Skip to content
Permalink
Tree: bb26aadaf3
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1549 lines (1363 sloc) 60.7 KB
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// See doc.rs for documentation.
mod doc;
use self::VariableAccess::*;
use self::VariableKind::*;
use self::InternalDebugLocation::*;
use self::RecursiveTypeDescription::*;
use self::utils::{debug_context, DIB, span_start,
assert_type_for_node_id, fn_should_be_ignored,
contains_nodebug_attribute, create_scope_map};
use self::create::{declare_local, create_DIArray, is_node_local_to_unit};
use self::namespace::{namespace_for_item, NamespaceTreeNode};
use self::types::{compute_debuginfo_type_name, push_debuginfo_type_name};
use self::metadata::{type_metadata, file_metadata, scope_metadata,
compile_unit_metadata, MetadataCreationResult};
use self::adt::{MemberDescriptionFactory, set_members_of_composite_type};
use llvm;
use llvm::{ModuleRef, ContextRef, ValueRef};
use llvm::debuginfo::*;
use middle::subst::{self, Substs};
use trans::machine;
use trans::common::{self, NodeIdAndSpan, CrateContext, FunctionContext, Block,
NormalizingClosureTyper};
use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef};
use trans::monomorphize;
use trans::type_::Type;
use middle::ty::{self, Ty, ClosureTyper};
use middle::pat_util;
use session::config::{self, FullDebugInfo, LimitedDebugInfo, NoDebugInfo};
use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet};
use util::ppaux;
use libc::c_uint;
use std::cell::{Cell, RefCell};
use std::ffi::CString;
use std::ptr;
use std::rc::Rc;
use syntax::util::interner::Interner;
use syntax::codemap::{Span, Pos};
use syntax::{ast, codemap, ast_util, ast_map};
use syntax::parse::token::{self, special_idents};
pub mod gdb;
mod utils;
mod create;
mod namespace;
mod types;
mod metadata;
mod adt;
#[allow(non_upper_case_globals)]
const DW_TAG_auto_variable: c_uint = 0x100;
#[allow(non_upper_case_globals)]
const DW_TAG_arg_variable: c_uint = 0x101;
const UNKNOWN_LINE_NUMBER: c_uint = 0;
const UNKNOWN_COLUMN_NUMBER: c_uint = 0;
// ptr::null() doesn't work :(
const UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile);
const UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope);
const FLAGS_NONE: c_uint = 0;
//=-----------------------------------------------------------------------------
// Public Interface of debuginfo module
//=-----------------------------------------------------------------------------
#[derive(Copy, Debug, Hash, Eq, PartialEq, Clone)]
pub struct UniqueTypeId(ast::Name);
// The TypeMap is where the CrateDebugContext holds the type metadata nodes
// created so far. The metadata nodes are indexed by UniqueTypeId, and, for
// faster lookup, also by Ty. The TypeMap is responsible for creating
// UniqueTypeIds.
struct TypeMap<'tcx> {
// The UniqueTypeIds created so far
unique_id_interner: Interner<Rc<String>>,
// A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping.
unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>,
// A map from types to debuginfo metadata. This is a N:1 mapping.
type_to_metadata: FnvHashMap<Ty<'tcx>, DIType>,
// A map from types to UniqueTypeId. This is a N:1 mapping.
type_to_unique_id: FnvHashMap<Ty<'tcx>, UniqueTypeId>
}
impl<'tcx> TypeMap<'tcx> {
fn new() -> TypeMap<'tcx> {
TypeMap {
unique_id_interner: Interner::new(),
type_to_metadata: FnvHashMap(),
unique_id_to_metadata: FnvHashMap(),
type_to_unique_id: FnvHashMap(),
}
}
// Adds a Ty to metadata mapping to the TypeMap. The method will fail if
// the mapping already exists.
fn register_type_with_metadata<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
type_: Ty<'tcx>,
metadata: DIType) {
if self.type_to_metadata.insert(type_, metadata).is_some() {
cx.sess().bug(&format!("Type metadata for Ty '{}' is already in the TypeMap!",
ppaux::ty_to_string(cx.tcx(), type_)));
}
}
// Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will
// fail if the mapping already exists.
fn register_unique_id_with_metadata(&mut self,
cx: &CrateContext,
unique_type_id: UniqueTypeId,
metadata: DIType) {
if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() {
let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id);
cx.sess().bug(&format!("Type metadata for unique id '{}' is already in the TypeMap!",
&unique_type_id_str[..]));
}
}
fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option<DIType> {
self.type_to_metadata.get(&type_).cloned()
}
fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> {
self.unique_id_to_metadata.get(&unique_type_id).cloned()
}
// Get the string representation of a UniqueTypeId. This method will fail if
// the id is unknown.
fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> {
let UniqueTypeId(interner_key) = unique_type_id;
self.unique_id_interner.get(interner_key)
}
// Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
// type has been requested before, this is just a table lookup. Otherwise an
// ID will be generated and stored for later lookup.
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
type_: Ty<'tcx>) -> UniqueTypeId {
// basic type -> {:name of the type:}
// tuple -> {tuple_(:param-uid:)*}
// struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> }
// enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> }
// enum variant -> {variant_:variant-name:_:enum-uid:}
// reference (&) -> {& :pointee-uid:}
// mut reference (&mut) -> {&mut :pointee-uid:}
// ptr (*) -> {* :pointee-uid:}
// mut ptr (*mut) -> {*mut :pointee-uid:}
// unique ptr (~) -> {~ :pointee-uid:}
// @-ptr (@) -> {@ :pointee-uid:}
// sized vec ([T; x]) -> {[:size:] :element-uid:}
// unsized vec ([T]) -> {[] :element-uid:}
// trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> }
// closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \
// :return-type-uid: : (:bounds:)*}
// function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \
// :return-type-uid:}
// unique vec box (~[]) -> {HEAP_VEC_BOX<:pointee-uid:>}
// gc box -> {GC_BOX<:pointee-uid:>}
match self.type_to_unique_id.get(&type_).cloned() {
Some(unique_type_id) => return unique_type_id,
None => { /* generate one */}
};
let mut unique_type_id = String::with_capacity(256);
unique_type_id.push('{');
match type_.sty {
ty::ty_bool |
ty::ty_char |
ty::ty_str |
ty::ty_int(_) |
ty::ty_uint(_) |
ty::ty_float(_) => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::ty_enum(def_id, substs) => {
unique_type_id.push_str("enum ");
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
},
ty::ty_struct(def_id, substs) => {
unique_type_id.push_str("struct ");
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
},
ty::ty_tup(ref component_types) if component_types.is_empty() => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::ty_tup(ref component_types) => {
unique_type_id.push_str("tuple ");
for &component_type in component_types {
let component_type_id =
self.get_unique_type_id_of_type(cx, component_type);
let component_type_id =
self.get_unique_type_id_as_string(component_type_id);
unique_type_id.push_str(&component_type_id[..]);
}
},
ty::ty_uniq(inner_type) => {
unique_type_id.push('~');
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
unique_type_id.push('*');
if mutbl == ast::MutMutable {
unique_type_id.push_str("mut");
}
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
unique_type_id.push('&');
if mutbl == ast::MutMutable {
unique_type_id.push_str("mut");
}
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::ty_vec(inner_type, optional_length) => {
match optional_length {
Some(len) => {
unique_type_id.push_str(&format!("[{}]", len));
}
None => {
unique_type_id.push_str("[]");
}
};
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::ty_trait(ref trait_data) => {
unique_type_id.push_str("trait ");
let principal =
ty::erase_late_bound_regions(cx.tcx(),
&trait_data.principal);
from_def_id_and_substs(self,
cx,
principal.def_id,
principal.substs,
&mut unique_type_id);
},
ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
if unsafety == ast::Unsafety::Unsafe {
unique_type_id.push_str("unsafe ");
}
unique_type_id.push_str(abi.name());
unique_type_id.push_str(" fn(");
let sig = ty::erase_late_bound_regions(cx.tcx(), sig);
for &parameter_type in &sig.inputs {
let parameter_type_id =
self.get_unique_type_id_of_type(cx, parameter_type);
let parameter_type_id =
self.get_unique_type_id_as_string(parameter_type_id);
unique_type_id.push_str(&parameter_type_id[..]);
unique_type_id.push(',');
}
if sig.variadic {
unique_type_id.push_str("...");
}
unique_type_id.push_str(")->");
match sig.output {
ty::FnConverging(ret_ty) => {
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
unique_type_id.push_str(&return_type_id[..]);
}
ty::FnDiverging => {
unique_type_id.push_str("!");
}
}
},
ty::ty_closure(def_id, substs) => {
let typer = NormalizingClosureTyper::new(cx.tcx());
let closure_ty = typer.closure_type(def_id, substs);
self.get_unique_type_id_of_closure_type(cx,
closure_ty,
&mut unique_type_id);
},
_ => {
cx.sess().bug(&format!("get_unique_type_id_of_type() - unexpected type: {}, {:?}",
&ppaux::ty_to_string(cx.tcx(), type_),
type_.sty))
}
};
unique_type_id.push('}');
// Trim to size before storing permanently
unique_type_id.shrink_to_fit();
let key = self.unique_id_interner.intern(Rc::new(unique_type_id));
self.type_to_unique_id.insert(type_, UniqueTypeId(key));
return UniqueTypeId(key);
fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>,
cx: &CrateContext<'a, 'tcx>,
def_id: ast::DefId,
substs: &subst::Substs<'tcx>,
output: &mut String) {
// First, find out the 'real' def_id of the type. Items inlined from
// other crates have to be mapped back to their source.
let source_def_id = if def_id.krate == ast::LOCAL_CRATE {
match cx.external_srcs().borrow().get(&def_id.node).cloned() {
Some(source_def_id) => {
// The given def_id identifies the inlined copy of a
// type definition, let's take the source of the copy.
source_def_id
}
None => def_id
}
} else {
def_id
};
// Get the crate hash as first part of the identifier.
let crate_hash = if source_def_id.krate == ast::LOCAL_CRATE {
cx.link_meta().crate_hash.clone()
} else {
cx.sess().cstore.get_crate_hash(source_def_id.krate)
};
output.push_str(crate_hash.as_str());
output.push_str("/");
output.push_str(&format!("{:x}", def_id.node));
// Maybe check that there is no self type here.
let tps = substs.types.get_slice(subst::TypeSpace);
if !tps.is_empty() {
output.push('<');
for &type_parameter in tps {
let param_type_id =
type_map.get_unique_type_id_of_type(cx, type_parameter);
let param_type_id =
type_map.get_unique_type_id_as_string(param_type_id);
output.push_str(&param_type_id[..]);
output.push(',');
}
output.push('>');
}
}
}
fn get_unique_type_id_of_closure_type<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
closure_ty: ty::ClosureTy<'tcx>,
unique_type_id: &mut String) {
let ty::ClosureTy { unsafety,
ref sig,
abi: _ } = closure_ty;
if unsafety == ast::Unsafety::Unsafe {
unique_type_id.push_str("unsafe ");
}
unique_type_id.push_str("|");
let sig = ty::erase_late_bound_regions(cx.tcx(), sig);
for &parameter_type in &sig.inputs {
let parameter_type_id =
self.get_unique_type_id_of_type(cx, parameter_type);
let parameter_type_id =
self.get_unique_type_id_as_string(parameter_type_id);
unique_type_id.push_str(&parameter_type_id[..]);
unique_type_id.push(',');
}
if sig.variadic {
unique_type_id.push_str("...");
}
unique_type_id.push_str("|->");
match sig.output {
ty::FnConverging(ret_ty) => {
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
unique_type_id.push_str(&return_type_id[..]);
}
ty::FnDiverging => {
unique_type_id.push_str("!");
}
}
}
// Get the UniqueTypeId for an enum variant. Enum variants are not really
// types of their own, so they need special handling. We still need a
// UniqueTypeId for them, since to debuginfo they *are* real types.
fn get_unique_type_id_of_enum_variant<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
variant_name: &str)
-> UniqueTypeId {
let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type);
let enum_variant_type_id = format!("{}::{}",
&self.get_unique_type_id_as_string(enum_type_id),
variant_name);
let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id));
UniqueTypeId(interner_key)
}
}
/// A context object for maintaining all state needed by the debuginfo module.
pub struct CrateDebugContext<'tcx> {
llcontext: ContextRef,
builder: DIBuilderRef,
current_debug_location: Cell<InternalDebugLocation>,
created_files: RefCell<FnvHashMap<String, DIFile>>,
created_enum_disr_types: RefCell<DefIdMap<DIType>>,
type_map: RefCell<TypeMap<'tcx>>,
namespace_map: RefCell<FnvHashMap<Vec<ast::Name>, Rc<NamespaceTreeNode>>>,
// This collection is used to assert that composite types (structs, enums,
// ...) have their members only set once:
composite_types_completed: RefCell<FnvHashSet<DIType>>,
}
impl<'tcx> CrateDebugContext<'tcx> {
pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> {
debug!("CrateDebugContext::new");
let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) };
// DIBuilder inherits context from the module, so we'd better use the same one
let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) };
return CrateDebugContext {
llcontext: llcontext,
builder: builder,
current_debug_location: Cell::new(UnknownLocation),
created_files: RefCell::new(FnvHashMap()),
created_enum_disr_types: RefCell::new(DefIdMap()),
type_map: RefCell::new(TypeMap::new()),
namespace_map: RefCell::new(FnvHashMap()),
composite_types_completed: RefCell::new(FnvHashSet()),
};
}
}
pub enum FunctionDebugContext {
RegularContext(Box<FunctionDebugContextData>),
DebugInfoDisabled,
FunctionWithoutDebugInfo,
}
impl FunctionDebugContext {
fn get_ref<'a>(&'a self,
cx: &CrateContext,
span: Span)
-> &'a FunctionDebugContextData {
match *self {
FunctionDebugContext::RegularContext(box ref data) => data,
FunctionDebugContext::DebugInfoDisabled => {
cx.sess().span_bug(span,
FunctionDebugContext::debuginfo_disabled_message());
}
FunctionDebugContext::FunctionWithoutDebugInfo => {
cx.sess().span_bug(span,
FunctionDebugContext::should_be_ignored_message());
}
}
}
fn debuginfo_disabled_message() -> &'static str {
"debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!"
}
fn should_be_ignored_message() -> &'static str {
"debuginfo: Error trying to access FunctionDebugContext for function that should be \
ignored by debug info!"
}
}
struct FunctionDebugContextData {
scope_map: RefCell<NodeMap<DIScope>>,
fn_metadata: DISubprogram,
argument_counter: Cell<usize>,
source_locations_enabled: Cell<bool>,
source_location_override: Cell<bool>,
}
pub enum VariableAccess<'a> {
// The llptr given is an alloca containing the variable's value
DirectVariable { alloca: ValueRef },
// The llptr given is an alloca containing the start of some pointer chain
// leading to the variable's content.
IndirectVariable { alloca: ValueRef, address_operations: &'a [i64] }
}
pub enum VariableKind {
ArgumentVariable(usize /*index*/),
LocalVariable,
CapturedVariable,
}
/// Create any deferred debug metadata nodes
pub fn finalize(cx: &CrateContext) {
if cx.dbg_cx().is_none() {
return;
}
debug!("finalize");
let _ = compile_unit_metadata(cx);
if gdb::needs_gdb_debug_scripts_section(cx) {
// Add a .debug_gdb_scripts section to this compile-unit. This will
// cause GDB to try and load the gdb_load_rust_pretty_printers.py file,
// which activates the Rust pretty printers for binary this section is
// contained in.
gdb::get_or_insert_gdb_debug_scripts_section_global(cx);
}
unsafe {
llvm::LLVMDIBuilderFinalize(DIB(cx));
llvm::LLVMDIBuilderDispose(DIB(cx));
// Debuginfo generation in LLVM by default uses a higher
// version of dwarf than OS X currently understands. We can
// instruct LLVM to emit an older version of dwarf, however,
// for OS X to understand. For more info see #11352
// This can be overridden using --llvm-opts -dwarf-version,N.
// Android has the same issue (#22398)
if cx.sess().target.target.options.is_like_osx ||
cx.sess().target.target.options.is_like_android {
llvm::LLVMRustAddModuleFlag(cx.llmod(),
"Dwarf Version\0".as_ptr() as *const _,
2)
}
// Prevent bitcode readers from deleting the debug info.
let ptr = "Debug Info Version\0".as_ptr();
llvm::LLVMRustAddModuleFlag(cx.llmod(), ptr as *const _,
llvm::LLVMRustDebugMetadataVersion);
};
}
/// Creates debug information for the given global variable.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_global_var_metadata(cx: &CrateContext,
node_id: ast::NodeId,
global: ValueRef) {
if cx.dbg_cx().is_none() {
return;
}
// Don't create debuginfo for globals inlined from other crates. The other
// crate should already contain debuginfo for it. More importantly, the
// global might not even exist in un-inlined form anywhere which would lead
// to a linker errors.
if cx.external_srcs().borrow().contains_key(&node_id) {
return;
}
let var_item = cx.tcx().map.get(node_id);
let (name, span) = match var_item {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemStatic(..) => (item.ident.name, item.span),
ast::ItemConst(..) => (item.ident.name, item.span),
_ => {
cx.sess()
.span_bug(item.span,
&format!("debuginfo::\
create_global_var_metadata() -
Captured var-id refers to \
unexpected ast_item variant: {:?}",
var_item))
}
}
},
_ => cx.sess().bug(&format!("debuginfo::create_global_var_metadata() \
- Captured var-id refers to unexpected \
ast_map variant: {:?}",
var_item))
};
let (file_metadata, line_number) = if span != codemap::DUMMY_SP {
let loc = span_start(cx, span);
(file_metadata(cx, &loc.file.name), loc.line as c_uint)
} else {
(UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER)
};
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
let variable_type = ty::node_id_to_type(cx.tcx(), node_id);
let type_metadata = type_metadata(cx, variable_type, span);
let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id));
let var_name = token::get_name(name).to_string();
let linkage_name =
namespace_node.mangled_name_of_contained_item(&var_name[..]);
let var_scope = namespace_node.scope;
let var_name = CString::new(var_name).unwrap();
let linkage_name = CString::new(linkage_name).unwrap();
unsafe {
llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx),
var_scope,
var_name.as_ptr(),
linkage_name.as_ptr(),
file_metadata,
line_number,
type_metadata,
is_local_to_unit,
global,
ptr::null_mut());
}
}
/// Creates debug information for the given local variable.
///
/// This function assumes that there's a datum for each pattern component of the
/// local in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let cx = bcx.ccx();
let def_map = &cx.tcx().def_map;
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, var_ident| {
let datum = match locals.get(&node_id) {
Some(datum) => datum,
None => {
bcx.sess().span_bug(span,
&format!("no entry in lllocals table for {}",
node_id));
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \
Referenced variable location is not an alloca!");
}
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
declare_local(bcx,
var_ident.node.name,
datum.ty,
scope_metadata,
DirectVariable { alloca: datum.val },
LocalVariable,
span);
})
}
/// Creates debug information for a variable captured in a closure.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
node_id: ast::NodeId,
env_pointer: ValueRef,
env_index: usize,
captured_by_ref: bool,
span: Span) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let cx = bcx.ccx();
let ast_item = cx.tcx().map.find(node_id);
let variable_name = match ast_item {
None => {
cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found");
}
Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => {
match pat.node {
ast::PatIdent(_, ref path1, _) => {
path1.node.name
}
_ => {
cx.sess()
.span_bug(span,
&format!(
"debuginfo::create_captured_var_metadata() - \
Captured var-id refers to unexpected \
ast_map variant: {:?}",
ast_item));
}
}
}
_ => {
cx.sess()
.span_bug(span,
&format!("debuginfo::create_captured_var_metadata() - \
Captured var-id refers to unexpected \
ast_map variant: {:?}",
ast_item));
}
};
let variable_type = common::node_id_type(bcx, node_id);
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata;
// env_pointer is the alloca containing the pointer to the environment,
// so it's type is **EnvironmentType. In order to find out the type of
// the environment we have to "dereference" two times.
let llvm_env_data_type = common::val_ty(env_pointer).element_type()
.element_type();
let byte_offset_of_var_in_env = machine::llelement_offset(cx,
llvm_env_data_type,
env_index);
let address_operations = unsafe {
[llvm::LLVMDIBuilderCreateOpDeref(),
llvm::LLVMDIBuilderCreateOpPlus(),
byte_offset_of_var_in_env as i64,
llvm::LLVMDIBuilderCreateOpDeref()]
};
let address_op_count = if captured_by_ref {
address_operations.len()
} else {
address_operations.len() - 1
};
let variable_access = IndirectVariable {
alloca: env_pointer,
address_operations: &address_operations[..address_op_count]
};
declare_local(bcx,
variable_name,
variable_type,
scope_metadata,
variable_access,
CapturedVariable,
span);
}
/// Creates debug information for a local variable introduced in the head of a
/// match-statement arm.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
variable_name: ast::Name,
binding: BindingInfo<'tcx>) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span);
let aops = unsafe {
[llvm::LLVMDIBuilderCreateOpDeref()]
};
// Regardless of the actual type (`T`) we're always passed the stack slot
// (alloca) for the binding. For ByRef bindings that's a `T*` but for ByMove
// bindings we actually have `T**`. So to get the actual variable we need to
// dereference once more. For ByCopy we just use the stack slot we created
// for the binding.
let var_access = match binding.trmode {
TrByCopy(llbinding) => DirectVariable {
alloca: llbinding
},
TrByMove => IndirectVariable {
alloca: binding.llmatch,
address_operations: &aops
},
TrByRef => DirectVariable {
alloca: binding.llmatch
}
};
declare_local(bcx,
variable_name,
binding.ty,
scope_metadata,
var_access,
LocalVariable,
binding.span);
}
/// Creates debug information for the given function argument.
///
/// This function assumes that there's a datum for each pattern component of the
/// argument in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let def_map = &bcx.tcx().def_map;
let scope_metadata = bcx
.fcx
.debug_context
.get_ref(bcx.ccx(), arg.pat.span)
.fn_metadata;
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, var_ident| {
let datum = match locals.get(&node_id) {
Some(v) => v,
None => {
bcx.sess().span_bug(span,
&format!("no entry in lllocals table for {}",
node_id));
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \
Referenced variable location is not an alloca!");
}
let argument_index = {
let counter = &bcx
.fcx
.debug_context
.get_ref(bcx.ccx(), span)
.argument_counter;
let argument_index = counter.get();
counter.set(argument_index + 1);
argument_index
};
declare_local(bcx,
var_ident.node.name,
datum.ty,
scope_metadata,
DirectVariable { alloca: datum.val },
ArgumentVariable(argument_index),
span);
})
}
pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
node_id: ast::NodeId,
node_span: Span,
is_block: bool)
-> NodeIdAndSpan {
// A debug location needs two things:
// (1) A span (of which only the beginning will actually be used)
// (2) An AST node-id which will be used to look up the lexical scope
// for the location in the functions scope-map
//
// This function will calculate the debug location for compiler-generated
// cleanup calls that are executed when control-flow leaves the
// scope identified by `node_id`.
//
// For everything but block-like things we can simply take id and span of
// the given expression, meaning that from a debugger's view cleanup code is
// executed at the same source location as the statement/expr itself.
//
// Blocks are a special case. Here we want the cleanup to be linked to the
// closing curly brace of the block. The *scope* the cleanup is executed in
// is up to debate: It could either still be *within* the block being
// cleaned up, meaning that locals from the block are still visible in the
// debugger.
// Or it could be in the scope that the block is contained in, so any locals
// from within the block are already considered out-of-scope and thus not
// accessible in the debugger anymore.
//
// The current implementation opts for the second option: cleanup of a block
// already happens in the parent scope of the block. The main reason for
// this decision is that scoping becomes controlflow dependent when variable
// shadowing is involved and it's impossible to decide statically which
// scope is actually left when the cleanup code is executed.
// In practice it shouldn't make much of a difference.
let mut cleanup_span = node_span;
if is_block {
// Not all blocks actually have curly braces (e.g. simple closure
// bodies), in which case we also just want to return the span of the
// whole expression.
let code_snippet = cx.sess().codemap().span_to_snippet(node_span);
if let Ok(code_snippet) = code_snippet {
let bytes = code_snippet.as_bytes();
if !bytes.is_empty() && &bytes[bytes.len()-1..] == b"}" {
cleanup_span = Span {
lo: node_span.hi - codemap::BytePos(1),
hi: node_span.hi,
expn_id: node_span.expn_id
};
}
}
}
NodeIdAndSpan {
id: node_id,
span: cleanup_span
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum DebugLoc {
At(ast::NodeId, Span),
None
}
impl DebugLoc {
pub fn apply(&self, fcx: &FunctionContext) {
match *self {
DebugLoc::At(node_id, span) => {
set_source_location(fcx, node_id, span);
}
DebugLoc::None => {
clear_source_location(fcx);
}
}
}
}
pub trait ToDebugLoc {
fn debug_loc(&self) -> DebugLoc;
}
impl ToDebugLoc for ast::Expr {
fn debug_loc(&self) -> DebugLoc {
DebugLoc::At(self.id, self.span)
}
}
impl ToDebugLoc for NodeIdAndSpan {
fn debug_loc(&self) -> DebugLoc {
DebugLoc::At(self.id, self.span)
}
}
impl ToDebugLoc for Option<NodeIdAndSpan> {
fn debug_loc(&self) -> DebugLoc {
match *self {
Some(NodeIdAndSpan { id, span }) => DebugLoc::At(id, span),
None => DebugLoc::None
}
}
}
/// Sets the current debug location at the beginning of the span.
///
/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id
/// parameter is used to reliably find the correct visibility scope for the code
/// position.
pub fn set_source_location(fcx: &FunctionContext,
node_id: ast::NodeId,
span: Span) {
match fcx.debug_context {
FunctionDebugContext::DebugInfoDisabled => return,
FunctionDebugContext::FunctionWithoutDebugInfo => {
set_debug_location(fcx.ccx, UnknownLocation);
return;
}
FunctionDebugContext::RegularContext(box ref function_debug_context) => {
if function_debug_context.source_location_override.get() {
// Just ignore any attempts to set a new debug location while
// the override is active.
return;
}
let cx = fcx.ccx;
debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span));
if function_debug_context.source_locations_enabled.get() {
let loc = span_start(cx, span);
let scope = scope_metadata(fcx, node_id, span);
set_debug_location(cx, InternalDebugLocation::new(scope,
loc.line,
loc.col.to_usize()));
} else {
set_debug_location(cx, UnknownLocation);
}
}
}
}
/// This function makes sure that all debug locations emitted while executing
/// `wrapped_function` are set to the given `debug_loc`.
pub fn with_source_location_override<F, R>(fcx: &FunctionContext,
debug_loc: DebugLoc,
wrapped_function: F) -> R
where F: FnOnce() -> R
{
match fcx.debug_context {
FunctionDebugContext::DebugInfoDisabled => {
wrapped_function()
}
FunctionDebugContext::FunctionWithoutDebugInfo => {
set_debug_location(fcx.ccx, UnknownLocation);
wrapped_function()
}
FunctionDebugContext::RegularContext(box ref function_debug_context) => {
if function_debug_context.source_location_override.get() {
wrapped_function()
} else {
debug_loc.apply(fcx);
function_debug_context.source_location_override.set(true);
let result = wrapped_function();
function_debug_context.source_location_override.set(false);
result
}
}
}
}
/// Clears the current debug location.
///
/// Instructions generated hereafter won't be assigned a source location.
pub fn clear_source_location(fcx: &FunctionContext) {
if fn_should_be_ignored(fcx) {
return;
}
set_debug_location(fcx.ccx, UnknownLocation);
}
/// Enables emitting source locations for the given functions.
///
/// Since we don't want source locations to be emitted for the function prelude,
/// they are disabled when beginning to translate a new function. This functions
/// switches source location emitting on and must therefore be called before the
/// first real statement/expression of the function is translated.
pub fn start_emitting_source_locations(fcx: &FunctionContext) {
match fcx.debug_context {
FunctionDebugContext::RegularContext(box ref data) => {
data.source_locations_enabled.set(true)
},
_ => { /* safe to ignore */ }
}
}
/// Creates the function-specific debug context.
///
/// Returns the FunctionDebugContext for the function which holds state needed
/// for debug info creation. The function may also return another variant of the
/// FunctionDebugContext enum which indicates why no debuginfo should be created
/// for the function.
pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn_ast_id: ast::NodeId,
param_substs: &Substs<'tcx>,
llfn: ValueRef) -> FunctionDebugContext {
if cx.sess().opts.debuginfo == NoDebugInfo {
return FunctionDebugContext::DebugInfoDisabled;
}
// Clear the debug location so we don't assign them in the function prelude.
// Do this here already, in case we do an early exit from this function.
set_debug_location(cx, UnknownLocation);
if fn_ast_id == ast::DUMMY_NODE_ID {
// This is a function not linked to any source location, so don't
// generate debuginfo for it.
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
let empty_generics = ast_util::empty_generics();
let fnitem = cx.tcx().map.get(fn_ast_id);
let (name, fn_decl, generics, top_level_block, span, has_path) = match fnitem {
ast_map::NodeItem(ref item) => {
if contains_nodebug_attribute(&item.attrs) {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
match item.node {
ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => {
(item.ident.name, fn_decl, generics, top_level_block, item.span, true)
}
_ => {
cx.sess().span_bug(item.span,
"create_function_debug_context: item bound to non-function");
}
}
}
ast_map::NodeImplItem(impl_item) => {
match impl_item.node {
ast::MethodImplItem(ref sig, ref body) => {
if contains_nodebug_attribute(&impl_item.attrs) {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
(impl_item.ident.name,
&sig.decl,
&sig.generics,
body,
impl_item.span,
true)
}
_ => {
cx.sess().span_bug(impl_item.span,
"create_function_debug_context() \
called on non-method impl item?!")
}
}
}
ast_map::NodeExpr(ref expr) => {
match expr.node {
ast::ExprClosure(_, ref fn_decl, ref top_level_block) => {
let name = format!("fn{}", token::gensym("fn"));
let name = token::intern(&name[..]);
(name, fn_decl,
// This is not quite right. It should actually inherit
// the generics of the enclosing function.
&empty_generics,
top_level_block,
expr.span,
// Don't try to lookup the item path:
false)
}
_ => cx.sess().span_bug(expr.span,
"create_function_debug_context: expected an expr_fn_block here")
}
}
ast_map::NodeTraitItem(trait_item) => {
match trait_item.node {
ast::MethodTraitItem(ref sig, Some(ref body)) => {
if contains_nodebug_attribute(&trait_item.attrs) {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
(trait_item.ident.name,
&sig.decl,
&sig.generics,
body,
trait_item.span,
true)
}
_ => {
cx.sess()
.bug(&format!("create_function_debug_context: \
unexpected sort of node: {:?}",
fnitem))
}
}
}
ast_map::NodeForeignItem(..) |
ast_map::NodeVariant(..) |
ast_map::NodeStructCtor(..) => {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
_ => cx.sess().bug(&format!("create_function_debug_context: \
unexpected sort of node: {:?}",
fnitem))
};
// This can be the case for functions inlined from another crate
if span == codemap::DUMMY_SP {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
let loc = span_start(cx, span);
let file_metadata = file_metadata(cx, &loc.file.name);
let function_type_metadata = unsafe {
let fn_signature = get_function_signature(cx,
fn_ast_id,
&*fn_decl,
param_substs,
span);
llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature)
};
// Get_template_parameters() will append a `<...>` clause to the function
// name if necessary.
let mut function_name = String::from_str(&token::get_name(name));
let template_parameters = get_template_parameters(cx,
generics,
param_substs,
file_metadata,
&mut function_name);
// There is no ast_map::Path for ast::ExprClosure-type functions. For now,
// just don't put them into a namespace. In the future this could be improved
// somehow (storing a path in the ast_map, or construct a path using the
// enclosing function).
let (linkage_name, containing_scope) = if has_path {
let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id));
let linkage_name = namespace_node.mangled_name_of_contained_item(
&function_name[..]);
let containing_scope = namespace_node.scope;
(linkage_name, containing_scope)
} else {
(function_name.clone(), file_metadata)
};
// Clang sets this parameter to the opening brace of the function's block,
// so let's do this too.
let scope_line = span_start(cx, top_level_block.span).line;
let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id);
let function_name = CString::new(function_name).unwrap();
let linkage_name = CString::new(linkage_name).unwrap();
let fn_metadata = unsafe {
llvm::LLVMDIBuilderCreateFunction(
DIB(cx),
containing_scope,
function_name.as_ptr(),
linkage_name.as_ptr(),
file_metadata,
loc.line as c_uint,
function_type_metadata,
is_local_to_unit,
true,
scope_line as c_uint,
FlagPrototyped as c_uint,
cx.sess().opts.optimize != config::No,
llfn,
template_parameters,
ptr::null_mut())
};
let scope_map = create_scope_map(cx,
&fn_decl.inputs,
&*top_level_block,
fn_metadata,
fn_ast_id);
// Initialize fn debug context (including scope map and namespace map)
let fn_debug_context = box FunctionDebugContextData {
scope_map: RefCell::new(scope_map),
fn_metadata: fn_metadata,
argument_counter: Cell::new(1),
source_locations_enabled: Cell::new(false),
source_location_override: Cell::new(false),
};
return FunctionDebugContext::RegularContext(fn_debug_context);
fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn_ast_id: ast::NodeId,
fn_decl: &ast::FnDecl,
param_substs: &Substs<'tcx>,
error_reporting_span: Span) -> DIArray {
if cx.sess().opts.debuginfo == LimitedDebugInfo {
return create_DIArray(DIB(cx), &[]);
}
let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1);
// Return type -- llvm::DIBuilder wants this at index 0
assert_type_for_node_id(cx, fn_ast_id, error_reporting_span);
let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id);
let return_type = monomorphize::apply_param_substs(cx.tcx(),
param_substs,
&return_type);
if ty::type_is_nil(return_type) {
signature.push(ptr::null_mut())
} else {
signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP));
}
// Arguments types
for arg in &fn_decl.inputs {
assert_type_for_node_id(cx, arg.pat.id, arg.pat.span);
let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id);
let arg_type = monomorphize::apply_param_substs(cx.tcx(),
param_substs,
&arg_type);
signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP));
}
return create_DIArray(DIB(cx), &signature[..]);
}
fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
generics: &ast::Generics,
param_substs: &Substs<'tcx>,
file_metadata: DIFile,
name_to_append_suffix_to: &mut String)
-> DIArray
{
let self_type = param_substs.self_ty();
let self_type = monomorphize::normalize_associated_type(cx.tcx(), &self_type);
// Only true for static default methods:
let has_self_type = self_type.is_some();
if !generics.is_type_parameterized() && !has_self_type {
return create_DIArray(DIB(cx), &[]);
}
name_to_append_suffix_to.push('<');
// The list to be filled with template parameters:
let mut template_params: Vec<DIDescriptor> =
Vec::with_capacity(generics.ty_params.len() + 1);
// Handle self type
if has_self_type {
let actual_self_type = self_type.unwrap();
// Add self type name to <...> clause of function name
let actual_self_type_name = compute_debuginfo_type_name(
cx,
actual_self_type,
true);
name_to_append_suffix_to.push_str(&actual_self_type_name[..]);
if generics.is_type_parameterized() {
name_to_append_suffix_to.push_str(",");
}
// Only create type information if full debuginfo is enabled
if cx.sess().opts.debuginfo == FullDebugInfo {
let actual_self_type_metadata = type_metadata(cx,
actual_self_type,
codemap::DUMMY_SP);
let name = token::get_name(special_idents::type_self.name);
let name = CString::new(name.as_bytes()).unwrap();
let param_metadata = unsafe {
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
DIB(cx),
file_metadata,
name.as_ptr(),
actual_self_type_metadata,
ptr::null_mut(),
0,
0)
};
template_params.push(param_metadata);
}
}
// Handle other generic parameters
let actual_types = param_substs.types.get_slice(subst::FnSpace);
for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() {
let actual_type = actual_types[index];
// Add actual type name to <...> clause of function name
let actual_type_name = compute_debuginfo_type_name(cx,
actual_type,
true);
name_to_append_suffix_to.push_str(&actual_type_name[..]);
if index != generics.ty_params.len() - 1 {
name_to_append_suffix_to.push_str(",");
}
// Again, only create type information if full debuginfo is enabled
if cx.sess().opts.debuginfo == FullDebugInfo {
let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP);
let ident = token::get_ident(ident);
let name = CString::new(ident.as_bytes()).unwrap();
let param_metadata = unsafe {
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
DIB(cx),
file_metadata,
name.as_ptr(),
actual_type_metadata,
ptr::null_mut(),
0,
0)
};
template_params.push(param_metadata);
}
}
name_to_append_suffix_to.push('>');
return create_DIArray(DIB(cx), &template_params[..]);
}
}
// A description of some recursive type. It can either be already finished (as
// with FinalMetadata) or it is not yet finished, but contains all information
// needed to generate the missing parts of the description. See the
// documentation section on Recursive Types at the top of this file for more
// information.
pub enum RecursiveTypeDescription<'tcx> {
UnfinishedMetadata {
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
llvm_type: Type,
member_description_factory: MemberDescriptionFactory<'tcx>,
},
FinalMetadata(DICompositeType)
}
fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
cx: &CrateContext<'a, 'tcx>,
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
llvm_type: Type,
member_description_factory: MemberDescriptionFactory<'tcx>)
-> RecursiveTypeDescription<'tcx> {
// Insert the stub into the TypeMap in order to allow for recursive references
let mut type_map = debug_context(cx).type_map.borrow_mut();
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub);
type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub);
UnfinishedMetadata {
unfinished_type: unfinished_type,
unique_type_id: unique_type_id,
metadata_stub: metadata_stub,
llvm_type: llvm_type,
member_description_factory: member_description_factory,
}
}
impl<'tcx> RecursiveTypeDescription<'tcx> {
// Finishes up the description of the type in question (mostly by providing
// descriptions of the fields of the given type) and returns the final type
// metadata.
fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
match *self {
FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
UnfinishedMetadata {
unfinished_type,
unique_type_id,
metadata_stub,
llvm_type,
ref member_description_factory,
..
} => {
// Make sure that we have a forward declaration of the type in
// the TypeMap so that recursive references are possible. This
// will always be the case if the RecursiveTypeDescription has
// been properly created through the
// create_and_register_recursive_type_forward_declaration()
// function.
{
let type_map = debug_context(cx).type_map.borrow();
if type_map.find_metadata_for_unique_id(unique_type_id).is_none() ||
type_map.find_metadata_for_type(unfinished_type).is_none() {
cx.sess().bug(&format!("Forward declaration of potentially recursive type \
'{}' was not found in TypeMap!",
ppaux::ty_to_string(cx.tcx(), unfinished_type))
);
}
}
// ... then create the member descriptions ...
let member_descriptions =
member_description_factory.create_member_descriptions(cx);
// ... and attach them to the stub to complete it.
set_members_of_composite_type(cx,
metadata_stub,
llvm_type,
&member_descriptions[..]);
return MetadataCreationResult::new(metadata_stub, true);
}
}
}
}
#[derive(Copy, Clone, PartialEq)]
enum InternalDebugLocation {
KnownLocation { scope: DIScope, line: usize, col: usize },
UnknownLocation
}
impl InternalDebugLocation {
fn new(scope: DIScope, line: usize, col: usize) -> InternalDebugLocation {
KnownLocation {
scope: scope,
line: line,
col: col,
}
}
}
fn set_debug_location(cx: &CrateContext, debug_location: InternalDebugLocation) {
if debug_location == debug_context(cx).current_debug_location.get() {
return;
}
let metadata_node;
match debug_location {
KnownLocation { scope, line, .. } => {
// Always set the column to zero like Clang and GCC
let col = UNKNOWN_COLUMN_NUMBER;
debug!("setting debug location to {} {}", line, col);
unsafe {
metadata_node = llvm::LLVMDIBuilderCreateDebugLocation(
debug_context(cx).llcontext,
line as c_uint,
col as c_uint,
scope,
ptr::null_mut());
}
}
UnknownLocation => {
debug!("clearing debug location ");
metadata_node = ptr::null_mut();
}
};
unsafe {
llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node);
}
debug_context(cx).current_debug_location.set(debug_location);
}
You can’t perform that action at this time.