Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up
Find file
Copy path
Fetching contributors…
| // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT | |
| // file at the top-level directory of this distribution and at | |
| // http://rust-lang.org/COPYRIGHT. | |
| // | |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | |
| // option. This file may not be copied, modified, or distributed | |
| // except according to those terms. | |
| //! A priority queue implemented with a binary heap. | |
| //! | |
| //! Insertion and popping the largest element have `O(log n)` time complexity. | |
| //! Checking the largest element is `O(1)`. Converting a vector to a binary heap | |
| //! can be done in-place, and has `O(n)` complexity. A binary heap can also be | |
| //! converted to a sorted vector in-place, allowing it to be used for an `O(n | |
| //! log n)` in-place heapsort. | |
| //! | |
| //! # Examples | |
| //! | |
| //! This is a larger example that implements [Dijkstra's algorithm][dijkstra] | |
| //! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. | |
| //! It shows how to use [`BinaryHeap`] with custom types. | |
| //! | |
| //! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm | |
| //! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem | |
| //! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph | |
| //! [`BinaryHeap`]: struct.BinaryHeap.html | |
| //! | |
| //! ``` | |
| //! use std::cmp::Ordering; | |
| //! use std::collections::BinaryHeap; | |
| //! use std::usize; | |
| //! | |
| //! #[derive(Copy, Clone, Eq, PartialEq)] | |
| //! struct State { | |
| //! cost: usize, | |
| //! position: usize, | |
| //! } | |
| //! | |
| //! // The priority queue depends on `Ord`. | |
| //! // Explicitly implement the trait so the queue becomes a min-heap | |
| //! // instead of a max-heap. | |
| //! impl Ord for State { | |
| //! fn cmp(&self, other: &State) -> Ordering { | |
| //! // Notice that the we flip the ordering on costs. | |
| //! // In case of a tie we compare positions - this step is necessary | |
| //! // to make implementations of `PartialEq` and `Ord` consistent. | |
| //! other.cost.cmp(&self.cost) | |
| //! .then_with(|| self.position.cmp(&other.position)) | |
| //! } | |
| //! } | |
| //! | |
| //! // `PartialOrd` needs to be implemented as well. | |
| //! impl PartialOrd for State { | |
| //! fn partial_cmp(&self, other: &State) -> Option<Ordering> { | |
| //! Some(self.cmp(other)) | |
| //! } | |
| //! } | |
| //! | |
| //! // Each node is represented as an `usize`, for a shorter implementation. | |
| //! struct Edge { | |
| //! node: usize, | |
| //! cost: usize, | |
| //! } | |
| //! | |
| //! // Dijkstra's shortest path algorithm. | |
| //! | |
| //! // Start at `start` and use `dist` to track the current shortest distance | |
| //! // to each node. This implementation isn't memory-efficient as it may leave duplicate | |
| //! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, | |
| //! // for a simpler implementation. | |
| //! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> { | |
| //! // dist[node] = current shortest distance from `start` to `node` | |
| //! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); | |
| //! | |
| //! let mut heap = BinaryHeap::new(); | |
| //! | |
| //! // We're at `start`, with a zero cost | |
| //! dist[start] = 0; | |
| //! heap.push(State { cost: 0, position: start }); | |
| //! | |
| //! // Examine the frontier with lower cost nodes first (min-heap) | |
| //! while let Some(State { cost, position }) = heap.pop() { | |
| //! // Alternatively we could have continued to find all shortest paths | |
| //! if position == goal { return Some(cost); } | |
| //! | |
| //! // Important as we may have already found a better way | |
| //! if cost > dist[position] { continue; } | |
| //! | |
| //! // For each node we can reach, see if we can find a way with | |
| //! // a lower cost going through this node | |
| //! for edge in &adj_list[position] { | |
| //! let next = State { cost: cost + edge.cost, position: edge.node }; | |
| //! | |
| //! // If so, add it to the frontier and continue | |
| //! if next.cost < dist[next.position] { | |
| //! heap.push(next); | |
| //! // Relaxation, we have now found a better way | |
| //! dist[next.position] = next.cost; | |
| //! } | |
| //! } | |
| //! } | |
| //! | |
| //! // Goal not reachable | |
| //! None | |
| //! } | |
| //! | |
| //! fn main() { | |
| //! // This is the directed graph we're going to use. | |
| //! // The node numbers correspond to the different states, | |
| //! // and the edge weights symbolize the cost of moving | |
| //! // from one node to another. | |
| //! // Note that the edges are one-way. | |
| //! // | |
| //! // 7 | |
| //! // +-----------------+ | |
| //! // | | | |
| //! // v 1 2 | 2 | |
| //! // 0 -----> 1 -----> 3 ---> 4 | |
| //! // | ^ ^ ^ | |
| //! // | | 1 | | | |
| //! // | | | 3 | 1 | |
| //! // +------> 2 -------+ | | |
| //! // 10 | | | |
| //! // +---------------+ | |
| //! // | |
| //! // The graph is represented as an adjacency list where each index, | |
| //! // corresponding to a node value, has a list of outgoing edges. | |
| //! // Chosen for its efficiency. | |
| //! let graph = vec![ | |
| //! // Node 0 | |
| //! vec![Edge { node: 2, cost: 10 }, | |
| //! Edge { node: 1, cost: 1 }], | |
| //! // Node 1 | |
| //! vec![Edge { node: 3, cost: 2 }], | |
| //! // Node 2 | |
| //! vec![Edge { node: 1, cost: 1 }, | |
| //! Edge { node: 3, cost: 3 }, | |
| //! Edge { node: 4, cost: 1 }], | |
| //! // Node 3 | |
| //! vec![Edge { node: 0, cost: 7 }, | |
| //! Edge { node: 4, cost: 2 }], | |
| //! // Node 4 | |
| //! vec![]]; | |
| //! | |
| //! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); | |
| //! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); | |
| //! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); | |
| //! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); | |
| //! assert_eq!(shortest_path(&graph, 4, 0), None); | |
| //! } | |
| //! ``` | |
| #![allow(missing_docs)] | |
| #![stable(feature = "rust1", since = "1.0.0")] | |
| use core::ops::{Deref, DerefMut}; | |
| use core::iter::{FromIterator, FusedIterator}; | |
| use core::mem::{swap, size_of, ManuallyDrop}; | |
| use core::ptr; | |
| use core::fmt; | |
| use slice; | |
| use vec::{self, Vec}; | |
| use super::SpecExtend; | |
| /// A priority queue implemented with a binary heap. | |
| /// | |
| /// This will be a max-heap. | |
| /// | |
| /// It is a logic error for an item to be modified in such a way that the | |
| /// item's ordering relative to any other item, as determined by the `Ord` | |
| /// trait, changes while it is in the heap. This is normally only possible | |
| /// through `Cell`, `RefCell`, global state, I/O, or unsafe code. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// | |
| /// // Type inference lets us omit an explicit type signature (which | |
| /// // would be `BinaryHeap<i32>` in this example). | |
| /// let mut heap = BinaryHeap::new(); | |
| /// | |
| /// // We can use peek to look at the next item in the heap. In this case, | |
| /// // there's no items in there yet so we get None. | |
| /// assert_eq!(heap.peek(), None); | |
| /// | |
| /// // Let's add some scores... | |
| /// heap.push(1); | |
| /// heap.push(5); | |
| /// heap.push(2); | |
| /// | |
| /// // Now peek shows the most important item in the heap. | |
| /// assert_eq!(heap.peek(), Some(&5)); | |
| /// | |
| /// // We can check the length of a heap. | |
| /// assert_eq!(heap.len(), 3); | |
| /// | |
| /// // We can iterate over the items in the heap, although they are returned in | |
| /// // a random order. | |
| /// for x in &heap { | |
| /// println!("{}", x); | |
| /// } | |
| /// | |
| /// // If we instead pop these scores, they should come back in order. | |
| /// assert_eq!(heap.pop(), Some(5)); | |
| /// assert_eq!(heap.pop(), Some(2)); | |
| /// assert_eq!(heap.pop(), Some(1)); | |
| /// assert_eq!(heap.pop(), None); | |
| /// | |
| /// // We can clear the heap of any remaining items. | |
| /// heap.clear(); | |
| /// | |
| /// // The heap should now be empty. | |
| /// assert!(heap.is_empty()) | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct BinaryHeap<T> { | |
| data: Vec<T>, | |
| } | |
| /// Structure wrapping a mutable reference to the greatest item on a | |
| /// `BinaryHeap`. | |
| /// | |
| /// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See | |
| /// its documentation for more. | |
| /// | |
| /// [`peek_mut`]: struct.BinaryHeap.html#method.peek_mut | |
| /// [`BinaryHeap`]: struct.BinaryHeap.html | |
| #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] | |
| pub struct PeekMut<'a, T: 'a + Ord> { | |
| heap: &'a mut BinaryHeap<T>, | |
| sift: bool, | |
| } | |
| #[stable(feature = "collection_debug", since = "1.17.0")] | |
| impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_tuple("PeekMut") | |
| .field(&self.heap.data[0]) | |
| .finish() | |
| } | |
| } | |
| #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] | |
| impl<'a, T: Ord> Drop for PeekMut<'a, T> { | |
| fn drop(&mut self) { | |
| if self.sift { | |
| self.heap.sift_down(0); | |
| } | |
| } | |
| } | |
| #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] | |
| impl<'a, T: Ord> Deref for PeekMut<'a, T> { | |
| type Target = T; | |
| fn deref(&self) -> &T { | |
| &self.heap.data[0] | |
| } | |
| } | |
| #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] | |
| impl<'a, T: Ord> DerefMut for PeekMut<'a, T> { | |
| fn deref_mut(&mut self) -> &mut T { | |
| &mut self.heap.data[0] | |
| } | |
| } | |
| impl<'a, T: Ord> PeekMut<'a, T> { | |
| /// Removes the peeked value from the heap and returns it. | |
| #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] | |
| pub fn pop(mut this: PeekMut<'a, T>) -> T { | |
| let value = this.heap.pop().unwrap(); | |
| this.sift = false; | |
| value | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Clone> Clone for BinaryHeap<T> { | |
| fn clone(&self) -> Self { | |
| BinaryHeap { data: self.data.clone() } | |
| } | |
| fn clone_from(&mut self, source: &Self) { | |
| self.data.clone_from(&source.data); | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Ord> Default for BinaryHeap<T> { | |
| /// Creates an empty `BinaryHeap<T>`. | |
| #[inline] | |
| fn default() -> BinaryHeap<T> { | |
| BinaryHeap::new() | |
| } | |
| } | |
| #[stable(feature = "binaryheap_debug", since = "1.4.0")] | |
| impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_list().entries(self.iter()).finish() | |
| } | |
| } | |
| impl<T: Ord> BinaryHeap<T> { | |
| /// Creates an empty `BinaryHeap` as a max-heap. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// heap.push(4); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn new() -> BinaryHeap<T> { | |
| BinaryHeap { data: vec![] } | |
| } | |
| /// Creates an empty `BinaryHeap` with a specific capacity. | |
| /// This preallocates enough memory for `capacity` elements, | |
| /// so that the `BinaryHeap` does not have to be reallocated | |
| /// until it contains at least that many values. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::with_capacity(10); | |
| /// heap.push(4); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn with_capacity(capacity: usize) -> BinaryHeap<T> { | |
| BinaryHeap { data: Vec::with_capacity(capacity) } | |
| } | |
| /// Returns an iterator visiting all values in the underlying vector, in | |
| /// arbitrary order. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); | |
| /// | |
| /// // Print 1, 2, 3, 4 in arbitrary order | |
| /// for x in heap.iter() { | |
| /// println!("{}", x); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn iter(&self) -> Iter<T> { | |
| Iter { iter: self.data.iter() } | |
| } | |
| /// Returns the greatest item in the binary heap, or `None` if it is empty. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// assert_eq!(heap.peek(), None); | |
| /// | |
| /// heap.push(1); | |
| /// heap.push(5); | |
| /// heap.push(2); | |
| /// assert_eq!(heap.peek(), Some(&5)); | |
| /// | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn peek(&self) -> Option<&T> { | |
| self.data.get(0) | |
| } | |
| /// Returns a mutable reference to the greatest item in the binary heap, or | |
| /// `None` if it is empty. | |
| /// | |
| /// Note: If the `PeekMut` value is leaked, the heap may be in an | |
| /// inconsistent state. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// assert!(heap.peek_mut().is_none()); | |
| /// | |
| /// heap.push(1); | |
| /// heap.push(5); | |
| /// heap.push(2); | |
| /// { | |
| /// let mut val = heap.peek_mut().unwrap(); | |
| /// *val = 0; | |
| /// } | |
| /// assert_eq!(heap.peek(), Some(&2)); | |
| /// ``` | |
| #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] | |
| pub fn peek_mut(&mut self) -> Option<PeekMut<T>> { | |
| if self.is_empty() { | |
| None | |
| } else { | |
| Some(PeekMut { | |
| heap: self, | |
| sift: true, | |
| }) | |
| } | |
| } | |
| /// Returns the number of elements the binary heap can hold without reallocating. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::with_capacity(100); | |
| /// assert!(heap.capacity() >= 100); | |
| /// heap.push(4); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn capacity(&self) -> usize { | |
| self.data.capacity() | |
| } | |
| /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the | |
| /// given `BinaryHeap`. Does nothing if the capacity is already sufficient. | |
| /// | |
| /// Note that the allocator may give the collection more space than it requests. Therefore | |
| /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future | |
| /// insertions are expected. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the new capacity overflows `usize`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// heap.reserve_exact(100); | |
| /// assert!(heap.capacity() >= 100); | |
| /// heap.push(4); | |
| /// ``` | |
| /// | |
| /// [`reserve`]: #method.reserve | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn reserve_exact(&mut self, additional: usize) { | |
| self.data.reserve_exact(additional); | |
| } | |
| /// Reserves capacity for at least `additional` more elements to be inserted in the | |
| /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the new capacity overflows `usize`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// heap.reserve(100); | |
| /// assert!(heap.capacity() >= 100); | |
| /// heap.push(4); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn reserve(&mut self, additional: usize) { | |
| self.data.reserve(additional); | |
| } | |
| /// Discards as much additional capacity as possible. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); | |
| /// | |
| /// assert!(heap.capacity() >= 100); | |
| /// heap.shrink_to_fit(); | |
| /// assert!(heap.capacity() == 0); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn shrink_to_fit(&mut self) { | |
| self.data.shrink_to_fit(); | |
| } | |
| /// Discards capacity with a lower bound. | |
| /// | |
| /// The capacity will remain at least as large as both the length | |
| /// and the supplied value. | |
| /// | |
| /// Panics if the current capacity is smaller than the supplied | |
| /// minimum capacity. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(shrink_to)] | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); | |
| /// | |
| /// assert!(heap.capacity() >= 100); | |
| /// heap.shrink_to(10); | |
| /// assert!(heap.capacity() >= 10); | |
| /// ``` | |
| #[inline] | |
| #[unstable(feature = "shrink_to", reason = "new API", issue="0")] | |
| pub fn shrink_to(&mut self, min_capacity: usize) { | |
| self.data.shrink_to(min_capacity) | |
| } | |
| /// Removes the greatest item from the binary heap and returns it, or `None` if it | |
| /// is empty. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::from(vec![1, 3]); | |
| /// | |
| /// assert_eq!(heap.pop(), Some(3)); | |
| /// assert_eq!(heap.pop(), Some(1)); | |
| /// assert_eq!(heap.pop(), None); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn pop(&mut self) -> Option<T> { | |
| self.data.pop().map(|mut item| { | |
| if !self.is_empty() { | |
| swap(&mut item, &mut self.data[0]); | |
| self.sift_down_to_bottom(0); | |
| } | |
| item | |
| }) | |
| } | |
| /// Pushes an item onto the binary heap. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// heap.push(3); | |
| /// heap.push(5); | |
| /// heap.push(1); | |
| /// | |
| /// assert_eq!(heap.len(), 3); | |
| /// assert_eq!(heap.peek(), Some(&5)); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn push(&mut self, item: T) { | |
| let old_len = self.len(); | |
| self.data.push(item); | |
| self.sift_up(0, old_len); | |
| } | |
| /// Consumes the `BinaryHeap` and returns the underlying vector | |
| /// in arbitrary order. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); | |
| /// let vec = heap.into_vec(); | |
| /// | |
| /// // Will print in some order | |
| /// for x in vec { | |
| /// println!("{}", x); | |
| /// } | |
| /// ``` | |
| #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] | |
| pub fn into_vec(self) -> Vec<T> { | |
| self.into() | |
| } | |
| /// Consumes the `BinaryHeap` and returns a vector in sorted | |
| /// (ascending) order. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// | |
| /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); | |
| /// heap.push(6); | |
| /// heap.push(3); | |
| /// | |
| /// let vec = heap.into_sorted_vec(); | |
| /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); | |
| /// ``` | |
| #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] | |
| pub fn into_sorted_vec(mut self) -> Vec<T> { | |
| let mut end = self.len(); | |
| while end > 1 { | |
| end -= 1; | |
| self.data.swap(0, end); | |
| self.sift_down_range(0, end); | |
| } | |
| self.into_vec() | |
| } | |
| // The implementations of sift_up and sift_down use unsafe blocks in | |
| // order to move an element out of the vector (leaving behind a | |
| // hole), shift along the others and move the removed element back into the | |
| // vector at the final location of the hole. | |
| // The `Hole` type is used to represent this, and make sure | |
| // the hole is filled back at the end of its scope, even on panic. | |
| // Using a hole reduces the constant factor compared to using swaps, | |
| // which involves twice as many moves. | |
| fn sift_up(&mut self, start: usize, pos: usize) -> usize { | |
| unsafe { | |
| // Take out the value at `pos` and create a hole. | |
| let mut hole = Hole::new(&mut self.data, pos); | |
| while hole.pos() > start { | |
| let parent = (hole.pos() - 1) / 2; | |
| if hole.element() <= hole.get(parent) { | |
| break; | |
| } | |
| hole.move_to(parent); | |
| } | |
| hole.pos() | |
| } | |
| } | |
| /// Take an element at `pos` and move it down the heap, | |
| /// while its children are larger. | |
| fn sift_down_range(&mut self, pos: usize, end: usize) { | |
| unsafe { | |
| let mut hole = Hole::new(&mut self.data, pos); | |
| let mut child = 2 * pos + 1; | |
| while child < end { | |
| let right = child + 1; | |
| // compare with the greater of the two children | |
| if right < end && !(hole.get(child) > hole.get(right)) { | |
| child = right; | |
| } | |
| // if we are already in order, stop. | |
| if hole.element() >= hole.get(child) { | |
| break; | |
| } | |
| hole.move_to(child); | |
| child = 2 * hole.pos() + 1; | |
| } | |
| } | |
| } | |
| fn sift_down(&mut self, pos: usize) { | |
| let len = self.len(); | |
| self.sift_down_range(pos, len); | |
| } | |
| /// Take an element at `pos` and move it all the way down the heap, | |
| /// then sift it up to its position. | |
| /// | |
| /// Note: This is faster when the element is known to be large / should | |
| /// be closer to the bottom. | |
| fn sift_down_to_bottom(&mut self, mut pos: usize) { | |
| let end = self.len(); | |
| let start = pos; | |
| unsafe { | |
| let mut hole = Hole::new(&mut self.data, pos); | |
| let mut child = 2 * pos + 1; | |
| while child < end { | |
| let right = child + 1; | |
| // compare with the greater of the two children | |
| if right < end && !(hole.get(child) > hole.get(right)) { | |
| child = right; | |
| } | |
| hole.move_to(child); | |
| child = 2 * hole.pos() + 1; | |
| } | |
| pos = hole.pos; | |
| } | |
| self.sift_up(start, pos); | |
| } | |
| /// Returns the length of the binary heap. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let heap = BinaryHeap::from(vec![1, 3]); | |
| /// | |
| /// assert_eq!(heap.len(), 2); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn len(&self) -> usize { | |
| self.data.len() | |
| } | |
| /// Checks if the binary heap is empty. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::new(); | |
| /// | |
| /// assert!(heap.is_empty()); | |
| /// | |
| /// heap.push(3); | |
| /// heap.push(5); | |
| /// heap.push(1); | |
| /// | |
| /// assert!(!heap.is_empty()); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn is_empty(&self) -> bool { | |
| self.len() == 0 | |
| } | |
| /// Clears the binary heap, returning an iterator over the removed elements. | |
| /// | |
| /// The elements are removed in arbitrary order. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::from(vec![1, 3]); | |
| /// | |
| /// assert!(!heap.is_empty()); | |
| /// | |
| /// for x in heap.drain() { | |
| /// println!("{}", x); | |
| /// } | |
| /// | |
| /// assert!(heap.is_empty()); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| pub fn drain(&mut self) -> Drain<T> { | |
| Drain { iter: self.data.drain(..) } | |
| } | |
| /// Drops all items from the binary heap. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let mut heap = BinaryHeap::from(vec![1, 3]); | |
| /// | |
| /// assert!(!heap.is_empty()); | |
| /// | |
| /// heap.clear(); | |
| /// | |
| /// assert!(heap.is_empty()); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn clear(&mut self) { | |
| self.drain(); | |
| } | |
| fn rebuild(&mut self) { | |
| let mut n = self.len() / 2; | |
| while n > 0 { | |
| n -= 1; | |
| self.sift_down(n); | |
| } | |
| } | |
| /// Moves all the elements of `other` into `self`, leaving `other` empty. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// | |
| /// let v = vec![-10, 1, 2, 3, 3]; | |
| /// let mut a = BinaryHeap::from(v); | |
| /// | |
| /// let v = vec![-20, 5, 43]; | |
| /// let mut b = BinaryHeap::from(v); | |
| /// | |
| /// a.append(&mut b); | |
| /// | |
| /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); | |
| /// assert!(b.is_empty()); | |
| /// ``` | |
| #[stable(feature = "binary_heap_append", since = "1.11.0")] | |
| pub fn append(&mut self, other: &mut Self) { | |
| if self.len() < other.len() { | |
| swap(self, other); | |
| } | |
| if other.is_empty() { | |
| return; | |
| } | |
| #[inline(always)] | |
| fn log2_fast(x: usize) -> usize { | |
| 8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1 | |
| } | |
| // `rebuild` takes O(len1 + len2) operations | |
| // and about 2 * (len1 + len2) comparisons in the worst case | |
| // while `extend` takes O(len2 * log_2(len1)) operations | |
| // and about 1 * len2 * log_2(len1) comparisons in the worst case, | |
| // assuming len1 >= len2. | |
| #[inline] | |
| fn better_to_rebuild(len1: usize, len2: usize) -> bool { | |
| 2 * (len1 + len2) < len2 * log2_fast(len1) | |
| } | |
| if better_to_rebuild(self.len(), other.len()) { | |
| self.data.append(&mut other.data); | |
| self.rebuild(); | |
| } else { | |
| self.extend(other.drain()); | |
| } | |
| } | |
| } | |
| /// Hole represents a hole in a slice i.e. an index without valid value | |
| /// (because it was moved from or duplicated). | |
| /// In drop, `Hole` will restore the slice by filling the hole | |
| /// position with the value that was originally removed. | |
| struct Hole<'a, T: 'a> { | |
| data: &'a mut [T], | |
| elt: ManuallyDrop<T>, | |
| pos: usize, | |
| } | |
| impl<'a, T> Hole<'a, T> { | |
| /// Create a new Hole at index `pos`. | |
| /// | |
| /// Unsafe because pos must be within the data slice. | |
| #[inline] | |
| unsafe fn new(data: &'a mut [T], pos: usize) -> Self { | |
| debug_assert!(pos < data.len()); | |
| let elt = ptr::read(&data[pos]); | |
| Hole { | |
| data, | |
| elt: ManuallyDrop::new(elt), | |
| pos, | |
| } | |
| } | |
| #[inline] | |
| fn pos(&self) -> usize { | |
| self.pos | |
| } | |
| /// Returns a reference to the element removed. | |
| #[inline] | |
| fn element(&self) -> &T { | |
| &self.elt | |
| } | |
| /// Returns a reference to the element at `index`. | |
| /// | |
| /// Unsafe because index must be within the data slice and not equal to pos. | |
| #[inline] | |
| unsafe fn get(&self, index: usize) -> &T { | |
| debug_assert!(index != self.pos); | |
| debug_assert!(index < self.data.len()); | |
| self.data.get_unchecked(index) | |
| } | |
| /// Move hole to new location | |
| /// | |
| /// Unsafe because index must be within the data slice and not equal to pos. | |
| #[inline] | |
| unsafe fn move_to(&mut self, index: usize) { | |
| debug_assert!(index != self.pos); | |
| debug_assert!(index < self.data.len()); | |
| let index_ptr: *const _ = self.data.get_unchecked(index); | |
| let hole_ptr = self.data.get_unchecked_mut(self.pos); | |
| ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); | |
| self.pos = index; | |
| } | |
| } | |
| impl<'a, T> Drop for Hole<'a, T> { | |
| #[inline] | |
| fn drop(&mut self) { | |
| // fill the hole again | |
| unsafe { | |
| let pos = self.pos; | |
| ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1); | |
| } | |
| } | |
| } | |
| /// An iterator over the elements of a `BinaryHeap`. | |
| /// | |
| /// This `struct` is created by the [`iter`] method on [`BinaryHeap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`iter`]: struct.BinaryHeap.html#method.iter | |
| /// [`BinaryHeap`]: struct.BinaryHeap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct Iter<'a, T: 'a> { | |
| iter: slice::Iter<'a, T>, | |
| } | |
| #[stable(feature = "collection_debug", since = "1.17.0")] | |
| impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_tuple("Iter") | |
| .field(&self.iter.as_slice()) | |
| .finish() | |
| } | |
| } | |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> Clone for Iter<'a, T> { | |
| fn clone(&self) -> Iter<'a, T> { | |
| Iter { iter: self.iter.clone() } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> Iterator for Iter<'a, T> { | |
| type Item = &'a T; | |
| #[inline] | |
| fn next(&mut self) -> Option<&'a T> { | |
| self.iter.next() | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> DoubleEndedIterator for Iter<'a, T> { | |
| #[inline] | |
| fn next_back(&mut self) -> Option<&'a T> { | |
| self.iter.next_back() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> ExactSizeIterator for Iter<'a, T> { | |
| fn is_empty(&self) -> bool { | |
| self.iter.is_empty() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, T> FusedIterator for Iter<'a, T> {} | |
| /// An owning iterator over the elements of a `BinaryHeap`. | |
| /// | |
| /// This `struct` is created by the [`into_iter`] method on [`BinaryHeap`][`BinaryHeap`] | |
| /// (provided by the `IntoIterator` trait). See its documentation for more. | |
| /// | |
| /// [`into_iter`]: struct.BinaryHeap.html#method.into_iter | |
| /// [`BinaryHeap`]: struct.BinaryHeap.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[derive(Clone)] | |
| pub struct IntoIter<T> { | |
| iter: vec::IntoIter<T>, | |
| } | |
| #[stable(feature = "collection_debug", since = "1.17.0")] | |
| impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { | |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | |
| f.debug_tuple("IntoIter") | |
| .field(&self.iter.as_slice()) | |
| .finish() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> Iterator for IntoIter<T> { | |
| type Item = T; | |
| #[inline] | |
| fn next(&mut self) -> Option<T> { | |
| self.iter.next() | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> DoubleEndedIterator for IntoIter<T> { | |
| #[inline] | |
| fn next_back(&mut self) -> Option<T> { | |
| self.iter.next_back() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> ExactSizeIterator for IntoIter<T> { | |
| fn is_empty(&self) -> bool { | |
| self.iter.is_empty() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<T> FusedIterator for IntoIter<T> {} | |
| /// A draining iterator over the elements of a `BinaryHeap`. | |
| /// | |
| /// This `struct` is created by the [`drain`] method on [`BinaryHeap`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`drain`]: struct.BinaryHeap.html#method.drain | |
| /// [`BinaryHeap`]: struct.BinaryHeap.html | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| #[derive(Debug)] | |
| pub struct Drain<'a, T: 'a> { | |
| iter: vec::Drain<'a, T>, | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<'a, T: 'a> Iterator for Drain<'a, T> { | |
| type Item = T; | |
| #[inline] | |
| fn next(&mut self) -> Option<T> { | |
| self.iter.next() | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { | |
| #[inline] | |
| fn next_back(&mut self) -> Option<T> { | |
| self.iter.next_back() | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> { | |
| fn is_empty(&self) -> bool { | |
| self.iter.is_empty() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<'a, T: 'a> FusedIterator for Drain<'a, T> {} | |
| #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] | |
| impl<T: Ord> From<Vec<T>> for BinaryHeap<T> { | |
| fn from(vec: Vec<T>) -> BinaryHeap<T> { | |
| let mut heap = BinaryHeap { data: vec }; | |
| heap.rebuild(); | |
| heap | |
| } | |
| } | |
| #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] | |
| impl<T> From<BinaryHeap<T>> for Vec<T> { | |
| fn from(heap: BinaryHeap<T>) -> Vec<T> { | |
| heap.data | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Ord> FromIterator<T> for BinaryHeap<T> { | |
| fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> { | |
| BinaryHeap::from(iter.into_iter().collect::<Vec<_>>()) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Ord> IntoIterator for BinaryHeap<T> { | |
| type Item = T; | |
| type IntoIter = IntoIter<T>; | |
| /// Creates a consuming iterator, that is, one that moves each value out of | |
| /// the binary heap in arbitrary order. The binary heap cannot be used | |
| /// after calling this. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Basic usage: | |
| /// | |
| /// ``` | |
| /// use std::collections::BinaryHeap; | |
| /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); | |
| /// | |
| /// // Print 1, 2, 3, 4 in arbitrary order | |
| /// for x in heap.into_iter() { | |
| /// // x has type i32, not &i32 | |
| /// println!("{}", x); | |
| /// } | |
| /// ``` | |
| fn into_iter(self) -> IntoIter<T> { | |
| IntoIter { iter: self.data.into_iter() } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> IntoIterator for &'a BinaryHeap<T> | |
| where T: Ord | |
| { | |
| type Item = &'a T; | |
| type IntoIter = Iter<'a, T>; | |
| fn into_iter(self) -> Iter<'a, T> { | |
| self.iter() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Ord> Extend<T> for BinaryHeap<T> { | |
| #[inline] | |
| fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { | |
| <Self as SpecExtend<I>>::spec_extend(self, iter); | |
| } | |
| } | |
| impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> { | |
| default fn spec_extend(&mut self, iter: I) { | |
| self.extend_desugared(iter.into_iter()); | |
| } | |
| } | |
| impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> { | |
| fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) { | |
| self.append(other); | |
| } | |
| } | |
| impl<T: Ord> BinaryHeap<T> { | |
| fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) { | |
| let iterator = iter.into_iter(); | |
| let (lower, _) = iterator.size_hint(); | |
| self.reserve(lower); | |
| for elem in iterator { | |
| self.push(elem); | |
| } | |
| } | |
| } | |
| #[stable(feature = "extend_ref", since = "1.2.0")] | |
| impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> { | |
| fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { | |
| self.extend(iter.into_iter().cloned()); | |
| } | |
| } |