMut::Occupied(entry) => entry.into_key_value(), | |
| RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val), | |
| } | |
| } | |
| /// Ensures a value is in the entry by inserting the result of the default function if empty, | |
| /// and returns mutable references to the key and value in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(hash_raw_entry)] | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, String> = HashMap::new(); | |
| /// | |
| /// map.raw_entry_mut().from_key("poneyland").or_insert_with(|| { | |
| /// ("poneyland", "hoho".to_string()) | |
| /// }); | |
| /// | |
| /// assert_eq!(map["poneyland"], "hoho".to_string()); | |
| /// ``` | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn or_insert_with<F>(self, default: F) -> (&'a mut K, &'a mut V) | |
| where F: FnOnce() -> (K, V), | |
| K: Hash, | |
| S: BuildHasher, | |
| { | |
| match self { | |
| RawEntryMut::Occupied(entry) => entry.into_key_value(), | |
| RawEntryMut::Vacant(entry) => { | |
| let (k, v) = default(); | |
| entry.insert(k, v) | |
| } | |
| } | |
| } | |
| /// Provides in-place mutable access to an occupied entry before any | |
| /// potential inserts into the map. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(hash_raw_entry)] | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// | |
| /// map.raw_entry_mut() | |
| /// .from_key("poneyland") | |
| /// .and_modify(|_k, v| { *v += 1 }) | |
| /// .or_insert("poneyland", 42); | |
| /// assert_eq!(map["poneyland"], 42); | |
| /// | |
| /// map.raw_entry_mut() | |
| /// .from_key("poneyland") | |
| /// .and_modify(|_k, v| { *v += 1 }) | |
| /// .or_insert("poneyland", 0); | |
| /// assert_eq!(map["poneyland"], 43); | |
| /// ``` | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn and_modify<F>(self, f: F) -> Self | |
| where F: FnOnce(&mut K, &mut V) | |
| { | |
| match self { | |
| RawEntryMut::Occupied(mut entry) => { | |
| { | |
| let (k, v) = entry.get_key_value_mut(); | |
| f(k, v); | |
| } | |
| RawEntryMut::Occupied(entry) | |
| }, | |
| RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry), | |
| } | |
| } | |
| } | |
| impl<'a, K, V> RawOccupiedEntryMut<'a, K, V> { | |
| /// Gets a reference to the key in the entry. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn key(&self) -> &K { | |
| self.elem.read().0 | |
| } | |
| /// Gets a mutable reference to the key in the entry. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn key_mut(&mut self) -> &mut K { | |
| self.elem.read_mut().0 | |
| } | |
| /// Converts the entry into a mutable reference to the key in the entry | |
| /// with a lifetime bound to the map itself. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn into_key(self) -> &'a mut K { | |
| self.elem.into_mut_refs().0 | |
| } | |
| /// Gets a reference to the value in the entry. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn get(&self) -> &V { | |
| self.elem.read().1 | |
| } | |
| /// Converts the OccupiedEntry into a mutable reference to the value in the entry | |
| /// with a lifetime bound to the map itself. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn into_mut(self) -> &'a mut V { | |
| self.elem.into_mut_refs().1 | |
| } | |
| /// Gets a mutable reference to the value in the entry. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn get_mut(&mut self) -> &mut V { | |
| self.elem.read_mut().1 | |
| } | |
| /// Gets a reference to the key and value in the entry. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn get_key_value(&mut self) -> (&K, &V) { | |
| self.elem.read() | |
| } | |
| /// Gets a mutable reference to the key and value in the entry. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) { | |
| self.elem.read_mut() | |
| } | |
| /// Converts the OccupiedEntry into a mutable reference to the key and value in the entry | |
| /// with a lifetime bound to the map itself. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn into_key_value(self) -> (&'a mut K, &'a mut V) { | |
| self.elem.into_mut_refs() | |
| } | |
| /// Sets the value of the entry, and returns the entry's old value. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn insert(&mut self, value: V) -> V { | |
| mem::replace(self.get_mut(), value) | |
| } | |
| /// Sets the value of the entry, and returns the entry's old value. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn insert_key(&mut self, key: K) -> K { | |
| mem::replace(self.key_mut(), key) | |
| } | |
| /// Takes the value out of the entry, and returns it. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn remove(self) -> V { | |
| pop_internal(self.elem).1 | |
| } | |
| /// Take the ownership of the key and value from the map. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn remove_entry(self) -> (K, V) { | |
| let (k, v, _) = pop_internal(self.elem); | |
| (k, v) | |
| } | |
| } | |
| impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> { | |
| /// Sets the value of the entry with the VacantEntry's key, | |
| /// and returns a mutable reference to it. | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V) | |
| where K: Hash, | |
| S: BuildHasher, | |
| { | |
| let mut hasher = self.hash_builder.build_hasher(); | |
| key.hash(&mut hasher); | |
| self.insert_hashed_nocheck(hasher.finish(), key, value) | |
| } | |
| /// Sets the value of the entry with the VacantEntry's key, | |
| /// and returns a mutable reference to it. | |
| #[inline] | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) { | |
| let hash = SafeHash::new(hash); | |
| let b = match self.elem { | |
| NeqElem(mut bucket, disp) => { | |
| if disp >= DISPLACEMENT_THRESHOLD { | |
| bucket.table_mut().set_tag(true); | |
| } | |
| robin_hood(bucket, disp, hash, key, value) | |
| }, | |
| NoElem(mut bucket, disp) => { | |
| if disp >= DISPLACEMENT_THRESHOLD { | |
| bucket.table_mut().set_tag(true); | |
| } | |
| bucket.put(hash, key, value) | |
| }, | |
| }; | |
| b.into_mut_refs() | |
| } | |
| } | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| impl<'a, K, V, S> Debug for RawEntryBuilderMut<'a, K, V, S> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_struct("RawEntryBuilder") | |
| .finish() | |
| } | |
| } | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| impl<'a, K: Debug, V: Debug, S> Debug for RawEntryMut<'a, K, V, S> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| match *self { | |
| RawEntryMut::Vacant(ref v) => { | |
| f.debug_tuple("RawEntry") | |
| .field(v) | |
| .finish() | |
| } | |
| RawEntryMut::Occupied(ref o) => { | |
| f.debug_tuple("RawEntry") | |
| .field(o) | |
| .finish() | |
| } | |
| } | |
| } | |
| } | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| impl<'a, K: Debug, V: Debug> Debug for RawOccupiedEntryMut<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_struct("RawOccupiedEntryMut") | |
| .field("key", self.key()) | |
| .field("value", self.get()) | |
| .finish() | |
| } | |
| } | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| impl<'a, K, V, S> Debug for RawVacantEntryMut<'a, K, V, S> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_struct("RawVacantEntryMut") | |
| .finish() | |
| } | |
| } | |
| #[unstable(feature = "hash_raw_entry", issue = "56167")] | |
| impl<'a, K, V, S> Debug for RawEntryBuilder<'a, K, V, S> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_struct("RawEntryBuilder") | |
| .finish() | |
| } | |
| } | |
| /// A view into a single entry in a map, which may either be vacant or occupied. | |
| /// | |
| /// This `enum` is constructed from the [`entry`] method on [`HashMap`]. | |
| /// | |
| /// [`HashMap`]: struct.HashMap.html | |
| /// [`entry`]: struct.HashMap.html#method.entry | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub enum Entry<'a, K: 'a, V: 'a> { | |
| /// An occupied entry. | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| Occupied(#[stable(feature = "rust1", since = "1.0.0")] | |
| OccupiedEntry<'a, K, V>), | |
| /// A vacant entry. | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| Vacant(#[stable(feature = "rust1", since = "1.0.0")] | |
| VacantEntry<'a, K, V>), | |
| } | |
| #[stable(feature= "debug_hash_map", since = "1.12.0")] | |
| impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for Entry<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| match *self { | |
| Vacant(ref v) => { | |
| f.debug_tuple("Entry") | |
| .field(v) | |
| .finish() | |
| } | |
| Occupied(ref o) => { | |
| f.debug_tuple("Entry") | |
| .field(o) | |
| .finish() | |
| } | |
| } | |
| } | |
| } | |
| /// A view into an occupied entry in a `HashMap`. | |
| /// It is part of the [`Entry`] enum. | |
| /// | |
| /// [`Entry`]: enum.Entry.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct OccupiedEntry<'a, K: 'a, V: 'a> { | |
| key: Option<K>, | |
| elem: FullBucket<K, V, &'a mut RawTable<K, V>>, | |
| } | |
| #[stable(feature= "debug_hash_map", since = "1.12.0")] | |
| impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_struct("OccupiedEntry") | |
| .field("key", self.key()) | |
| .field("value", self.get()) | |
| .finish() | |
| } | |
| } | |
| /// A view into a vacant entry in a `HashMap`. | |
| /// It is part of the [`Entry`] enum. | |
| /// | |
| /// [`Entry`]: enum.Entry.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct VacantEntry<'a, K: 'a, V: 'a> { | |
| hash: SafeHash, | |
| key: K, | |
| elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>, | |
| } | |
| #[stable(feature= "debug_hash_map", since = "1.12.0")] | |
| impl<'a, K: 'a + Debug, V: 'a> Debug for VacantEntry<'a, K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_tuple("VacantEntry") | |
| .field(self.key()) | |
| .finish() | |
| } | |
| } | |
| /// Possible states of a VacantEntry. | |
| enum VacantEntryState<K, V, M> { | |
| /// The index is occupied, but the key to insert has precedence, | |
| /// and will kick the current one out on insertion. | |
| NeqElem(FullBucket<K, V, M>, usize), | |
| /// The index is genuinely vacant. | |
| NoElem(EmptyBucket<K, V, M>, usize), | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| type Item = (&'a K, &'a V); | |
| type IntoIter = Iter<'a, K, V>; | |
| fn into_iter(self) -> Iter<'a, K, V> { | |
| self.iter() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| type Item = (&'a K, &'a mut V); | |
| type IntoIter = IterMut<'a, K, V>; | |
| fn into_iter(self) -> IterMut<'a, K, V> { | |
| self.iter_mut() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> IntoIterator for HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| type Item = (K, V); | |
| type IntoIter = IntoIter<K, V>; | |
| /// Creates a consuming iterator, that is, one that moves each key-value | |
| /// pair out of the map in arbitrary order. The map cannot be used after | |
| /// calling this. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map = HashMap::new(); | |
| /// map.insert("a", 1); | |
| /// map.insert("b", 2); | |
| /// map.insert("c", 3); | |
| /// | |
| /// // Not possible with .iter() | |
| /// let vec: Vec<(&str, i32)> = map.into_iter().collect(); | |
| /// ``` | |
| fn into_iter(self) -> IntoIter<K, V> { | |
| IntoIter { inner: self.table.into_iter() } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Iterator for Iter<'a, K, V> { | |
| type Item = (&'a K, &'a V); | |
| #[inline] | |
| fn next(&mut self) -> Option<(&'a K, &'a V)> { | |
| self.inner.next() | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, K, V> FusedIterator for Iter<'a, K, V> {} | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Iterator for IterMut<'a, K, V> { | |
| type Item = (&'a K, &'a mut V); | |
| #[inline] | |
| fn next(&mut self) -> Option<(&'a K, &'a mut V)> { | |
| self.inner.next() | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, K, V> FusedIterator for IterMut<'a, K, V> {} | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<'a, K, V> fmt::Debug for IterMut<'a, K, V> | |
| where K: fmt::Debug, | |
| V: fmt::Debug, | |
| { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.inner.iter()) | |
| .finish() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V> Iterator for IntoIter<K, V> { | |
| type Item = (K, V); | |
| #[inline] | |
| fn next(&mut self) -> Option<(K, V)> { | |
| self.inner.next().map(|(_, k, v)| (k, v)) | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V> ExactSizeIterator for IntoIter<K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<K, V> FusedIterator for IntoIter<K, V> {} | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<K: Debug, V: Debug> fmt::Debug for IntoIter<K, V> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.inner.iter()) | |
| .finish() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Iterator for Keys<'a, K, V> { | |
| type Item = &'a K; | |
| #[inline] | |
| fn next(&mut self) -> Option<(&'a K)> { | |
| self.inner.next().map(|(k, _)| k) | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, K, V> FusedIterator for Keys<'a, K, V> {} | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> Iterator for Values<'a, K, V> { | |
| type Item = &'a V; | |
| #[inline] | |
| fn next(&mut self) -> Option<(&'a V)> { | |
| self.inner.next().map(|(_, v)| v) | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, K, V> FusedIterator for Values<'a, K, V> {} | |
| #[stable(feature = "map_values_mut", since = "1.10.0")] | |
| impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { | |
| type Item = &'a mut V; | |
| #[inline] | |
| fn next(&mut self) -> Option<(&'a mut V)> { | |
| self.inner.next().map(|(_, v)| v) | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "map_values_mut", since = "1.10.0")] | |
| impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, K, V> FusedIterator for ValuesMut<'a, K, V> {} | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<'a, K, V> fmt::Debug for ValuesMut<'a, K, V> | |
| where K: fmt::Debug, | |
| V: fmt::Debug, | |
| { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.inner.inner.iter()) | |
| .finish() | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<'a, K, V> Iterator for Drain<'a, K, V> { | |
| type Item = (K, V); | |
| #[inline] | |
| fn next(&mut self) -> Option<(K, V)> { | |
| self.inner.next().map(|(_, k, v)| (k, v)) | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.inner.size_hint() | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> { | |
| #[inline] | |
| fn len(&self) -> usize { | |
| self.inner.len() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, K, V> FusedIterator for Drain<'a, K, V> {} | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl<'a, K, V> fmt::Debug for Drain<'a, K, V> | |
| where K: fmt::Debug, | |
| V: fmt::Debug, | |
| { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list() | |
| .entries(self.inner.iter()) | |
| .finish() | |
| } | |
| } | |
| impl<'a, K, V> Entry<'a, K, V> { | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| /// Ensures a value is in the entry by inserting the default if empty, and returns | |
| /// a mutable reference to the value in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// | |
| /// map.entry("poneyland").or_insert(3); | |
| /// assert_eq!(map["poneyland"], 3); | |
| /// | |
| /// *map.entry("poneyland").or_insert(10) *= 2; | |
| /// assert_eq!(map["poneyland"], 6); | |
| /// ``` | |
| pub fn or_insert(self, default: V) -> &'a mut V { | |
| match self { | |
| Occupied(entry) => entry.into_mut(), | |
| Vacant(entry) => entry.insert(default), | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| /// Ensures a value is in the entry by inserting the result of the default function if empty, | |
| /// and returns a mutable reference to the value in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, String> = HashMap::new(); | |
| /// let s = "hoho".to_string(); | |
| /// | |
| /// map.entry("poneyland").or_insert_with(|| s); | |
| /// | |
| /// assert_eq!(map["poneyland"], "hoho".to_string()); | |
| /// ``` | |
| pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V { | |
| match self { | |
| Occupied(entry) => entry.into_mut(), | |
| Vacant(entry) => entry.insert(default()), | |
| } | |
| } | |
| /// Returns a reference to this entry's key. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); | |
| /// ``` | |
| #[stable(feature = "map_entry_keys", since = "1.10.0")] | |
| pub fn key(&self) -> &K { | |
| match *self { | |
| Occupied(ref entry) => entry.key(), | |
| Vacant(ref entry) => entry.key(), | |
| } | |
| } | |
| /// Provides in-place mutable access to an occupied entry before any | |
| /// potential inserts into the map. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// | |
| /// map.entry("poneyland") | |
| /// .and_modify(|e| { *e += 1 }) | |
| /// .or_insert(42); | |
| /// assert_eq!(map["poneyland"], 42); | |
| /// | |
| /// map.entry("poneyland") | |
| /// .and_modify(|e| { *e += 1 }) | |
| /// .or_insert(42); | |
| /// assert_eq!(map["poneyland"], 43); | |
| /// ``` | |
| #[stable(feature = "entry_and_modify", since = "1.26.0")] | |
| pub fn and_modify<F>(self, f: F) -> Self | |
| where F: FnOnce(&mut V) | |
| { | |
| match self { | |
| Occupied(mut entry) => { | |
| f(entry.get_mut()); | |
| Occupied(entry) | |
| }, | |
| Vacant(entry) => Vacant(entry), | |
| } | |
| } | |
| } | |
| impl<'a, K, V: Default> Entry<'a, K, V> { | |
| #[stable(feature = "entry_or_default", since = "1.28.0")] | |
| /// Ensures a value is in the entry by inserting the default value if empty, | |
| /// and returns a mutable reference to the value in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # fn main() { | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, Option<u32>> = HashMap::new(); | |
| /// map.entry("poneyland").or_default(); | |
| /// | |
| /// assert_eq!(map["poneyland"], None); | |
| /// # } | |
| /// ``` | |
| pub fn or_default(self) -> &'a mut V { | |
| match self { | |
| Occupied(entry) => entry.into_mut(), | |
| Vacant(entry) => entry.insert(Default::default()), | |
| } | |
| } | |
| } | |
| impl<'a, K, V> OccupiedEntry<'a, K, V> { | |
| /// Gets a reference to the key in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); | |
| /// ``` | |
| #[stable(feature = "map_entry_keys", since = "1.10.0")] | |
| pub fn key(&self) -> &K { | |
| self.elem.read().0 | |
| } | |
| /// Take the ownership of the key and value from the map. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// | |
| /// if let Entry::Occupied(o) = map.entry("poneyland") { | |
| /// // We delete the entry from the map. | |
| /// o.remove_entry(); | |
| /// } | |
| /// | |
| /// assert_eq!(map.contains_key("poneyland"), false); | |
| /// ``` | |
| #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] | |
| pub fn remove_entry(self) -> (K, V) { | |
| let (k, v, _) = pop_internal(self.elem); | |
| (k, v) | |
| } | |
| /// Gets a reference to the value in the entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// | |
| /// if let Entry::Occupied(o) = map.entry("poneyland") { | |
| /// assert_eq!(o.get(), &12); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn get(&self) -> &V { | |
| self.elem.read().1 | |
| } | |
| /// Gets a mutable reference to the value in the entry. | |
| /// | |
| /// If you need a reference to the `OccupiedEntry` which may outlive the | |
| /// destruction of the `Entry` value, see [`into_mut`]. | |
| /// | |
| /// [`into_mut`]: #method.into_mut | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// | |
| /// assert_eq!(map["poneyland"], 12); | |
| /// if let Entry::Occupied(mut o) = map.entry("poneyland") { | |
| /// *o.get_mut() += 10; | |
| /// assert_eq!(*o.get(), 22); | |
| /// | |
| /// // We can use the same Entry multiple times. | |
| /// *o.get_mut() += 2; | |
| /// } | |
| /// | |
| /// assert_eq!(map["poneyland"], 24); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn get_mut(&mut self) -> &mut V { | |
| self.elem.read_mut().1 | |
| } | |
| /// Converts the OccupiedEntry into a mutable reference to the value in the entry | |
| /// with a lifetime bound to the map itself. | |
| /// | |
| /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. | |
| /// | |
| /// [`get_mut`]: #method.get_mut | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// | |
| /// assert_eq!(map["poneyland"], 12); | |
| /// if let Entry::Occupied(o) = map.entry("poneyland") { | |
| /// *o.into_mut() += 10; | |
| /// } | |
| /// | |
| /// assert_eq!(map["poneyland"], 22); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn into_mut(self) -> &'a mut V { | |
| self.elem.into_mut_refs().1 | |
| } | |
| /// Sets the value of the entry, and returns the entry's old value. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// | |
| /// if let Entry::Occupied(mut o) = map.entry("poneyland") { | |
| /// assert_eq!(o.insert(15), 12); | |
| /// } | |
| /// | |
| /// assert_eq!(map["poneyland"], 15); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn insert(&mut self, mut value: V) -> V { | |
| let old_value = self.get_mut(); | |
| mem::swap(&mut value, old_value); | |
| value | |
| } | |
| /// Takes the value out of the entry, and returns it. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// map.entry("poneyland").or_insert(12); | |
| /// | |
| /// if let Entry::Occupied(o) = map.entry("poneyland") { | |
| /// assert_eq!(o.remove(), 12); | |
| /// } | |
| /// | |
| /// assert_eq!(map.contains_key("poneyland"), false); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn remove(self) -> V { | |
| pop_internal(self.elem).1 | |
| } | |
| /// Returns a key that was used for search. | |
| /// | |
| /// The key was retained for further use. | |
| fn take_key(&mut self) -> Option<K> { | |
| self.key.take() | |
| } | |
| /// Replaces the entry, returning the old key and value. The new key in the hash map will be | |
| /// the key used to create this entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(map_entry_replace)] | |
| /// use std::collections::hash_map::{Entry, HashMap}; | |
| /// use std::rc::Rc; | |
| /// | |
| /// let mut map: HashMap<Rc<String>, u32> = HashMap::new(); | |
| /// map.insert(Rc::new("Stringthing".to_string()), 15); | |
| /// | |
| /// let my_key = Rc::new("Stringthing".to_string()); | |
| /// | |
| /// if let Entry::Occupied(entry) = map.entry(my_key) { | |
| /// // Also replace the key with a handle to our other key. | |
| /// let (old_key, old_value): (Rc<String>, u32) = entry.replace_entry(16); | |
| /// } | |
| /// | |
| /// ``` | |
| #[unstable(feature = "map_entry_replace", issue = "44286")] | |
| pub fn replace_entry(mut self, value: V) -> (K, V) { | |
| let (old_key, old_value) = self.elem.read_mut(); | |
| let old_key = mem::replace(old_key, self.key.unwrap()); | |
| let old_value = mem::replace(old_value, value); | |
| (old_key, old_value) | |
| } | |
| /// Replaces the key in the hash map with the key used to create this entry. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(map_entry_replace)] | |
| /// use std::collections::hash_map::{Entry, HashMap}; | |
| /// use std::rc::Rc; | |
| /// | |
| /// let mut map: HashMap<Rc<String>, u32> = HashMap::new(); | |
| /// let mut known_strings: Vec<Rc<String>> = Vec::new(); | |
| /// | |
| /// // Initialise known strings, run program, etc. | |
| /// | |
| /// reclaim_memory(&mut map, &known_strings); | |
| /// | |
| /// fn reclaim_memory(map: &mut HashMap<Rc<String>, u32>, known_strings: &[Rc<String>] ) { | |
| /// for s in known_strings { | |
| /// if let Entry::Occupied(entry) = map.entry(s.clone()) { | |
| /// // Replaces the entry's key with our version of it in `known_strings`. | |
| /// entry.replace_key(); | |
| /// } | |
| /// } | |
| /// } | |
| /// ``` | |
| #[unstable(feature = "map_entry_replace", issue = "44286")] | |
| pub fn replace_key(mut self) -> K { | |
| let (old_key, _) = self.elem.read_mut(); | |
| mem::replace(old_key, self.key.unwrap()) | |
| } | |
| } | |
| impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> { | |
| /// Gets a reference to the key that would be used when inserting a value | |
| /// through the `VacantEntry`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); | |
| /// ``` | |
| #[stable(feature = "map_entry_keys", since = "1.10.0")] | |
| pub fn key(&self) -> &K { | |
| &self.key | |
| } | |
| /// Take ownership of the key. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// | |
| /// if let Entry::Vacant(v) = map.entry("poneyland") { | |
| /// v.into_key(); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] | |
| pub fn into_key(self) -> K { | |
| self.key | |
| } | |
| /// Sets the value of the entry with the VacantEntry's key, | |
| /// and returns a mutable reference to it. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::Entry; | |
| /// | |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); | |
| /// | |
| /// if let Entry::Vacant(o) = map.entry("poneyland") { | |
| /// o.insert(37); | |
| /// } | |
| /// assert_eq!(map["poneyland"], 37); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn insert(self, value: V) -> &'a mut V { | |
| let b = match self.elem { | |
| NeqElem(mut bucket, disp) => { | |
| if disp >= DISPLACEMENT_THRESHOLD { | |
| bucket.table_mut().set_tag(true); | |
| } | |
| robin_hood(bucket, disp, self.hash, self.key, value) | |
| }, | |
| NoElem(mut bucket, disp) => { | |
| if disp >= DISPLACEMENT_THRESHOLD { | |
| bucket.table_mut().set_tag(true); | |
| } | |
| bucket.put(self.hash, self.key, value) | |
| }, | |
| }; | |
| b.into_mut_refs().1 | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher + Default | |
| { | |
| fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> HashMap<K, V, S> { | |
| let mut map = HashMap::with_hasher(Default::default()); | |
| map.extend(iter); | |
| map | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S> | |
| where K: Eq + Hash, | |
| S: BuildHasher | |
| { | |
| fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) { | |
| // Keys may be already present or show multiple times in the iterator. | |
| // Reserve the entire hint lower bound if the map is empty. | |
| // Otherwise reserve half the hint (rounded up), so the map | |
| // will only resize twice in the worst case. | |
| let iter = iter.into_iter(); | |
| let reserve = if self.is_empty() { | |
| iter.size_hint().0 | |
| } else { | |
| (iter.size_hint().0 + 1) / 2 | |
| }; | |
| self.reserve(reserve); | |
| for (k, v) in iter { | |
| self.insert(k, v); | |
| } | |
| } | |
| } | |
| #[stable(feature = "hash_extend_copy", since = "1.4.0")] | |
| impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S> | |
| where K: Eq + Hash + Copy, | |
| V: Copy, | |
| S: BuildHasher | |
| { | |
| fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) { | |
| self.extend(iter.into_iter().map(|(&key, &value)| (key, value))); | |
| } | |
| } | |
| /// `RandomState` is the default state for [`HashMap`] types. | |
| /// | |
| /// A particular instance `RandomState` will create the same instances of | |
| /// [`Hasher`], but the hashers created by two different `RandomState` | |
| /// instances are unlikely to produce the same result for the same values. | |
| /// | |
| /// [`HashMap`]: struct.HashMap.html | |
| /// [`Hasher`]: ../../hash/trait.Hasher.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::HashMap; | |
| /// use std::collections::hash_map::RandomState; | |
| /// | |
| /// let s = RandomState::new(); | |
| /// let mut map = HashMap::with_hasher(s); | |
| /// map.insert(1, 2); | |
| /// ``` | |
| #[derive(Clone)] | |
| #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] | |
| pub struct RandomState { | |
| k0: u64, | |
| k1: u64, | |
| } | |
| impl RandomState { | |
| /// Constructs a new `RandomState` that is initialized with random keys. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::hash_map::RandomState; | |
| /// | |
| /// let s = RandomState::new(); | |
| /// ``` | |
| #[inline] | |
| #[allow(deprecated)] | |
| // rand | |
| #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] | |
| pub fn new() -> RandomState { | |
| // Historically this function did not cache keys from the OS and instead | |
| // simply always called `rand::thread_rng().gen()` twice. In #31356 it | |
| // was discovered, however, that because we re-seed the thread-local RNG | |
| // from the OS periodically that this can cause excessive slowdown when | |
| // many hash maps are created on a thread. To solve this performance | |
| // trap we cache the first set of randomly generated keys per-thread. | |
| // | |
| // Later in #36481 it was discovered that exposing a deterministic | |
| // iteration order allows a form of DOS attack. To counter that we | |
| // increment one of the seeds on every RandomState creation, giving | |
| // every corresponding HashMap a different iteration order. | |
| thread_local!(static KEYS: Cell<(u64, u64)> = { | |
| Cell::new(sys::hashmap_random_keys()) | |
| }); | |
| KEYS.with(|keys| { | |
| let (k0, k1) = keys.get(); | |
| keys.set((k0.wrapping_add(1), k1)); | |
| RandomState { k0: k0, k1: k1 } | |
| }) | |
| } | |
| } | |
| #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] | |
| impl BuildHasher for RandomState { | |
| type Hasher = DefaultHasher; | |
| #[inline] | |
| #[allow(deprecated)] | |
| fn build_hasher(&self) -> DefaultHasher { | |
| DefaultHasher(SipHasher13::new_with_keys(self.k0, self.k1)) | |
| } | |
| } | |
| /// The default [`Hasher`] used by [`RandomState`]. | |
| /// | |
| /// The internal algorithm is not specified, and so it and its hashes should | |
| /// not be relied upon over releases. | |
| /// | |
| /// [`RandomState`]: struct.RandomState.html | |
| /// [`Hasher`]: ../../hash/trait.Hasher.html | |
| #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] | |
| #[allow(deprecated)] | |
| #[derive(Clone, Debug)] | |
| pub struct DefaultHasher(SipHasher13); | |
| impl DefaultHasher { | |
| /// Creates a new `DefaultHasher`. | |
| /// | |
| /// This hasher is not guaranteed to be the same as all other | |
| /// `DefaultHasher` instances, but is the same as all other `DefaultHasher` | |
| /// instances created through `new` or `default`. | |
| #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] | |
| #[allow(deprecated)] | |
| pub fn new() -> DefaultHasher { | |
| DefaultHasher(SipHasher13::new_with_keys(0, 0)) | |
| } | |
| } | |
| #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] | |
| impl Default for DefaultHasher { | |
| /// Creates a new `DefaultHasher` using [`new`][DefaultHasher::new]. | |
| /// See its documentation for more. | |
| fn default() -> DefaultHasher { | |
| DefaultHasher::new() | |
| } | |
| } | |
| #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] | |
| impl Hasher for DefaultHasher { | |
| #[inline] | |
| fn write(&mut self, msg: &[u8]) { | |
| self.0.write(msg) | |
| } | |
| #[inline] | |
| fn finish(&self) -> u64 { | |
| self.0.finish() | |
| } | |
| } | |
| #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] | |
| impl Default for RandomState { | |
| /// Constructs a new `RandomState`. | |
| #[inline] | |
| fn default() -> RandomState { | |
| RandomState::new() | |
| } | |
| } | |
| #[stable(feature = "std_debug", since = "1.16.0")] | |
| impl fmt::Debug for RandomState { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.pad("RandomState { .. }") | |
| } | |
| } | |
| impl<K, S, Q: ?Sized> super::Recover<Q> for HashMap<K, (), S> | |
| where K: Eq + Hash + Borrow<Q>, | |
| S: BuildHasher, | |
| Q: Eq + Hash | |
| { | |
| type Key = K; | |
| #[inline] | |
| fn get(&self, key: &Q) -> Option<&K> { | |
| self.search(key).map(|bucket| bucket.into_refs().0) | |
| } | |
| fn take(&mut self, key: &Q) -> Option<K> { | |
| self.search_mut(key).map(|bucket| pop_internal(bucket).0) | |
| } | |
| #[inline] | |
| fn replace(&mut self, key: K) -> Option<K> { | |
| self.reserve(1); | |
| match self.entry(key) { | |
| Occupied(mut occupied) => { | |
| let key = occupied.take_key().unwrap(); | |
| Some(mem::replace(occupied.elem.read_mut().0, key)) | |
| } | |
| Vacant(vacant) => { | |
| vacant.insert(()); | |
| None | |
| } | |
| } | |
| } | |
| } | |
| #[allow(dead_code)] | |
| fn assert_covariance() { | |
| fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> { | |
| v | |
| } | |
| fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> { | |
| v | |
| } | |
| fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> { | |
| v | |
| } | |
| fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> { | |
| v | |
| } | |
| fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> { | |
| v | |
| } | |
| fn into_iter_val<'new>(v: IntoIter<u8, &'static str>) -> IntoIter<u8, &'new str> { | |
| v | |
| } | |
| fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> { | |
| v | |
| } | |
| fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> { | |
| v | |
| } | |
| fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> { | |
| v | |
| } | |
| fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> { | |
| v | |
| } | |
| fn drain<'new>(d: Drain<'static, &'static str, &'static str>) | |
| -> Drain<'new, &'new str, &'new str> { | |
| d | |
| } | |
| } | |
| #[cfg(test)] | |
| mod test_map { | |
| use super::HashMap; | |
| use super::Entry::{Occupied, Vacant}; | |
| use super::RandomState; | |
| use cell::RefCell; | |
| use rand::{thread_rng, Rng}; | |
| use realstd::collections::CollectionAllocErr::*; | |
| use realstd::mem::size_of; | |
| use realstd::usize; | |
| #[test] | |
| fn test_zero_capacities() { | |
| type HM = HashMap<i32, i32>; | |
| let m = HM::new(); | |
| assert_eq!(m.capacity(), 0); | |
| let m = HM::default(); | |
| assert_eq!(m.capacity(), 0); | |
| let m = HM::with_hasher(RandomState::new()); | |
| assert_eq!(m.capacity(), 0); | |
| let m = HM::with_capacity(0); | |
| assert_eq!(m.capacity(), 0); | |
| let m = HM::with_capacity_and_hasher(0, RandomState::new()); | |
| assert_eq!(m.capacity(), 0); | |
| let mut m = HM::new(); | |
| m.insert(1, 1); | |
| m.insert(2, 2); | |
| m.remove(&1); | |
| m.remove(&2); | |
| m.shrink_to_fit(); | |
| assert_eq!(m.capacity(), 0); | |
| let mut m = HM::new(); | |
| m.reserve(0); | |
| assert_eq!(m.capacity(), 0); | |
| } | |
| #[test] | |
| fn test_create_capacity_zero() { | |
| let mut m = HashMap::with_capacity(0); | |
| assert!(m.insert(1, 1).is_none()); | |
| assert!(m.contains_key(&1)); | |
| assert!(!m.contains_key(&0)); | |
| } | |
| #[test] | |
| fn test_insert() { | |
| let mut m = HashMap::new(); | |
| assert_eq!(m.len(), 0); | |
| assert!(m.insert(1, 2).is_none()); | |
| assert_eq!(m.len(), 1); | |
| assert!(m.insert(2, 4).is_none()); | |
| assert_eq!(m.len(), 2); | |
| assert_eq!(*m.get(&1).unwrap(), 2); | |
| assert_eq!(*m.get(&2).unwrap(), 4); | |
| } | |
| #[test] | |
| fn test_clone() { | |
| let mut m = HashMap::new(); | |
| assert_eq!(m.len(), 0); | |
| assert!(m.insert(1, 2).is_none()); | |
| assert_eq!(m.len(), 1); | |
| assert!(m.insert(2, 4).is_none()); | |
| assert_eq!(m.len(), 2); | |
| let m2 = m.clone(); | |
| assert_eq!(*m2.get(&1).unwrap(), 2); | |
| assert_eq!(*m2.get(&2).unwrap(), 4); | |
| assert_eq!(m2.len(), 2); | |
| } | |
| thread_local! { static DROP_VECTOR: RefCell<Vec<i32>> = RefCell::new(Vec::new()) } | |
| #[derive(Hash, PartialEq, Eq)] | |
| struct Droppable { | |
| k: usize, | |
| } | |
| impl Droppable { | |
| fn new(k: usize) -> Droppable { | |
| DROP_VECTOR.with(|slot| { | |
| slot.borrow_mut()[k] += 1; | |
| }); | |
| Droppable { k } | |
| } | |
| } | |
| impl Drop for Droppable { | |
| fn drop(&mut self) { | |
| DROP_VECTOR.with(|slot| { | |
| slot.borrow_mut()[self.k] -= 1; | |
| }); | |
| } | |
| } | |
| impl Clone for Droppable { | |
| fn clone(&self) -> Droppable { | |
| Droppable::new(self.k) | |
| } | |
| } | |
| #[test] | |
| fn test_drops() { | |
| DROP_VECTOR.with(|slot| { | |
| *slot.borrow_mut() = vec![0; 200]; | |
| }); | |
| { | |
| let mut m = HashMap::new(); | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 0); | |
| } | |
| }); | |
| for i in 0..100 { | |
| let d1 = Droppable::new(i); | |
| let d2 = Droppable::new(i + 100); | |
| m.insert(d1, d2); | |
| } | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 1); | |
| } | |
| }); | |
| for i in 0..50 { | |
| let k = Droppable::new(i); | |
| let v = m.remove(&k); | |
| assert!(v.is_some()); | |
| DROP_VECTOR.with(|v| { | |
| assert_eq!(v.borrow()[i], 1); | |
| assert_eq!(v.borrow()[i+100], 1); | |
| }); | |
| } | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..50 { | |
| assert_eq!(v.borrow()[i], 0); | |
| assert_eq!(v.borrow()[i+100], 0); | |
| } | |
| for i in 50..100 { | |
| assert_eq!(v.borrow()[i], 1); | |
| assert_eq!(v.borrow()[i+100], 1); | |
| } | |
| }); | |
| } | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 0); | |
| } | |
| }); | |
| } | |
| #[test] | |
| fn test_into_iter_drops() { | |
| DROP_VECTOR.with(|v| { | |
| *v.borrow_mut() = vec![0; 200]; | |
| }); | |
| let hm = { | |
| let mut hm = HashMap::new(); | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 0); | |
| } | |
| }); | |
| for i in 0..100 { | |
| let d1 = Droppable::new(i); | |
| let d2 = Droppable::new(i + 100); | |
| hm.insert(d1, d2); | |
| } | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 1); | |
| } | |
| }); | |
| hm | |
| }; | |
| // By the way, ensure that cloning doesn't screw up the dropping. | |
| drop(hm.clone()); | |
| { | |
| let mut half = hm.into_iter().take(50); | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 1); | |
| } | |
| }); | |
| for _ in half.by_ref() {} | |
| DROP_VECTOR.with(|v| { | |
| let nk = (0..100) | |
| .filter(|&i| v.borrow()[i] == 1) | |
| .count(); | |
| let nv = (0..100) | |
| .filter(|&i| v.borrow()[i + 100] == 1) | |
| .count(); | |
| assert_eq!(nk, 50); | |
| assert_eq!(nv, 50); | |
| }); | |
| }; | |
| DROP_VECTOR.with(|v| { | |
| for i in 0..200 { | |
| assert_eq!(v.borrow()[i], 0); | |
| } | |
| }); | |
| } | |
| #[test] | |
| fn test_empty_remove() { | |
| let mut m: HashMap<i32, bool> = HashMap::new(); | |
| assert_eq!(m.remove(&0), None); | |
| } | |
| #[test] | |
| fn test_empty_entry() { | |
| let mut m: HashMap<i32, bool> = HashMap::new(); | |
| match m.entry(0) { | |
| Occupied(_) => panic!(), | |
| Vacant(_) => {} | |
| } | |
| assert!(*m.entry(0).or_insert(true)); | |
| assert_eq!(m.len(), 1); | |
| } | |
| #[test] | |
| fn test_empty_iter() { | |
| let mut m: HashMap<i32, bool> = HashMap::new(); | |
| assert_eq!(m.drain().next(), None); | |
| assert_eq!(m.keys().next(), None); | |
| assert_eq!(m.values().next(), None); | |
| assert_eq!(m.values_mut().next(), None); | |
| assert_eq!(m.iter().next(), None); | |
| assert_eq!(m.iter_mut().next(), None); | |
| assert_eq!(m.len(), 0); | |
| assert!(m.is_empty()); | |
| assert_eq!(m.into_iter().next(), None); | |
| } | |
| #[test] | |
| fn test_lots_of_insertions() { | |
| let mut m = HashMap::new(); | |
| // Try this a few times to make sure we never screw up the hashmap's | |
| // internal state. | |
| for _ in 0..10 { | |
| assert!(m.is_empty()); | |
| for i in 1..1001 { | |
| assert!(m.insert(i, i).is_none()); | |
| for j in 1..=i { | |
| let r = m.get(&j); | |
| assert_eq!(r, Some(&j)); | |
| } | |
| for j in i + 1..1001 { | |
| let r = m.get(&j); | |
| assert_eq!(r, None); | |
| } | |
| } | |
| for i in 1001..2001 { | |
| assert!(!m.contains_key(&i)); | |
| } | |
| // remove forwards | |
| for i in 1..1001 { | |
| assert!(m.remove(&i).is_some()); | |
| for j in 1..=i { | |
| assert!(!m.contains_key(&j)); | |
| } | |
| for j in i + 1..1001 { | |
| assert!(m.contains_key(&j)); | |
| } | |
| } | |
| for i in 1..1001 { | |
| assert!(!m.contains_key(&i)); | |
| } | |
| for i in 1..1001 { | |
| assert!(m.insert(i, i).is_none()); | |
| } | |
| // remove backwards | |
| for i in (1..1001).rev() { | |
| assert!(m.remove(&i).is_some()); | |
| for j in i..1001 { | |
| assert!(!m.contains_key(&j)); | |
| } | |
| for j in 1..i { | |
| assert!(m.contains_key(&j)); | |
| } | |
| } | |
| } | |
| } | |
| #[test] | |
| fn test_find_mut() { | |
| let mut m = HashMap::new(); | |
| assert!(m.insert(1, 12).is_none()); | |
| assert!(m.insert(2, 8).is_none()); | |
| assert!(m.insert(5, 14).is_none()); | |
| let new = 100; | |
| match m.get_mut(&5) { | |
| None => panic!(), | |
| Some(x) => *x = new, | |
| } | |
| assert_eq!(m.get(&5), Some(&new)); | |
| } | |
| #[test] | |
| fn test_insert_overwrite() { | |
| let mut m = HashMap::new(); | |
| assert!(m.insert(1, 2).is_none()); | |
| assert_eq!(*m.get(&1).unwrap(), 2); | |
| assert!(!m.insert(1, 3).is_none()); | |
| assert_eq!(*m.get(&1).unwrap(), 3); | |
| } | |
| #[test] | |
| fn test_insert_conflicts() { | |
| let mut m = HashMap::with_capacity(4); | |
| assert!(m.insert(1, 2).is_none()); | |
| assert!(m.insert(5, 3).is_none()); | |
| assert!(m.insert(9, 4).is_none()); | |
| assert_eq!(*m.get(&9).unwrap(), 4); | |
| assert_eq!(*m.get(&5).unwrap(), 3); | |
| assert_eq!(*m.get(&1).unwrap(), 2); | |
| } | |
| #[test] | |
| fn test_conflict_remove() { | |
| let mut m = HashMap::with_capacity(4); | |
| assert!(m.insert(1, 2).is_none()); | |
| assert_eq!(*m.get(&1).unwrap(), 2); | |
| assert!(m.insert(5, 3).is_none()); | |
| assert_eq!(*m.get(&1).unwrap(), 2); | |
| assert_eq!(*m.get(&5).unwrap(), 3); | |
| assert!(m.insert(9, 4).is_none()); | |
| assert_eq!(*m.get(&1).unwrap(), 2); | |
| assert_eq!(*m.get(&5).unwrap(), 3); | |
| assert_eq!(*m.get(&9).unwrap(), 4); | |
| assert!(m.remove(&1).is_some()); | |
| assert_eq!(*m.get(&9).unwrap(), 4); | |
| assert_eq!(*m.get(&5).unwrap(), 3); | |
| } | |
| #[test] | |
| fn test_is_empty() { | |
| let mut m = HashMap::with_capacity(4); | |
| assert!(m.insert(1, 2).is_none()); | |
| assert!(!m.is_empty()); | |
| assert!(m.remove(&1).is_some()); | |
| assert!(m.is_empty()); | |
| } | |
| #[test] | |
| fn test_remove() { | |
| let mut m = HashMap::new(); | |
| m.insert(1, 2); | |
| assert_eq!(m.remove(&1), Some(2)); | |
| assert_eq!(m.remove(&1), None); | |
| } | |
| #[test] | |
| fn test_remove_entry() { | |
| let mut m = HashMap::new(); | |
| m.insert(1, 2); | |
| assert_eq!(m.remove_entry(&1), Some((1, 2))); | |
| assert_eq!(m.remove(&1), None); | |
| } | |
| #[test] | |
| fn test_iterate() { | |
| let mut m = HashMap::with_capacity(4); | |
| for i in 0..32 { | |
| assert!(m.insert(i, i*2).is_none()); | |
| } | |
| assert_eq!(m.len(), 32); | |
| let mut observed: u32 = 0; | |
| for (k, v) in &m { | |
| assert_eq!(*v, *k * 2); | |
| observed |= 1 << *k; | |
| } | |
| assert_eq!(observed, 0xFFFF_FFFF); | |
| } | |
| #[test] | |
| fn test_keys() { | |
| let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; | |
| let map: HashMap<_, _> = vec.into_iter().collect(); | |
| let keys: Vec<_> = map.keys().cloned().collect(); | |
| assert_eq!(keys.len(), 3); | |
| assert!(keys.contains(&1)); | |
| assert!(keys.contains(&2)); | |
| assert!(keys.contains(&3)); | |
| } | |
| #[test] | |
| fn test_values() { | |
| let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; | |
| let map: HashMap<_, _> = vec.into_iter().collect(); | |
| let values: Vec<_> = map.values().cloned().collect(); | |
| assert_eq!(values.len(), 3); | |
| assert!(values.contains(&'a')); | |
| assert!(values.contains(&'b')); | |
| assert!(values.contains(&'c')); | |
| } | |
| #[test] | |
| fn test_values_mut() { | |
| let vec = vec![(1, 1), (2, 2), (3, 3)]; | |
| let mut map: HashMap<_, _> = vec.into_iter().collect(); | |
| for value in map.values_mut() { | |
| *value = (*value) * 2 | |
| } | |
| let values: Vec<_> = map.values().cloned().collect(); | |
| assert_eq!(values.len(), 3); | |
| assert!(values.contains(&2)); | |
| assert!(values.contains(&4)); | |
| assert!(values.contains(&6)); | |
| } | |
| #[test] | |
| fn test_find() { | |
| let mut m = HashMap::new(); | |
| assert!(m.get(&1).is_none()); | |
| m.insert(1, 2); | |
| match m.get(&1) { | |
| None => panic!(), | |
| Some(v) => assert_eq!(*v, 2), | |
| } | |
| } | |
| #[test] | |
| fn test_eq() { | |
| let mut m1 = HashMap::new(); | |
| m1.insert(1, 2); | |
| m1.insert(2, 3); | |
| m1.insert(3, 4); | |
| let mut m2 = HashMap::new(); | |
| m2.insert(1, 2); | |
| m2.insert(2, 3); | |
| assert!(m1 != m2); | |
| m2.insert(3, 4); | |
| assert_eq!(m1, m2); | |
| } | |
| #[test] | |
| fn test_show() { | |
| let mut map = HashMap::new(); | |
| let empty: HashMap<i32, i32> = HashMap::new(); | |
| map.insert(1, 2); | |
| map.insert(3, 4); | |
| let map_str = format!("{:?}", map); | |
| assert!(map_str == "{1: 2, 3: 4}" || | |
| map_str == "{3: 4, 1: 2}"); | |
| assert_eq!(format!("{:?}", empty), "{}"); | |
| } | |
| #[test] | |
| fn test_expand() { | |
| let mut m = HashMap::new(); | |
| assert_eq!(m.len(), 0); | |
| assert!(m.is_empty()); | |
| let mut i = 0; | |
| let old_raw_cap = m.raw_capacity(); | |
| while old_raw_cap == m.raw_capacity() { | |
| m.insert(i, i); | |
| i += 1; | |
| } | |
| assert_eq!(m.len(), i); | |
| assert!(!m.is_empty()); | |
| } | |
| #[test] | |
| fn test_behavior_resize_policy() { | |
| let mut m = HashMap::new(); | |
| assert_eq!(m.len(), 0); | |
| assert_eq!(m.raw_capacity(), 0); | |
| assert!(m.is_empty()); | |
| m.insert(0, 0); | |
| m.remove(&0); | |
| assert!(m.is_empty()); | |
| let initial_raw_cap = m.raw_capacity(); | |
| m.reserve(initial_raw_cap); | |
| let raw_cap = m.raw_capacity(); | |
| assert_eq!(raw_cap, initial_raw_cap * 2); | |
| let mut i = 0; | |
| for _ in 0..raw_cap * 3 / 4 { | |
| m.insert(i, i); | |
| i += 1; | |
| } | |
| // three quarters full | |
| assert_eq!(m.len(), i); | |
| assert_eq!(m.raw_capacity(), raw_cap); | |
| for _ in 0..raw_cap / 4 { | |
| m.insert(i, i); | |
| i += 1; | |
| } | |
| // half full | |
| let new_raw_cap = m.raw_capacity(); | |
| assert_eq!(new_raw_cap, raw_cap * 2); | |
| for _ in 0..raw_cap / 2 - 1 { | |
| i -= 1; | |
| m.remove(&i); | |
| assert_eq!(m.raw_capacity(), new_raw_cap); | |
| } | |
| // A little more than one quarter full. | |
| m.shrink_to_fit(); | |
| assert_eq!(m.raw_capacity(), raw_cap); | |
| // again, a little more than half full | |
| for _ in 0..raw_cap / 2 - 1 { | |
| i -= 1; | |
| m.remove(&i); | |
| } | |
| m.shrink_to_fit(); | |
| assert_eq!(m.len(), i); | |
| assert!(!m.is_empty()); | |
| assert_eq!(m.raw_capacity(), initial_raw_cap); | |
| } | |
| #[test] | |
| fn test_reserve_shrink_to_fit() { | |
| let mut m = HashMap::new(); | |
| m.insert(0, 0); | |
| m.remove(&0); | |
| assert!(m.capacity() >= m.len()); | |
| for i in 0..128 { | |
| m.insert(i, i); | |
| } | |
| m.reserve(256); | |
| let usable_cap = m.capacity(); | |
| for i in 128..(128 + 256) { | |
| m.insert(i, i); | |
| assert_eq!(m.capacity(), usable_cap); | |
| } | |
| for i in 100..(128 + 256) { | |
| assert_eq!(m.remove(&i), Some(i)); | |
| } | |
| m.shrink_to_fit(); | |
| assert_eq!(m.len(), 100); | |
| assert!(!m.is_empty()); | |
| assert!(m.capacity() >= m.len()); | |
| for i in 0..100 { | |
| assert_eq!(m.remove(&i), Some(i)); | |
| } | |
| m.shrink_to_fit(); | |
| m.insert(0, 0); | |
| assert_eq!(m.len(), 1); | |
| assert!(m.capacity() >= m.len()); | |
| assert_eq!(m.remove(&0), Some(0)); | |
| } | |
| #[test] | |
| fn test_from_iter() { | |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; | |
| let map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| for &(k, v) in &xs { | |
| assert_eq!(map.get(&k), Some(&v)); | |
| } | |
| } | |
| #[test] | |
| fn test_size_hint() { | |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; | |
| let map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| let mut iter = map.iter(); | |
| for _ in iter.by_ref().take(3) {} | |
| assert_eq!(iter.size_hint(), (3, Some(3))); | |
| } | |
| #[test] | |
| fn test_iter_len() { | |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; | |
| let map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| let mut iter = map.iter(); | |
| for _ in iter.by_ref().take(3) {} | |
| assert_eq!(iter.len(), 3); | |
| } | |
| #[test] | |
| fn test_mut_size_hint() { | |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; | |
| let mut map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| let mut iter = map.iter_mut(); | |
| for _ in iter.by_ref().take(3) {} | |
| assert_eq!(iter.size_hint(), (3, Some(3))); | |
| } | |
| #[test] | |
| fn test_iter_mut_len() { | |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; | |
| let mut map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| let mut iter = map.iter_mut(); | |
| for _ in iter.by_ref().take(3) {} | |
| assert_eq!(iter.len(), 3); | |
| } | |
| #[test] | |
| fn test_index() { | |
| let mut map = HashMap::new(); | |
| map.insert(1, 2); | |
| map.insert(2, 1); | |
| map.insert(3, 4); | |
| assert_eq!(map[&2], 1); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_index_nonexistent() { | |
| let mut map = HashMap::new(); | |
| map.insert(1, 2); | |
| map.insert(2, 1); | |
| map.insert(3, 4); | |
| map[&4]; | |
| } | |
| #[test] | |
| fn test_entry() { | |
| let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; | |
| let mut map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| // Existing key (insert) | |
| match map.entry(1) { | |
| Vacant(_) => unreachable!(), | |
| Occupied(mut view) => { | |
| assert_eq!(view.get(), &10); | |
| assert_eq!(view.insert(100), 10); | |
| } | |
| } | |
| assert_eq!(map.get(&1).unwrap(), &100); | |
| assert_eq!(map.len(), 6); | |
| // Existing key (update) | |
| match map.entry(2) { | |
| Vacant(_) => unreachable!(), | |
| Occupied(mut view) => { | |
| let v = view.get_mut(); | |
| let new_v = (*v) * 10; | |
| *v = new_v; | |
| } | |
| } | |
| assert_eq!(map.get(&2).unwrap(), &200); | |
| assert_eq!(map.len(), 6); | |
| // Existing key (take) | |
| match map.entry(3) { | |
| Vacant(_) => unreachable!(), | |
| Occupied(view) => { | |
| assert_eq!(view.remove(), 30); | |
| } | |
| } | |
| assert_eq!(map.get(&3), None); | |
| assert_eq!(map.len(), 5); | |
| // Inexistent key (insert) | |
| match map.entry(10) { | |
| Occupied(_) => unreachable!(), | |
| Vacant(view) => { | |
| assert_eq!(*view.insert(1000), 1000); | |
| } | |
| } | |
| assert_eq!(map.get(&10).unwrap(), &1000); | |
| assert_eq!(map.len(), 6); | |
| } | |
| #[test] | |
| fn test_entry_take_doesnt_corrupt() { | |
| #![allow(deprecated)] //rand | |
| // Test for #19292 | |
| fn check(m: &HashMap<i32, ()>) { | |
| for k in m.keys() { | |
| assert!(m.contains_key(k), | |
| "{} is in keys() but not in the map?", k); | |
| } | |
| } | |
| let mut m = HashMap::new(); | |
| let mut rng = thread_rng(); | |
| // Populate the map with some items. | |
| for _ in 0..50 { | |
| let x = rng.gen_range(-10, 10); | |
| m.insert(x, ()); | |
| } | |
| for _ in 0..1000 { | |
| let x = rng.gen_range(-10, 10); | |
| match m.entry(x) { | |
| Vacant(_) => {} | |
| Occupied(e) => { | |
| e.remove(); | |
| } | |
| } | |
| check(&m); | |
| } | |
| } | |
| #[test] | |
| fn test_extend_ref() { | |
| let mut a = HashMap::new(); | |
| a.insert(1, "one"); | |
| let mut b = HashMap::new(); | |
| b.insert(2, "two"); | |
| b.insert(3, "three"); | |
| a.extend(&b); | |
| assert_eq!(a.len(), 3); | |
| assert_eq!(a[&1], "one"); | |
| assert_eq!(a[&2], "two"); | |
| assert_eq!(a[&3], "three"); | |
| } | |
| #[test] | |
| fn test_capacity_not_less_than_len() { | |
| let mut a = HashMap::new(); | |
| let mut item = 0; | |
| for _ in 0..116 { | |
| a.insert(item, 0); | |
| item += 1; | |
| } | |
| assert!(a.capacity() > a.len()); | |
| let free = a.capacity() - a.len(); | |
| for _ in 0..free { | |
| a.insert(item, 0); | |
| item += 1; | |
| } | |
| assert_eq!(a.len(), a.capacity()); | |
| // Insert at capacity should cause allocation. | |
| a.insert(item, 0); | |
| assert!(a.capacity() > a.len()); | |
| } | |
| #[test] | |
| fn test_occupied_entry_key() { | |
| let mut a = HashMap::new(); | |
| let key = "hello there"; | |
| let value = "value goes here"; | |
| assert!(a.is_empty()); | |
| a.insert(key.clone(), value.clone()); | |
| assert_eq!(a.len(), 1); | |
| assert_eq!(a[key], value); | |
| match a.entry(key.clone()) { | |
| Vacant(_) => panic!(), | |
| Occupied(e) => assert_eq!(key, *e.key()), | |
| } | |
| assert_eq!(a.len(), 1); | |
| assert_eq!(a[key], value); | |
| } | |
| #[test] | |
| fn test_vacant_entry_key() { | |
| let mut a = HashMap::new(); | |
| let key = "hello there"; | |
| let value = "value goes here"; | |
| assert!(a.is_empty()); | |
| match a.entry(key.clone()) { | |
| Occupied(_) => panic!(), | |
| Vacant(e) => { | |
| assert_eq!(key, *e.key()); | |
| e.insert(value.clone()); | |
| } | |
| } | |
| assert_eq!(a.len(), 1); | |
| assert_eq!(a[key], value); | |
| } | |
| #[test] | |
| fn test_retain() { | |
| let mut map: HashMap<i32, i32> = (0..100).map(|x|(x, x*10)).collect(); | |
| map.retain(|&k, _| k % 2 == 0); | |
| assert_eq!(map.len(), 50); | |
| assert_eq!(map[&2], 20); | |
| assert_eq!(map[&4], 40); | |
| assert_eq!(map[&6], 60); | |
| } | |
| #[test] | |
| fn test_adaptive() { | |
| const TEST_LEN: usize = 5000; | |
| // by cloning we get maps with the same hasher seed | |
| let mut first = HashMap::new(); | |
| let mut second = first.clone(); | |
| first.extend((0..TEST_LEN).map(|i| (i, i))); | |
| second.extend((TEST_LEN..TEST_LEN * 2).map(|i| (i, i))); | |
| for (&k, &v) in &second { | |
| let prev_cap = first.capacity(); | |
| let expect_grow = first.len() == prev_cap; | |
| first.insert(k, v); | |
| if !expect_grow && first.capacity() != prev_cap { | |
| return; | |
| } | |
| } | |
| panic!("Adaptive early resize failed"); | |
| } | |
| #[test] | |
| fn test_try_reserve() { | |
| let mut empty_bytes: HashMap<u8,u8> = HashMap::new(); | |
| const MAX_USIZE: usize = usize::MAX; | |
| // HashMap and RawTables use complicated size calculations | |
| // hashes_size is sizeof(HashUint) * capacity; | |
| // pairs_size is sizeof((K. V)) * capacity; | |
| // alignment_hashes_size is 8 | |
| // alignment_pairs size is 4 | |
| let size_of_multiplier = (size_of::<usize>() + size_of::<(u8, u8)>()).next_power_of_two(); | |
| // The following formula is used to calculate the new capacity | |
| let max_no_ovf = ((MAX_USIZE / 11) * 10) / size_of_multiplier - 1; | |
| if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) { | |
| } else { panic!("usize::MAX should trigger an overflow!"); } | |
| if size_of::<usize>() < 8 { | |
| if let Err(CapacityOverflow) = empty_bytes.try_reserve(max_no_ovf) { | |
| } else { panic!("isize::MAX + 1 should trigger a CapacityOverflow!") } | |
| } else { | |
| if let Err(AllocErr) = empty_bytes.try_reserve(max_no_ovf) { | |
| } else { panic!("isize::MAX + 1 should trigger an OOM!") } | |
| } | |
| } | |
| #[test] | |
| fn test_raw_entry() { | |
| use super::RawEntryMut::{Occupied, Vacant}; | |
| let xs = [(1i32, 10i32), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; | |
| let mut map: HashMap<_, _> = xs.iter().cloned().collect(); | |
| let compute_hash = |map: &HashMap<i32, i32>, k: i32| -> u64 { | |
| use core::hash::{BuildHasher, Hash, Hasher}; | |
| let mut hasher = map.hasher().build_hasher(); | |
| k.hash(&mut hasher); | |
| hasher.finish() | |
| }; | |
| // Existing key (insert) | |
| match map.raw_entry_mut().from_key(&1) { | |
| Vacant(_) => unreachable!(), | |
| Occupied(mut view) => { | |
| assert_eq!(view.get(), &10); | |
| assert_eq!(view.insert(100), 10); | |
| } | |
| } | |
| let hash1 = compute_hash(&map, 1); | |
| assert_eq!(map.raw_entry().from_key(&1).unwrap(), (&1, &100)); | |
| assert_eq!(map.raw_entry().from_hash(hash1, |k| *k == 1).unwrap(), (&1, &100)); | |
| assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash1, &1).unwrap(), (&1, &100)); | |
| assert_eq!(map.raw_entry().search_bucket(hash1, |k| *k == 1).unwrap(), (&1, &100)); | |
| assert_eq!(map.len(), 6); | |
| // Existing key (update) | |
| match map.raw_entry_mut().from_key(&2) { | |
| Vacant(_) => unreachable!(), | |
| Occupied(mut view) => { | |
| let v = view.get_mut(); | |
| let new_v = (*v) * 10; | |
| *v = new_v; | |
| } | |
| } | |
| let hash2 = compute_hash(&map, 2); | |
| assert_eq!(map.raw_entry().from_key(&2).unwrap(), (&2, &200)); | |
| assert_eq!(map.raw_entry().from_hash(hash2, |k| *k == 2).unwrap(), (&2, &200)); | |
| assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash2, &2).unwrap(), (&2, &200)); | |
| assert_eq!(map.raw_entry().search_bucket(hash2, |k| *k == 2).unwrap(), (&2, &200)); | |
| assert_eq!(map.len(), 6); | |
| // Existing key (take) | |
| let hash3 = compute_hash(&map, 3); | |
| match map.raw_entry_mut().from_key_hashed_nocheck(hash3, &3) { | |
| Vacant(_) => unreachable!(), | |
| Occupied(view) => { | |
| assert_eq!(view.remove_entry(), (3, 30)); | |
| } | |
| } | |
| assert_eq!(map.raw_entry().from_key(&3), None); | |
| assert_eq!(map.raw_entry().from_hash(hash3, |k| *k == 3), None); | |
| assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash3, &3), None); | |
| assert_eq!(map.raw_entry().search_bucket(hash3, |k| *k == 3), None); | |
| assert_eq!(map.len(), 5); | |
| // Nonexistent key (insert) | |
| match map.raw_entry_mut().from_key(&10) { | |
| Occupied(_) => unreachable!(), | |
| Vacant(view) => { | |
| assert_eq!(view.insert(10, 1000), (&mut 10, &mut 1000)); | |
| } | |
| } | |
| assert_eq!(map.raw_entry().from_key(&10).unwrap(), (&10, &1000)); | |
| assert_eq!(map.len(), 6); | |
| // Ensure all lookup methods produce equivalent results. | |
| for k in 0..12 { | |
| let hash = compute_hash(&map, k); | |
| let v = map.get(&k).cloned(); | |
| let kv = v.as_ref().map(|v| (&k, v)); | |
| assert_eq!(map.raw_entry().from_key(&k), kv); | |
| assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); | |
| assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); | |
| assert_eq!(map.raw_entry().search_bucket(hash, |q| *q == k), kv); | |
| match map.raw_entry_mut().from_key(&k) { | |
| Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), | |
| Vacant(_) => assert_eq!(v, None), | |
| } | |
| match map.raw_entry_mut().from_key_hashed_nocheck(hash, &k) { | |
| Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), | |
| Vacant(_) => assert_eq!(v, None), | |
| } | |
| match map.raw_entry_mut().from_hash(hash, |q| *q == k) { | |
| Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), | |
| Vacant(_) => assert_eq!(v, None), | |
| } | |
| match map.raw_entry_mut().search_bucket(hash, |q| *q == k) { | |
| Occupied(mut o) => assert_eq!(Some(o.get_key_value()), kv), | |
| Vacant(_) => assert_eq!(v, None), | |
| } | |
| } | |
| } | |
| } |