Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| // Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT | |
| // file at the top-level directory of this distribution and at | |
| // http://rust-lang.org/COPYRIGHT. | |
| // | |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | |
| // option. This file may not be copied, modified, or distributed | |
| // except according to those terms. | |
| use alloc::heap::{Heap, Alloc, Layout}; | |
| use cmp; | |
| use hash::{BuildHasher, Hash, Hasher}; | |
| use marker; | |
| use mem::{align_of, size_of, needs_drop}; | |
| use mem; | |
| use ops::{Deref, DerefMut}; | |
| use ptr::{self, Unique, NonNull}; | |
| use alloc::allocator::CollectionAllocErr; | |
| use self::BucketState::*; | |
| /// Integer type used for stored hash values. | |
| /// | |
| /// No more than bit_width(usize) bits are needed to select a bucket. | |
| /// | |
| /// The most significant bit is ours to use for tagging `SafeHash`. | |
| /// | |
| /// (Even if we could have usize::MAX bytes allocated for buckets, | |
| /// each bucket stores at least a `HashUint`, so there can be no more than | |
| /// usize::MAX / size_of(usize) buckets.) | |
| type HashUint = usize; | |
| const EMPTY_BUCKET: HashUint = 0; | |
| const EMPTY: usize = 1; | |
| /// Special `Unique<HashUint>` that uses the lower bit of the pointer | |
| /// to expose a boolean tag. | |
| /// Note: when the pointer is initialized to EMPTY `.ptr()` will return | |
| /// null and the tag functions shouldn't be used. | |
| struct TaggedHashUintPtr(Unique<HashUint>); | |
| impl TaggedHashUintPtr { | |
| #[inline] | |
| unsafe fn new(ptr: *mut HashUint) -> Self { | |
| debug_assert!(ptr as usize & 1 == 0 || ptr as usize == EMPTY as usize); | |
| TaggedHashUintPtr(Unique::new_unchecked(ptr)) | |
| } | |
| #[inline] | |
| fn set_tag(&mut self, value: bool) { | |
| let mut usize_ptr = self.0.as_ptr() as usize; | |
| unsafe { | |
| if value { | |
| usize_ptr |= 1; | |
| } else { | |
| usize_ptr &= !1; | |
| } | |
| self.0 = Unique::new_unchecked(usize_ptr as *mut HashUint) | |
| } | |
| } | |
| #[inline] | |
| fn tag(&self) -> bool { | |
| (self.0.as_ptr() as usize) & 1 == 1 | |
| } | |
| #[inline] | |
| fn ptr(&self) -> *mut HashUint { | |
| (self.0.as_ptr() as usize & !1) as *mut HashUint | |
| } | |
| } | |
| /// The raw hashtable, providing safe-ish access to the unzipped and highly | |
| /// optimized arrays of hashes, and key-value pairs. | |
| /// | |
| /// This design is a lot faster than the naive | |
| /// `Vec<Option<(u64, K, V)>>`, because we don't pay for the overhead of an | |
| /// option on every element, and we get a generally more cache-aware design. | |
| /// | |
| /// Essential invariants of this structure: | |
| /// | |
| /// - if t.hashes[i] == EMPTY_BUCKET, then `Bucket::at_index(&t, i).raw` | |
| /// points to 'undefined' contents. Don't read from it. This invariant is | |
| /// enforced outside this module with the `EmptyBucket`, `FullBucket`, | |
| /// and `SafeHash` types. | |
| /// | |
| /// - An `EmptyBucket` is only constructed at an index with | |
| /// a hash of EMPTY_BUCKET. | |
| /// | |
| /// - A `FullBucket` is only constructed at an index with a | |
| /// non-EMPTY_BUCKET hash. | |
| /// | |
| /// - A `SafeHash` is only constructed for non-`EMPTY_BUCKET` hash. We get | |
| /// around hashes of zero by changing them to 0x8000_0000_0000_0000, | |
| /// which will likely map to the same bucket, while not being confused | |
| /// with "empty". | |
| /// | |
| /// - Both "arrays represented by pointers" are the same length: | |
| /// `capacity`. This is set at creation and never changes. The arrays | |
| /// are unzipped and are more cache aware (scanning through 8 hashes | |
| /// brings in at most 2 cache lines, since they're all right beside each | |
| /// other). This layout may waste space in padding such as in a map from | |
| /// u64 to u8, but is a more cache conscious layout as the key-value pairs | |
| /// are only very shortly probed and the desired value will be in the same | |
| /// or next cache line. | |
| /// | |
| /// You can kind of think of this module/data structure as a safe wrapper | |
| /// around just the "table" part of the hashtable. It enforces some | |
| /// invariants at the type level and employs some performance trickery, | |
| /// but in general is just a tricked out `Vec<Option<(u64, K, V)>>`. | |
| /// | |
| /// The hashtable also exposes a special boolean tag. The tag defaults to false | |
| /// when the RawTable is created and is accessible with the `tag` and `set_tag` | |
| /// functions. | |
| pub struct RawTable<K, V> { | |
| capacity_mask: usize, | |
| size: usize, | |
| hashes: TaggedHashUintPtr, | |
| // Because K/V do not appear directly in any of the types in the struct, | |
| // inform rustc that in fact instances of K and V are reachable from here. | |
| marker: marker::PhantomData<(K, V)>, | |
| } | |
| // An unsafe view of a RawTable bucket | |
| // Valid indexes are within [0..table_capacity) | |
| pub struct RawBucket<K, V> { | |
| hash_start: *mut HashUint, | |
| // We use *const to ensure covariance with respect to K and V | |
| pair_start: *const (K, V), | |
| idx: usize, | |
| _marker: marker::PhantomData<(K, V)>, | |
| } | |
| impl<K, V> Copy for RawBucket<K, V> {} | |
| impl<K, V> Clone for RawBucket<K, V> { | |
| fn clone(&self) -> RawBucket<K, V> { | |
| *self | |
| } | |
| } | |
| pub struct Bucket<K, V, M> { | |
| raw: RawBucket<K, V>, | |
| table: M, | |
| } | |
| impl<K, V, M: Copy> Copy for Bucket<K, V, M> {} | |
| impl<K, V, M: Copy> Clone for Bucket<K, V, M> { | |
| fn clone(&self) -> Bucket<K, V, M> { | |
| *self | |
| } | |
| } | |
| pub struct EmptyBucket<K, V, M> { | |
| raw: RawBucket<K, V>, | |
| table: M, | |
| } | |
| pub struct FullBucket<K, V, M> { | |
| raw: RawBucket<K, V>, | |
| table: M, | |
| } | |
| pub type FullBucketMut<'table, K, V> = FullBucket<K, V, &'table mut RawTable<K, V>>; | |
| pub enum BucketState<K, V, M> { | |
| Empty(EmptyBucket<K, V, M>), | |
| Full(FullBucket<K, V, M>), | |
| } | |
| // A GapThenFull encapsulates the state of two consecutive buckets at once. | |
| // The first bucket, called the gap, is known to be empty. | |
| // The second bucket is full. | |
| pub struct GapThenFull<K, V, M> { | |
| gap: EmptyBucket<K, V, ()>, | |
| full: FullBucket<K, V, M>, | |
| } | |
| /// A hash that is not zero, since we use a hash of zero to represent empty | |
| /// buckets. | |
| #[derive(PartialEq, Copy, Clone)] | |
| pub struct SafeHash { | |
| hash: HashUint, | |
| } | |
| impl SafeHash { | |
| /// Peek at the hash value, which is guaranteed to be non-zero. | |
| #[inline(always)] | |
| pub fn inspect(&self) -> HashUint { | |
| self.hash | |
| } | |
| #[inline(always)] | |
| pub fn new(hash: u64) -> Self { | |
| // We need to avoid 0 in order to prevent collisions with | |
| // EMPTY_HASH. We can maintain our precious uniform distribution | |
| // of initial indexes by unconditionally setting the MSB, | |
| // effectively reducing the hashes by one bit. | |
| // | |
| // Truncate hash to fit in `HashUint`. | |
| let hash_bits = size_of::<HashUint>() * 8; | |
| SafeHash { hash: (1 << (hash_bits - 1)) | (hash as HashUint) } | |
| } | |
| } | |
| /// We need to remove hashes of 0. That's reserved for empty buckets. | |
| /// This function wraps up `hash_keyed` to be the only way outside this | |
| /// module to generate a SafeHash. | |
| pub fn make_hash<T: ?Sized, S>(hash_state: &S, t: &T) -> SafeHash | |
| where T: Hash, | |
| S: BuildHasher | |
| { | |
| let mut state = hash_state.build_hasher(); | |
| t.hash(&mut state); | |
| SafeHash::new(state.finish()) | |
| } | |
| // `replace` casts a `*HashUint` to a `*SafeHash`. Since we statically | |
| // ensure that a `FullBucket` points to an index with a non-zero hash, | |
| // and a `SafeHash` is just a `HashUint` with a different name, this is | |
| // safe. | |
| // | |
| // This test ensures that a `SafeHash` really IS the same size as a | |
| // `HashUint`. If you need to change the size of `SafeHash` (and | |
| // consequently made this test fail), `replace` needs to be | |
| // modified to no longer assume this. | |
| #[test] | |
| fn can_alias_safehash_as_hash() { | |
| assert_eq!(size_of::<SafeHash>(), size_of::<HashUint>()) | |
| } | |
| // RawBucket methods are unsafe as it's possible to | |
| // make a RawBucket point to invalid memory using safe code. | |
| impl<K, V> RawBucket<K, V> { | |
| unsafe fn hash(&self) -> *mut HashUint { | |
| self.hash_start.offset(self.idx as isize) | |
| } | |
| unsafe fn pair(&self) -> *mut (K, V) { | |
| self.pair_start.offset(self.idx as isize) as *mut (K, V) | |
| } | |
| unsafe fn hash_pair(&self) -> (*mut HashUint, *mut (K, V)) { | |
| (self.hash(), self.pair()) | |
| } | |
| } | |
| // Buckets hold references to the table. | |
| impl<K, V, M> FullBucket<K, V, M> { | |
| /// Borrow a reference to the table. | |
| pub fn table(&self) -> &M { | |
| &self.table | |
| } | |
| /// Borrow a mutable reference to the table. | |
| pub fn table_mut(&mut self) -> &mut M { | |
| &mut self.table | |
| } | |
| /// Move out the reference to the table. | |
| pub fn into_table(self) -> M { | |
| self.table | |
| } | |
| /// Get the raw index. | |
| pub fn index(&self) -> usize { | |
| self.raw.idx | |
| } | |
| /// Get the raw bucket. | |
| pub fn raw(&self) -> RawBucket<K, V> { | |
| self.raw | |
| } | |
| } | |
| impl<K, V, M> EmptyBucket<K, V, M> { | |
| /// Borrow a reference to the table. | |
| pub fn table(&self) -> &M { | |
| &self.table | |
| } | |
| /// Borrow a mutable reference to the table. | |
| pub fn table_mut(&mut self) -> &mut M { | |
| &mut self.table | |
| } | |
| } | |
| impl<K, V, M> Bucket<K, V, M> { | |
| /// Get the raw index. | |
| pub fn index(&self) -> usize { | |
| self.raw.idx | |
| } | |
| /// get the table. | |
| pub fn into_table(self) -> M { | |
| self.table | |
| } | |
| } | |
| impl<K, V, M> Deref for FullBucket<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>> | |
| { | |
| type Target = RawTable<K, V>; | |
| fn deref(&self) -> &RawTable<K, V> { | |
| &self.table | |
| } | |
| } | |
| /// `Put` is implemented for types which provide access to a table and cannot be invalidated | |
| /// by filling a bucket. A similar implementation for `Take` is possible. | |
| pub trait Put<K, V> { | |
| unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V>; | |
| } | |
| impl<'t, K, V> Put<K, V> for &'t mut RawTable<K, V> { | |
| unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> { | |
| *self | |
| } | |
| } | |
| impl<K, V, M> Put<K, V> for Bucket<K, V, M> | |
| where M: Put<K, V> | |
| { | |
| unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> { | |
| self.table.borrow_table_mut() | |
| } | |
| } | |
| impl<K, V, M> Put<K, V> for FullBucket<K, V, M> | |
| where M: Put<K, V> | |
| { | |
| unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> { | |
| self.table.borrow_table_mut() | |
| } | |
| } | |
| impl<K, V, M: Deref<Target = RawTable<K, V>>> Bucket<K, V, M> { | |
| pub fn new(table: M, hash: SafeHash) -> Bucket<K, V, M> { | |
| Bucket::at_index(table, hash.inspect() as usize) | |
| } | |
| pub fn new_from(r: RawBucket<K, V>, t: M) | |
| -> Bucket<K, V, M> | |
| { | |
| Bucket { | |
| raw: r, | |
| table: t, | |
| } | |
| } | |
| pub fn at_index(table: M, ib_index: usize) -> Bucket<K, V, M> { | |
| // if capacity is 0, then the RawBucket will be populated with bogus pointers. | |
| // This is an uncommon case though, so avoid it in release builds. | |
| debug_assert!(table.capacity() > 0, | |
| "Table should have capacity at this point"); | |
| let ib_index = ib_index & table.capacity_mask; | |
| Bucket { | |
| raw: table.raw_bucket_at(ib_index), | |
| table, | |
| } | |
| } | |
| pub fn first(table: M) -> Bucket<K, V, M> { | |
| Bucket { | |
| raw: table.raw_bucket_at(0), | |
| table, | |
| } | |
| } | |
| // "So a few of the first shall be last: for many be called, | |
| // but few chosen." | |
| // | |
| // We'll most likely encounter a few buckets at the beginning that | |
| // have their initial buckets near the end of the table. They were | |
| // placed at the beginning as the probe wrapped around the table | |
| // during insertion. We must skip forward to a bucket that won't | |
| // get reinserted too early and won't unfairly steal others spot. | |
| // This eliminates the need for robin hood. | |
| pub fn head_bucket(table: M) -> Bucket<K, V, M> { | |
| let mut bucket = Bucket::first(table); | |
| loop { | |
| bucket = match bucket.peek() { | |
| Full(full) => { | |
| if full.displacement() == 0 { | |
| // This bucket occupies its ideal spot. | |
| // It indicates the start of another "cluster". | |
| bucket = full.into_bucket(); | |
| break; | |
| } | |
| // Leaving this bucket in the last cluster for later. | |
| full.into_bucket() | |
| } | |
| Empty(b) => { | |
| // Encountered a hole between clusters. | |
| b.into_bucket() | |
| } | |
| }; | |
| bucket.next(); | |
| } | |
| bucket | |
| } | |
| /// Reads a bucket at a given index, returning an enum indicating whether | |
| /// it's initialized or not. You need to match on this enum to get | |
| /// the appropriate types to call most of the other functions in | |
| /// this module. | |
| pub fn peek(self) -> BucketState<K, V, M> { | |
| match unsafe { *self.raw.hash() } { | |
| EMPTY_BUCKET => { | |
| Empty(EmptyBucket { | |
| raw: self.raw, | |
| table: self.table, | |
| }) | |
| } | |
| _ => { | |
| Full(FullBucket { | |
| raw: self.raw, | |
| table: self.table, | |
| }) | |
| } | |
| } | |
| } | |
| /// Modifies the bucket in place to make it point to the next slot. | |
| pub fn next(&mut self) { | |
| self.raw.idx = self.raw.idx.wrapping_add(1) & self.table.capacity_mask; | |
| } | |
| /// Modifies the bucket in place to make it point to the previous slot. | |
| pub fn prev(&mut self) { | |
| self.raw.idx = self.raw.idx.wrapping_sub(1) & self.table.capacity_mask; | |
| } | |
| } | |
| impl<K, V, M: Deref<Target = RawTable<K, V>>> EmptyBucket<K, V, M> { | |
| #[inline] | |
| pub fn next(self) -> Bucket<K, V, M> { | |
| let mut bucket = self.into_bucket(); | |
| bucket.next(); | |
| bucket | |
| } | |
| #[inline] | |
| pub fn into_bucket(self) -> Bucket<K, V, M> { | |
| Bucket { | |
| raw: self.raw, | |
| table: self.table, | |
| } | |
| } | |
| pub fn gap_peek(self) -> Result<GapThenFull<K, V, M>, Bucket<K, V, M>> { | |
| let gap = EmptyBucket { | |
| raw: self.raw, | |
| table: (), | |
| }; | |
| match self.next().peek() { | |
| Full(bucket) => { | |
| Ok(GapThenFull { | |
| gap, | |
| full: bucket, | |
| }) | |
| } | |
| Empty(e) => Err(e.into_bucket()), | |
| } | |
| } | |
| } | |
| impl<K, V, M> EmptyBucket<K, V, M> | |
| where M: Put<K, V> | |
| { | |
| /// Puts given key and value pair, along with the key's hash, | |
| /// into this bucket in the hashtable. Note how `self` is 'moved' into | |
| /// this function, because this slot will no longer be empty when | |
| /// we return! A `FullBucket` is returned for later use, pointing to | |
| /// the newly-filled slot in the hashtable. | |
| /// | |
| /// Use `make_hash` to construct a `SafeHash` to pass to this function. | |
| pub fn put(mut self, hash: SafeHash, key: K, value: V) -> FullBucket<K, V, M> { | |
| unsafe { | |
| *self.raw.hash() = hash.inspect(); | |
| ptr::write(self.raw.pair(), (key, value)); | |
| self.table.borrow_table_mut().size += 1; | |
| } | |
| FullBucket { | |
| raw: self.raw, | |
| table: self.table, | |
| } | |
| } | |
| /// Puts given key, remain value uninitialized. | |
| /// It is only used for inplacement insertion. | |
| pub unsafe fn put_key(mut self, hash: SafeHash, key: K) -> FullBucket<K, V, M> { | |
| *self.raw.hash() = hash.inspect(); | |
| let pair_ptr = self.raw.pair(); | |
| ptr::write(&mut (*pair_ptr).0, key); | |
| self.table.borrow_table_mut().size += 1; | |
| FullBucket { | |
| raw: self.raw, | |
| table: self.table, | |
| } | |
| } | |
| } | |
| impl<K, V, M: Deref<Target = RawTable<K, V>>> FullBucket<K, V, M> { | |
| #[inline] | |
| pub fn next(self) -> Bucket<K, V, M> { | |
| let mut bucket = self.into_bucket(); | |
| bucket.next(); | |
| bucket | |
| } | |
| #[inline] | |
| pub fn into_bucket(self) -> Bucket<K, V, M> { | |
| Bucket { | |
| raw: self.raw, | |
| table: self.table, | |
| } | |
| } | |
| /// Duplicates the current position. This can be useful for operations | |
| /// on two or more buckets. | |
| pub fn stash(self) -> FullBucket<K, V, Self> { | |
| FullBucket { | |
| raw: self.raw, | |
| table: self, | |
| } | |
| } | |
| /// Get the distance between this bucket and the 'ideal' location | |
| /// as determined by the key's hash stored in it. | |
| /// | |
| /// In the cited blog posts above, this is called the "distance to | |
| /// initial bucket", or DIB. Also known as "probe count". | |
| pub fn displacement(&self) -> usize { | |
| // Calculates the distance one has to travel when going from | |
| // `hash mod capacity` onwards to `idx mod capacity`, wrapping around | |
| // if the destination is not reached before the end of the table. | |
| (self.raw.idx.wrapping_sub(self.hash().inspect() as usize)) & self.table.capacity_mask | |
| } | |
| #[inline] | |
| pub fn hash(&self) -> SafeHash { | |
| unsafe { SafeHash { hash: *self.raw.hash() } } | |
| } | |
| /// Gets references to the key and value at a given index. | |
| pub fn read(&self) -> (&K, &V) { | |
| unsafe { | |
| let pair_ptr = self.raw.pair(); | |
| (&(*pair_ptr).0, &(*pair_ptr).1) | |
| } | |
| } | |
| } | |
| // We take a mutable reference to the table instead of accepting anything that | |
| // implements `DerefMut` to prevent fn `take` from being called on `stash`ed | |
| // buckets. | |
| impl<'t, K, V> FullBucket<K, V, &'t mut RawTable<K, V>> { | |
| /// Removes this bucket's key and value from the hashtable. | |
| /// | |
| /// This works similarly to `put`, building an `EmptyBucket` out of the | |
| /// taken bucket. | |
| pub fn take(self) -> (EmptyBucket<K, V, &'t mut RawTable<K, V>>, K, V) { | |
| self.table.size -= 1; | |
| unsafe { | |
| *self.raw.hash() = EMPTY_BUCKET; | |
| let (k, v) = ptr::read(self.raw.pair()); | |
| (EmptyBucket { | |
| raw: self.raw, | |
| table: self.table, | |
| }, | |
| k, | |
| v) | |
| } | |
| } | |
| /// Remove this bucket's `key` from the hashtable. | |
| /// Only used for inplacement insertion. | |
| /// NOTE: `Value` is uninitialized when this function is called, don't try to drop the `Value`. | |
| pub unsafe fn remove_key(&mut self) { | |
| self.table.size -= 1; | |
| *self.raw.hash() = EMPTY_BUCKET; | |
| let pair_ptr = self.raw.pair(); | |
| ptr::drop_in_place(&mut (*pair_ptr).0); // only drop key | |
| } | |
| } | |
| // This use of `Put` is misleading and restrictive, but safe and sufficient for our use cases | |
| // where `M` is a full bucket or table reference type with mutable access to the table. | |
| impl<K, V, M> FullBucket<K, V, M> | |
| where M: Put<K, V> | |
| { | |
| pub fn replace(&mut self, h: SafeHash, k: K, v: V) -> (SafeHash, K, V) { | |
| unsafe { | |
| let old_hash = ptr::replace(self.raw.hash() as *mut SafeHash, h); | |
| let (old_key, old_val) = ptr::replace(self.raw.pair(), (k, v)); | |
| (old_hash, old_key, old_val) | |
| } | |
| } | |
| } | |
| impl<K, V, M> FullBucket<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>> + DerefMut | |
| { | |
| /// Gets mutable references to the key and value at a given index. | |
| pub fn read_mut(&mut self) -> (&mut K, &mut V) { | |
| unsafe { | |
| let pair_ptr = self.raw.pair(); | |
| (&mut (*pair_ptr).0, &mut (*pair_ptr).1) | |
| } | |
| } | |
| } | |
| impl<'t, K, V, M> FullBucket<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>> + 't | |
| { | |
| /// Exchange a bucket state for immutable references into the table. | |
| /// Because the underlying reference to the table is also consumed, | |
| /// no further changes to the structure of the table are possible; | |
| /// in exchange for this, the returned references have a longer lifetime | |
| /// than the references returned by `read()`. | |
| pub fn into_refs(self) -> (&'t K, &'t V) { | |
| unsafe { | |
| let pair_ptr = self.raw.pair(); | |
| (&(*pair_ptr).0, &(*pair_ptr).1) | |
| } | |
| } | |
| } | |
| impl<'t, K, V, M> FullBucket<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>> + DerefMut + 't | |
| { | |
| /// This works similarly to `into_refs`, exchanging a bucket state | |
| /// for mutable references into the table. | |
| pub fn into_mut_refs(self) -> (&'t mut K, &'t mut V) { | |
| unsafe { | |
| let pair_ptr = self.raw.pair(); | |
| (&mut (*pair_ptr).0, &mut (*pair_ptr).1) | |
| } | |
| } | |
| } | |
| impl<K, V, M> GapThenFull<K, V, M> | |
| where M: Deref<Target = RawTable<K, V>> | |
| { | |
| #[inline] | |
| pub fn full(&self) -> &FullBucket<K, V, M> { | |
| &self.full | |
| } | |
| pub fn into_table(self) -> M { | |
| self.full.into_table() | |
| } | |
| pub fn shift(mut self) -> Result<GapThenFull<K, V, M>, Bucket<K, V, M>> { | |
| unsafe { | |
| let (gap_hash, gap_pair) = self.gap.raw.hash_pair(); | |
| let (full_hash, full_pair) = self.full.raw.hash_pair(); | |
| *gap_hash = mem::replace(&mut *full_hash, EMPTY_BUCKET); | |
| ptr::copy_nonoverlapping(full_pair, gap_pair, 1); | |
| } | |
| let FullBucket { raw: prev_raw, .. } = self.full; | |
| match self.full.next().peek() { | |
| Full(bucket) => { | |
| self.gap.raw = prev_raw; | |
| self.full = bucket; | |
| Ok(self) | |
| } | |
| Empty(b) => Err(b.into_bucket()), | |
| } | |
| } | |
| } | |
| /// Rounds up to a multiple of a power of two. Returns the closest multiple | |
| /// of `target_alignment` that is higher or equal to `unrounded`. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if `target_alignment` is not a power of two. | |
| #[inline] | |
| fn round_up_to_next(unrounded: usize, target_alignment: usize) -> usize { | |
| assert!(target_alignment.is_power_of_two()); | |
| (unrounded + target_alignment - 1) & !(target_alignment - 1) | |
| } | |
| #[test] | |
| fn test_rounding() { | |
| assert_eq!(round_up_to_next(0, 4), 0); | |
| assert_eq!(round_up_to_next(1, 4), 4); | |
| assert_eq!(round_up_to_next(2, 4), 4); | |
| assert_eq!(round_up_to_next(3, 4), 4); | |
| assert_eq!(round_up_to_next(4, 4), 4); | |
| assert_eq!(round_up_to_next(5, 4), 8); | |
| } | |
| // Returns a tuple of (pairs_offset, end_of_pairs_offset), | |
| // from the start of a mallocated array. | |
| #[inline] | |
| fn calculate_offsets(hashes_size: usize, | |
| pairs_size: usize, | |
| pairs_align: usize) | |
| -> (usize, usize, bool) { | |
| let pairs_offset = round_up_to_next(hashes_size, pairs_align); | |
| let (end_of_pairs, oflo) = pairs_offset.overflowing_add(pairs_size); | |
| (pairs_offset, end_of_pairs, oflo) | |
| } | |
| // Returns a tuple of (minimum required malloc alignment, | |
| // array_size), from the start of a mallocated array. | |
| fn calculate_allocation(hash_size: usize, | |
| hash_align: usize, | |
| pairs_size: usize, | |
| pairs_align: usize) | |
| -> (usize, usize, bool) { | |
| let (_, end_of_pairs, oflo) = calculate_offsets(hash_size, pairs_size, pairs_align); | |
| let align = cmp::max(hash_align, pairs_align); | |
| (align, end_of_pairs, oflo) | |
| } | |
| #[test] | |
| fn test_offset_calculation() { | |
| assert_eq!(calculate_allocation(128, 8, 16, 8), (8, 144, false)); | |
| assert_eq!(calculate_allocation(3, 1, 2, 1), (1, 5, false)); | |
| assert_eq!(calculate_allocation(6, 2, 12, 4), (4, 20, false)); | |
| assert_eq!(calculate_offsets(128, 15, 4), (128, 143, false)); | |
| assert_eq!(calculate_offsets(3, 2, 4), (4, 6, false)); | |
| assert_eq!(calculate_offsets(6, 12, 4), (8, 20, false)); | |
| } | |
| impl<K, V> RawTable<K, V> { | |
| /// Does not initialize the buckets. The caller should ensure they, | |
| /// at the very least, set every hash to EMPTY_BUCKET. | |
| /// Returns an error if it cannot allocate or capacity overflows. | |
| unsafe fn try_new_uninitialized(capacity: usize) -> Result<RawTable<K, V>, CollectionAllocErr> { | |
| if capacity == 0 { | |
| return Ok(RawTable { | |
| size: 0, | |
| capacity_mask: capacity.wrapping_sub(1), | |
| hashes: TaggedHashUintPtr::new(EMPTY as *mut HashUint), | |
| marker: marker::PhantomData, | |
| }); | |
| } | |
| // No need for `checked_mul` before a more restrictive check performed | |
| // later in this method. | |
| let hashes_size = capacity.wrapping_mul(size_of::<HashUint>()); | |
| let pairs_size = capacity.wrapping_mul(size_of::<(K, V)>()); | |
| // Allocating hashmaps is a little tricky. We need to allocate two | |
| // arrays, but since we know their sizes and alignments up front, | |
| // we just allocate a single array, and then have the subarrays | |
| // point into it. | |
| // | |
| // This is great in theory, but in practice getting the alignment | |
| // right is a little subtle. Therefore, calculating offsets has been | |
| // factored out into a different function. | |
| let (alignment, size, oflo) = calculate_allocation(hashes_size, | |
| align_of::<HashUint>(), | |
| pairs_size, | |
| align_of::<(K, V)>()); | |
| if oflo { | |
| return Err(CollectionAllocErr::CapacityOverflow); | |
| } | |
| // One check for overflow that covers calculation and rounding of size. | |
| let size_of_bucket = size_of::<HashUint>().checked_add(size_of::<(K, V)>()) | |
| .ok_or(CollectionAllocErr::CapacityOverflow)?; | |
| let capacity_mul_size_of_bucket = capacity.checked_mul(size_of_bucket); | |
| if capacity_mul_size_of_bucket.is_none() || size < capacity_mul_size_of_bucket.unwrap() { | |
| return Err(CollectionAllocErr::CapacityOverflow); | |
| } | |
| let buffer = Heap.alloc(Layout::from_size_align(size, alignment) | |
| .ok_or(CollectionAllocErr::CapacityOverflow)?)?; | |
| let hashes = buffer as *mut HashUint; | |
| Ok(RawTable { | |
| capacity_mask: capacity.wrapping_sub(1), | |
| size: 0, | |
| hashes: TaggedHashUintPtr::new(hashes), | |
| marker: marker::PhantomData, | |
| }) | |
| } | |
| /// Does not initialize the buckets. The caller should ensure they, | |
| /// at the very least, set every hash to EMPTY_BUCKET. | |
| unsafe fn new_uninitialized(capacity: usize) -> RawTable<K, V> { | |
| match Self::try_new_uninitialized(capacity) { | |
| Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"), | |
| Err(CollectionAllocErr::AllocErr(e)) => Heap.oom(e), | |
| Ok(table) => { table } | |
| } | |
| } | |
| fn raw_bucket_at(&self, index: usize) -> RawBucket<K, V> { | |
| let hashes_size = self.capacity() * size_of::<HashUint>(); | |
| let pairs_size = self.capacity() * size_of::<(K, V)>(); | |
| let (pairs_offset, _, oflo) = | |
| calculate_offsets(hashes_size, pairs_size, align_of::<(K, V)>()); | |
| debug_assert!(!oflo, "capacity overflow"); | |
| let buffer = self.hashes.ptr() as *mut u8; | |
| unsafe { | |
| RawBucket { | |
| hash_start: buffer as *mut HashUint, | |
| pair_start: buffer.offset(pairs_offset as isize) as *const (K, V), | |
| idx: index, | |
| _marker: marker::PhantomData, | |
| } | |
| } | |
| } | |
| /// Tries to create a new raw table from a given capacity. If it cannot allocate, | |
| /// it returns with AllocErr. | |
| pub fn try_new(capacity: usize) -> Result<RawTable<K, V>, CollectionAllocErr> { | |
| unsafe { | |
| let ret = RawTable::try_new_uninitialized(capacity)?; | |
| ptr::write_bytes(ret.hashes.ptr(), 0, capacity); | |
| Ok(ret) | |
| } | |
| } | |
| /// Creates a new raw table from a given capacity. All buckets are | |
| /// initially empty. | |
| pub fn new(capacity: usize) -> RawTable<K, V> { | |
| match Self::try_new(capacity) { | |
| Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"), | |
| Err(CollectionAllocErr::AllocErr(e)) => Heap.oom(e), | |
| Ok(table) => { table } | |
| } | |
| } | |
| /// The hashtable's capacity, similar to a vector's. | |
| pub fn capacity(&self) -> usize { | |
| self.capacity_mask.wrapping_add(1) | |
| } | |
| /// The number of elements ever `put` in the hashtable, minus the number | |
| /// of elements ever `take`n. | |
| pub fn size(&self) -> usize { | |
| self.size | |
| } | |
| fn raw_buckets(&self) -> RawBuckets<K, V> { | |
| RawBuckets { | |
| raw: self.raw_bucket_at(0), | |
| elems_left: self.size, | |
| marker: marker::PhantomData, | |
| } | |
| } | |
| pub fn iter(&self) -> Iter<K, V> { | |
| Iter { | |
| iter: self.raw_buckets(), | |
| } | |
| } | |
| pub fn iter_mut(&mut self) -> IterMut<K, V> { | |
| IterMut { | |
| iter: self.raw_buckets(), | |
| _marker: marker::PhantomData, | |
| } | |
| } | |
| pub fn into_iter(self) -> IntoIter<K, V> { | |
| let RawBuckets { raw, elems_left, .. } = self.raw_buckets(); | |
| // Replace the marker regardless of lifetime bounds on parameters. | |
| IntoIter { | |
| iter: RawBuckets { | |
| raw, | |
| elems_left, | |
| marker: marker::PhantomData, | |
| }, | |
| table: self, | |
| } | |
| } | |
| pub fn drain(&mut self) -> Drain<K, V> { | |
| let RawBuckets { raw, elems_left, .. } = self.raw_buckets(); | |
| // Replace the marker regardless of lifetime bounds on parameters. | |
| Drain { | |
| iter: RawBuckets { | |
| raw, | |
| elems_left, | |
| marker: marker::PhantomData, | |
| }, | |
| table: NonNull::from(self), | |
| marker: marker::PhantomData, | |
| } | |
| } | |
| /// Drops buckets in reverse order. It leaves the table in an inconsistent | |
| /// state and should only be used for dropping the table's remaining | |
| /// entries. It's used in the implementation of Drop. | |
| unsafe fn rev_drop_buckets(&mut self) { | |
| // initialize the raw bucket past the end of the table | |
| let mut raw = self.raw_bucket_at(self.capacity()); | |
| let mut elems_left = self.size; | |
| while elems_left != 0 { | |
| raw.idx -= 1; | |
| if *raw.hash() != EMPTY_BUCKET { | |
| elems_left -= 1; | |
| ptr::drop_in_place(raw.pair()); | |
| } | |
| } | |
| } | |
| /// Set the table tag | |
| pub fn set_tag(&mut self, value: bool) { | |
| self.hashes.set_tag(value) | |
| } | |
| /// Get the table tag | |
| pub fn tag(&self) -> bool { | |
| self.hashes.tag() | |
| } | |
| } | |
| /// A raw iterator. The basis for some other iterators in this module. Although | |
| /// this interface is safe, it's not used outside this module. | |
| struct RawBuckets<'a, K, V> { | |
| raw: RawBucket<K, V>, | |
| elems_left: usize, | |
| // Strictly speaking, this should be &'a (K,V), but that would | |
| // require that K:'a, and we often use RawBuckets<'static...> for | |
| // move iterations, so that messes up a lot of other things. So | |
| // just use `&'a (K,V)` as this is not a publicly exposed type | |
| // anyway. | |
| marker: marker::PhantomData<&'a ()>, | |
| } | |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` | |
| impl<'a, K, V> Clone for RawBuckets<'a, K, V> { | |
| fn clone(&self) -> RawBuckets<'a, K, V> { | |
| RawBuckets { | |
| raw: self.raw, | |
| elems_left: self.elems_left, | |
| marker: marker::PhantomData, | |
| } | |
| } | |
| } | |
| impl<'a, K, V> Iterator for RawBuckets<'a, K, V> { | |
| type Item = RawBucket<K, V>; | |
| fn next(&mut self) -> Option<RawBucket<K, V>> { | |
| if self.elems_left == 0 { | |
| return None; | |
| } | |
| loop { | |
| unsafe { | |
| let item = self.raw; | |
| self.raw.idx += 1; | |
| if *item.hash() != EMPTY_BUCKET { | |
| self.elems_left -= 1; | |
| return Some(item); | |
| } | |
| } | |
| } | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| (self.elems_left, Some(self.elems_left)) | |
| } | |
| } | |
| impl<'a, K, V> ExactSizeIterator for RawBuckets<'a, K, V> { | |
| fn len(&self) -> usize { | |
| self.elems_left | |
| } | |
| } | |
| /// Iterator over shared references to entries in a table. | |
| pub struct Iter<'a, K: 'a, V: 'a> { | |
| iter: RawBuckets<'a, K, V>, | |
| } | |
| unsafe impl<'a, K: Sync, V: Sync> Sync for Iter<'a, K, V> {} | |
| unsafe impl<'a, K: Sync, V: Sync> Send for Iter<'a, K, V> {} | |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` | |
| impl<'a, K, V> Clone for Iter<'a, K, V> { | |
| fn clone(&self) -> Iter<'a, K, V> { | |
| Iter { | |
| iter: self.iter.clone(), | |
| } | |
| } | |
| } | |
| /// Iterator over mutable references to entries in a table. | |
| pub struct IterMut<'a, K: 'a, V: 'a> { | |
| iter: RawBuckets<'a, K, V>, | |
| // To ensure invariance with respect to V | |
| _marker: marker::PhantomData<&'a mut V>, | |
| } | |
| unsafe impl<'a, K: Sync, V: Sync> Sync for IterMut<'a, K, V> {} | |
| // Both K: Sync and K: Send are correct for IterMut's Send impl, | |
| // but Send is the more useful bound | |
| unsafe impl<'a, K: Send, V: Send> Send for IterMut<'a, K, V> {} | |
| impl<'a, K: 'a, V: 'a> IterMut<'a, K, V> { | |
| pub fn iter(&self) -> Iter<K, V> { | |
| Iter { | |
| iter: self.iter.clone(), | |
| } | |
| } | |
| } | |
| /// Iterator over the entries in a table, consuming the table. | |
| pub struct IntoIter<K, V> { | |
| table: RawTable<K, V>, | |
| iter: RawBuckets<'static, K, V>, | |
| } | |
| unsafe impl<K: Sync, V: Sync> Sync for IntoIter<K, V> {} | |
| unsafe impl<K: Send, V: Send> Send for IntoIter<K, V> {} | |
| impl<K, V> IntoIter<K, V> { | |
| pub fn iter(&self) -> Iter<K, V> { | |
| Iter { | |
| iter: self.iter.clone(), | |
| } | |
| } | |
| } | |
| /// Iterator over the entries in a table, clearing the table. | |
| pub struct Drain<'a, K: 'a, V: 'a> { | |
| table: NonNull<RawTable<K, V>>, | |
| iter: RawBuckets<'static, K, V>, | |
| marker: marker::PhantomData<&'a RawTable<K, V>>, | |
| } | |
| unsafe impl<'a, K: Sync, V: Sync> Sync for Drain<'a, K, V> {} | |
| unsafe impl<'a, K: Send, V: Send> Send for Drain<'a, K, V> {} | |
| impl<'a, K, V> Drain<'a, K, V> { | |
| pub fn iter(&self) -> Iter<K, V> { | |
| Iter { | |
| iter: self.iter.clone(), | |
| } | |
| } | |
| } | |
| impl<'a, K, V> Iterator for Iter<'a, K, V> { | |
| type Item = (&'a K, &'a V); | |
| fn next(&mut self) -> Option<(&'a K, &'a V)> { | |
| self.iter.next().map(|raw| unsafe { | |
| let pair_ptr = raw.pair(); | |
| (&(*pair_ptr).0, &(*pair_ptr).1) | |
| }) | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> { | |
| fn len(&self) -> usize { | |
| self.iter.len() | |
| } | |
| } | |
| impl<'a, K, V> Iterator for IterMut<'a, K, V> { | |
| type Item = (&'a K, &'a mut V); | |
| fn next(&mut self) -> Option<(&'a K, &'a mut V)> { | |
| self.iter.next().map(|raw| unsafe { | |
| let pair_ptr = raw.pair(); | |
| (&(*pair_ptr).0, &mut (*pair_ptr).1) | |
| }) | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> { | |
| fn len(&self) -> usize { | |
| self.iter.len() | |
| } | |
| } | |
| impl<K, V> Iterator for IntoIter<K, V> { | |
| type Item = (SafeHash, K, V); | |
| fn next(&mut self) -> Option<(SafeHash, K, V)> { | |
| self.iter.next().map(|raw| { | |
| self.table.size -= 1; | |
| unsafe { | |
| let (k, v) = ptr::read(raw.pair()); | |
| (SafeHash { hash: *raw.hash() }, k, v) | |
| } | |
| }) | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| impl<K, V> ExactSizeIterator for IntoIter<K, V> { | |
| fn len(&self) -> usize { | |
| self.iter().len() | |
| } | |
| } | |
| impl<'a, K, V> Iterator for Drain<'a, K, V> { | |
| type Item = (SafeHash, K, V); | |
| #[inline] | |
| fn next(&mut self) -> Option<(SafeHash, K, V)> { | |
| self.iter.next().map(|raw| { | |
| unsafe { | |
| self.table.as_mut().size -= 1; | |
| let (k, v) = ptr::read(raw.pair()); | |
| (SafeHash { hash: ptr::replace(&mut *raw.hash(), EMPTY_BUCKET) }, k, v) | |
| } | |
| }) | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> { | |
| fn len(&self) -> usize { | |
| self.iter.len() | |
| } | |
| } | |
| impl<'a, K: 'a, V: 'a> Drop for Drain<'a, K, V> { | |
| fn drop(&mut self) { | |
| for _ in self {} | |
| } | |
| } | |
| impl<K: Clone, V: Clone> Clone for RawTable<K, V> { | |
| fn clone(&self) -> RawTable<K, V> { | |
| unsafe { | |
| let cap = self.capacity(); | |
| let mut new_ht = RawTable::new_uninitialized(cap); | |
| let mut new_buckets = new_ht.raw_bucket_at(0); | |
| let mut buckets = self.raw_bucket_at(0); | |
| while buckets.idx < cap { | |
| *new_buckets.hash() = *buckets.hash(); | |
| if *new_buckets.hash() != EMPTY_BUCKET { | |
| let pair_ptr = buckets.pair(); | |
| let kv = ((*pair_ptr).0.clone(), (*pair_ptr).1.clone()); | |
| ptr::write(new_buckets.pair(), kv); | |
| } | |
| buckets.idx += 1; | |
| new_buckets.idx += 1; | |
| } | |
| new_ht.size = self.size(); | |
| new_ht.set_tag(self.tag()); | |
| new_ht | |
| } | |
| } | |
| } | |
| unsafe impl<#[may_dangle] K, #[may_dangle] V> Drop for RawTable<K, V> { | |
| fn drop(&mut self) { | |
| if self.capacity() == 0 { | |
| return; | |
| } | |
| // This is done in reverse because we've likely partially taken | |
| // some elements out with `.into_iter()` from the front. | |
| // Check if the size is 0, so we don't do a useless scan when | |
| // dropping empty tables such as on resize. | |
| // Also avoid double drop of elements that have been already moved out. | |
| unsafe { | |
| if needs_drop::<(K, V)>() { | |
| // avoid linear runtime for types that don't need drop | |
| self.rev_drop_buckets(); | |
| } | |
| } | |
| let hashes_size = self.capacity() * size_of::<HashUint>(); | |
| let pairs_size = self.capacity() * size_of::<(K, V)>(); | |
| let (align, size, oflo) = calculate_allocation(hashes_size, | |
| align_of::<HashUint>(), | |
| pairs_size, | |
| align_of::<(K, V)>()); | |
| debug_assert!(!oflo, "should be impossible"); | |
| unsafe { | |
| Heap.dealloc(self.hashes.ptr() as *mut u8, | |
| Layout::from_size_align(size, align).unwrap()); | |
| // Remember how everything was allocated out of one buffer | |
| // during initialization? We only need one call to free here. | |
| } | |
| } | |
| } |